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Abstract: Sagawa and Ueda established a fluctuation theorem of information exchange by
revealing the role of correlations in stochastic thermodynamics and unified the non-equilibrium
thermodynamics of measurement and feedback control. They considered a process where a
non-equilibrium system exchanges information with other degrees of freedom such as an observer
or a feedback controller. They proved the fluctuation theorem of information exchange under the
assumption that the state of the other degrees of freedom that exchange information with the system
does not change over time while the states of the system evolve in time. Here we relax this constraint
and prove that the same form of the fluctuation theorem holds even if both subsystems co-evolve
during information exchange processes. This result may extend the applicability of the fluctuation
theorem of information exchange to a broader class of non-equilibrium processes, such as a dynamic
coupling in biological systems, where subsystems that exchange information interact with each other.

Keywords: fluctuation theorem; thermodynamics of information; stochastic thermodynamics; mutual
information; non-equilibrium free energy; entropy production

1. Introduction

Biological systems possess information processing mechanisms for their survival and
heredity [1–3]. They, for example, sense external ligand concentrations [4,5], transmit information
through signaling networks [6–8], and coordinate gene expressions [9] by secreting and sensing
signaling molecules [10]. Cells even implement time integration by copying states of environment
into molecular states inside the cells to reduce their sensing errors [11,12]. Therefore it is crucial
to reveal the role of information in thermodynamics to properly understand complex biological
information processes.

Historically, information has entered into the realm of thermodynamics by the name of Maxwell’s
demon. The demon observes the speed of molecules in a box that is divided into two portions by
a partition in which there is a small hole, and lets the fast particles pass from the lower-half of the
box to the upper-half, and only the slow particles pass from the upper-half to the lower-half by
opening/closing the hole without expenditure of work (see Figure 1a). This results in raising the
temperature of the upper-half of the box and lower that of the lower-half, indicating that the second
law of thermodynamics, which implies heat flows spontaneously from hotter to colder places, might
hypothetically be violated [13]. This paradox shows that information can affect thermodynamics of a
physical system, or information is a physical element [14].

Szilard has devised a much simpler model that carries the essential role of information in
Maxwell’s thought experiment. The Szilard engine consists of a single particle in a box which is
surrounded by a heat reservoir of constant temperature. A cycle of the engine begins with inserting
a partition in the middle of the box. Depending on whether the particle is in the left-half or in the
right-half of the box, one controls a lever such that a weight can be lifted during the wall moves
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quasi-statically in the direction that the particle pushes (see Figure 1b). If the partition reaches an end
of the box, the partition is removed and a new cycle begins again with inserting a partition at the center.
Since the energy required for lifting the weight comes from the heat reservoir, this engine corresponds
to a perpetual-motion machine of the second kind, where the single heat reservoir is spontaneously
cooled and the corresponding thermal energy is converted into mechanical work cyclically, which is
prohibited by the second-law of thermodynamics [15].
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Figure 1. Paradox in thermodynamics of information (a) Maxwell’s demon (orange cat) uses
information on the speed of the particles in the box: He opens/closes the small hole (orange line)
without expenditure of energy such that fast particles (red filled circles) are gathered in the upper-half
of the box and slow particles (blue filled circles) are gathered in the lower-half of the box. Since
temperature is the average velocity of the particles, the demon’s action results in spontaneous flow of
heat from colder places to hotter places, which violates the second-law of thermodynamics. (b) A cycle
of Szilard’s engine is represented. A lever (green curved arrow) is controlled such that a weight can
be lifted during the wall moves quasi-statically in the direction that the particle pushes. This engine
harnesses heat from the heat reservoir (yellow region around each boxes) and convert it into mechanical
work, cyclically, and thus corresponds to a perpetual-motion engine of the second kind, which is
prohibited by the second-law of thermodynamics.

Szilard interprets the coupling between the location of the particle and the direction of the lever as
a sort of memory faculty and points out that the coupling is the main cause that enables an amount of
work to be extracted from the heat reservoir. He infers, therefore, that establishing the coupling must be
accompanied by a production of entropy (dissipation of heat into the environment) which compensates
for the lost heat in the reservoir. In [16], Sagawa and Ueda have proved this idea in the form of a
fluctuation theorem of information exchange, generalizing the second-law of thermodynamics by
taking information into account: 〈

e−σ+∆I
〉
= 1, (1)

where σ is the entropy production of a system X, and ∆I is the change of mutual information between
the system X and another system Y, such as a demon, during a process λt for 0 ≤ t ≤ τ. Here the
bracket indicates the ensemble average over all microscopic trajectories of X and over all states of Y.
By Jensen’s inequality [17], Equation (1) implies

〈σ〉 ≥ 〈∆I〉 . (2)
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This tells indeed that establishing a correlation between the two subsystems, 〈∆I〉 > 0,
accompanies an entropy production, 〈σ〉 > 0, and expenditure of this correlation, 〈∆I〉 < 0, serves
as a source of entropy decrease, 〈σ〉 < 0. In proving this theorem, they have assumed that the
state of system Y does not evolve in time. This assumption causes no problem for simple models
of measurement and feedback control. However, in biological systems, it is not unusual that both
subsystems that exchange information with each other co-evolve in time. For example, transmembrane
receptor proteins transmit signals through thermodynamic coupling between extracellular ligands
and conformation of intracellular parts of the receptors during a dynamic allosteric transition [18,19].
In this paper, we relax the constraint that Sagawa and Ueda have assumed, and generalize the
fluctuation theorem of information exchange to be applicable to more involved situations, where the
two subsystems can influence each other so that the states of both systems co-evolve in time.

2. Results

2.1. Theoretical Framework

We consider a finite classical stochastic system composed of subsystems X and Y that are in
contact with a heat reservoir of inverse temperature β ≡ 1/(kBT) where kB is the Boltzmann constant
and T is the temperature of the reservoir. We allow both systems X and Y to be driven far from
equilibrium by changing external parameter λt during time 0 ≤ t ≤ τ [20–22]. We assume that time
evolutions of subsystems X and Y are described by a classical stochastic dynamics from t = 0 to t = τ

along trajectories {xt} and {yt}, respectively, where xt (yt) denotes a specific microstate of X (Y) at
time t for 0 ≤ t ≤ τ on each trajectory. Since both trajectories fluctuate, we repeat the process λt with
appropriate initial joint probability distribution p0(x, y) over all microstates (x, y) of systems X and Y.
Then the joint probability distribution pt(x, y) would evolve for 0 ≤ t ≤ τ. Let pt(x) :=

∫
pt(x, y) dy

and pt(y) :=
∫

pt(x, y) dx be the corresponding marginal probability distributions. We assume

p0(x, y) 6= 0 for all (x, y) (3)

so that we have pt(x, y) 6= 0, pt(x) 6= 0, and pt(y) 6= 0 for all x and y during 0 ≤ t ≤ τ.
Now, the entropy production σ during process λt for 0 ≤ t ≤ τ is given by

σ := ∆s + βQb, (4)

where ∆s is the sum of changes in stochastic entropy along {xt} and {yt}, and Qb is heat dissipated
into the reservoir (entropy production in the reservoir) [23,24]. In detail, we have

∆s := ∆sx + ∆sy,

∆sx := − ln pτ(xτ) + ln p0(x0),

∆sy := − ln pτ(yτ) + ln p0(y0).

(5)

We note that the stochastic entropy s[pt(◦)] := − ln pt(◦) of microstate ◦ at time t can be
interpreted as uncertainty of occurrence of ◦ at time t: The greater the probability that state ◦ occurs,
the smaller the uncertainty of occurrence of state ◦.

Now we consider situations where system X exchanges information with system Y during process
λt. By this, we mean that trajectory {xt} of system X evolves depending on the trajectory {yt} of
system Y. Then, information It at time t between xt and yt is characterized by the reduction of
uncertainty of xt due to given yt [16]:

It(xt, yt) := s[pt(xt)]− s[pt(xt|yt)]

= ln
pt(xt, yt)

pt(xt)pt(yt)
,

(6)
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where pt(xt|yt) is the conditional probability distribution of xt given yt. We note that this is called the
(time-dependent form of) thermodynamic coupling function [19]. The larger the value of It(xt, yt) is,
the more information is being shared between xt and yt for their occurrence. We note that It(xt, yt)

vanishes if xt and yt are independent at time t, and the average of It(xt, yt) with respect to pt(xt, yt)

over all microstates is the mutual information between the two subsystems, which is greater than or
equal to zero [17].

2.2. Proof of Fluctuation Theorem of Information Exchange

Now we are ready to prove the fluctuation theorem of information exchange in this general
setup. We define reverse process λ′t := λτ−t for 0 ≤ t ≤ τ, where the external parameter is
time-reversed [25,26]. Here we set the initial probability distribution p′0(x, y) for the reverse process as
the final (time t = τ) probability distribution for the forward process pτ(x, y) so that we have

p′0(x) =
∫

p′0(x, y) dy =
∫

pτ(x, y) dy = pτ(x),

p′0(y) =
∫

p′0(x, y) dx =
∫

pτ(x, y) dx = pτ(y).
(7)

Then, by Equation (3), we have p′t(x, y) 6= 0, p′t(x) 6= 0, and p′t(y) 6= 0 for all x and y during
0 ≤ t ≤ τ. We also consider the time-reversed conjugate for each {xt} and {yt} for 0 ≤ t ≤ τ

as follows:

{x′t} := {x∗τ−t},
{y′t} := {y∗τ−t},

(8)

where ∗ denotes momentum reversal. The microscopic reversibility condition connects the
time-reversal symmetry of the microscopic dynamics to non-equilibrium thermodynamics, and reads
in this framework as follows [23,27–29]:

p({xt}, {yt}|x0, y0)

p′({x′t}, {y′t}|x′0, y′0)
= eβQb , (9)

where p({xt}, {yt}|x0, y0) is the conditional joint probability distribution of paths {xt} and {yt}
conditioned at initial microstates x0 and y0, and p′({x′t}, {y′t}|x′0, y′0) is that for the reverse process.
Now we have the following:

p′({x′t}, {y′t})
p({xt}, {yt})

=
p′({x′t}, {y′t}|x′0, y′0)
p({xt}, {yt}|x0, y0)

·
p′0(x′0, y′0)
p0(x0, y0)

(10)

=
p′({x′t}, {y′t}|x′0, y′0)
p({xt}, {yt}|x0, y0)

·
p′0(x′0, y′0)

p′0(x′0)p′0(y
′
0)
· p0(x0)p0(y0)

p0(x0, y0)
·

p′0(x′0)
p0(x0)

·
p′0(y

′
0)

p0(y0)
(11)

= exp{−βQb + Iτ(xτ , yτ)− I0(x0, y0)− ∆sx − ∆sy} (12)

= exp{−σ + ∆I}. (13)

To obtain Equation (11) from Equation (10), we multiply Equation (10) by p′0(x′0)p′0(y
′
0)

p′0(x′0)p′0(y
′
0)

and
p0(x0)p0(y0)
p0(x0)p0(y0)

, which are 1. We obtain Equation (12) by applying Equations (5)–(7) and (9) consecutively to
Equation (11). Finally, we set ∆I := Iτ(xτ , yτ)− I0(x0, y0), and use Equation (4) to obtain Equation (13)
from Equation (12).
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We note that Equation (13) generalizes the detailed fluctuation theorem in the presence of
information exchange that is proved in [16]. Now we obtain the generalized version of Equation (1) by
using Equation (13) as follows:〈

e−σ+∆I
〉
=
∫

e−σ+∆I p({xt}, {yt}) d{xt}d{yt}

=
∫

p′({x′t}, {y′t}) d{x′t}d{y′t} = 1.
(14)

Here we use the fact that there is a one-to-one correspondence between the forward and the
reverse paths due to the time-reversal symmetry of the underlying microscopic dynamics such that
d{xt} = d{x′t} and d{yt} = d{y′t} [30].

2.3. Corollary

Before discussing a corollary, we remark one thing: we have used similar notation to that used
by Sagawa and Ueda in [16], but there is an important difference. Most importantly, their entropy
production σsu reads as follows:

σsu := ∆ssu + βQb,

where ∆ssu := ∆sx. In [16], system X is in contact with the heat reservoir, but system Y is not. Nor does
system Y evolve over time. Thus they have considered entropy production in system X and the bath.
In this paper, both systems X and Y are in contact with the reservoir, and system Y also evolves in
time. Thus both subsystems X and Y as well as the heat bath contribute to the entropy production as
expressed in Equations (4) and (5). Keeping in mind this difference, we apply Jensen’s inequality to
Equation (14) to obtain

〈σ〉 ≥ 〈∆I〉 . (15)

It tells us that firstly, establishing correlation between X and Y accompanies entropy production,
and secondly, established correlation serves as a source of entropy decrease.

Now as a corollary, we refine the generalized fluctuation theorem in Equation (14) by including
energetic terms. To this end, we define local free energy Fx of system X at xt and Fy of system Y at yt

as follows:

Fx(xt, t) := Ex(xt, t)− Ts[pt(xt)]

Fy(yt, t) := Ey(yt, t)− Ts[pt(yt)],
(16)

where Ex and Ey are internal energy of systems X and Y, respectively, and s[pt(◦)] := − ln pt(◦)
is stochastic entropy [23,24]. Here T is the temperature of the heat bath and argument t indicates
dependency of each terms on external parameter λt. During the process λt, work done on the systems
is expressed by the first law of thermodynamics as follows:

W := ∆E + Qb, (17)

where ∆E is the change in internal energy of the systems. If we assume that systems X and Y are
weakly coupled, in that interaction energy between X and Y is negligible compared to internal energy
of X and Y, we may have

∆E := ∆Ex + ∆Ey, (18)

where ∆Ex := Ex(xτ , τ)− Ex(x0, 0) and ∆Ey := Ey(yτ , τ)− Ey(y0, 0) [31]. We rewrite Equation (12) by
adding and subtracting the change of internal energy ∆Ex of X and ∆Ey of Y as follows:

p′({x′t}, {y′t})
p({xt}, {yt})

= exp{−β(Qb + ∆Ex + ∆Ey) + ∆I + β∆Ex − ∆sx + β∆Ey − ∆sy} (19)

= exp{−β(W − ∆Fx − ∆Fy) + ∆I}, (20)
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where we have applied Equations (16)–(18) consecutively to Equation (19) to obtain Equation (20).
Here ∆Fx := Fx(xτ , τ)− Fx(x0, 0) and ∆Fy := Fy(yτ , τ)− Fy(y0, 0). Now we obtain fluctuation
theorem of information exchange with energetic terms as follows:〈

e−β(W−∆Fx−∆Fy)+∆I
〉
=
∫

e−β(W−∆Fx−∆Fy)+∆I p({xt}, {yt}) d{xt}d{yt}

=
∫

p′({x′t}, {y′t}) d{x′t}d{y′t} = 1,
(21)

which generalizes known relations in the literature [31–36]. We note that Equation (21) holds under the
weak-coupling assumption between systems X and Y during the process λt. By Jensen’s inequality,
Equation (21) implies

〈W〉 ≥
〈

∆Fx + ∆Fy +
∆I
β

〉
. (22)

We remark that 〈∆Fx〉+
〈
∆Fy

〉
in Equation (22) is the difference in non-equilibrium free energy,

which is different from the change in equilibrium free energy that appears in similar relations in the
literature [32–36].

3. Examples

3.1. Measurement

Let X be a device (or a demon) which measures the state of other system and Y be a measured
system, both of which are in contact with a heat bath of inverse temperature β (see Figure 2a).
We consider a dynamic measurement process, which is described as follows: X and Y are prepared
separately in equilibrium such that X and Y are not correlated initially, i.e., I0(x0, y0) = 0 for all x0 and
y0. At time t = 0, device X is put in contact with system Y so that the coupling of X and Y occurs due
to their (weak) interactions until time t = τ, at which a single measurement process finishes. We note
that system Y is allowed to evolve in time during the process. Since each process fluctuates, we repeat
the measurement many times to obtain probability distribution pt(x, y) for 0 ≤ t ≤ τ.

A distinguished feature of the framework in this paper is that mutual information It(xt, yt)

in Equation (6) enables us to obtain the time-varying amount of established information during
the dynamic coupling process, unlike other approaches where they either provide the amount of
information at a fixed time [31,36,37] or one of the system is fixed during the coupling process [16].
For example, let us assume that the probability distribution pt(xt, yt) at an intermediate time t is as
shown in Table 1.

Table 1. The joint probability distribution of x and y at an intermediate time t: Here we assume for
simplicity that both systems X and Y have two states, 0 (left) and 1 (right).

X\Y 0 (Left) 1 (Right)

0 (Left) 1/3 1/6
1 (Right) 1/6 1/3

Then we have the following:

It(xt = 0, yt = 0) = ln
1/3

(1/2) · (1/2)
= ln(4/3),

It(xt = 0, yt = 1) = ln
1/6

(1/2) · (1/2)
= ln(2/3),

It(xt = 1, yt = 0) = ln
1/6

(1/2) · (1/2)
= ln(2/3),

It(xt = 1, yt = 1) = ln
1/3

(1/2) · (1/2)
= ln(4/3),

(23)
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so that 〈∆I〉 = (1/3) ln(4/3) + (1/6) ln(2/3) + (1/6) ln(2/3) + (1/3) ln(4/3) ≈ ln(1.06). Thus by
Equation (15) we obtain the lower bound of the average entropy production for the coupling that
has been established until time t from the uncorrelated initial state, as follows: 〈σ〉 ≥ 〈∆I〉 ≈ ln 1.06.
If there is no measurement error at final time τ such that pτ(xτ = 0, yτ = 1) = pτ(xτ = 1, yτ = 0) = 0
and pτ(xτ = 0, yτ = 0) = pτ(xτ = 1, yτ = 1) = 1/2, then we may have 〈σ〉 ≥ 〈∆I〉 = ln 2, which is
greater than ln 1.06.

a b
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Figure 2. Measurement and feedback control: system X is, for example, a measuring device and system
Y is a measured system. X and Y co-evolve, as they interact weakly, along trajectories {xt} and {yt},
respectively. (a) Coupling is being established during the measurement process so that It(xt, yt) for
0 ≤ t ≤ τ may be increased (not necessarily monotonically). (b) Established correlation is being used
as a source of work through external parameter λt so that It(xt, yt) for τ ≤ t ≤ τ′ may be decreased
(not necessarily monotonically).

3.2. Feedback Control

Unlike the case in [16], we need not to exchange subsystems X and Y to consider feedback
control after the measurement. Thus we proceed continuously to feedback control immediately
after each measurement process at time τ (see Figure 2b). We assume that correlation Iτ(xτ , yτ)

at time τ is given by the values in Equation (23) and final correlation at later time τ′ is zero, i.e.,
Iτ′(xτ′ , yτ′) = 0. By feedback control, we mean that external parameter λt for τ ≤ t ≤ τ′ is manipulated
in a pre-determined manner [16], while systems X and Y co-evolve in time, such that the established
correlation is used as a source of work while It(xt, yt) for τ ≤ t ≤ τ′ is decreased, not necessarily
monotonically. Equation (21) provides an exact relation on the energetics of this process. We rewrite its
corollary, Equation (22), with respect to extractable work Wext := −W as follows:

〈Wext〉 ≤ −
〈

∆Fx + ∆Fy +
∆I
β

〉
. (24)

Then the extractable work on top of the conventional bound, −
〈
∆Fx + ∆Fy

〉
, is additionally given by

−∆I/β = ln(1.06), which comes from the consumption of the established correlation.

4. Conclusions

We have proved the fluctuation theorem of information exchange, Equation (14), which
holds even during the co-evolution of two systems that exchange information with each other.
Equation (14) tells us that establishing correlation between two systems necessarily accompanies
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entropy production which is contributed by both systems and the heat reservoir, as expressed
in Equations (4) and (5). We have also proved, as a corollary of Equation (14), the fluctuation
theorem of information exchange with energetic terms, Equation (21), under the assumption of
weak coupling between the two subsystems. Equation (21) reveals the exact relationship between
non-equilibrium free energy of both sub-systems and mutual information that is established/consumed
through their interactions. This more generalized framework than that in [16], enables us to apply
thermodynamics of information to biological systems, where molecules generate/consume correlations
through their information processing mechanisms [4–6]. Since the new framework is applicable to
fully non-equilibrium situations, thermodynamic coupling during a dynamic allosteric transition,
for example, may be analyzed based on this theoretical framework beyond current equilibrium
thermodynamic approach [18,19].
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