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Abstract: In this paper, we focus on the existence of solutions of the nonlinear Langevin fractional
differential equations involving anti-periodic boundary value conditions. By using some techniques,
formulas of solutions for the above problem and some properties of the Mittag-Leffler functions
E,x,ﬁ(z), a,p € (1,2),z € R are presented. Moreover, we utilize the fixed point theorem under the
weak assumptions for nonlinear terms to obtain the existence result of solutions and give an example
to illustrate the result.
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1. Introduction

The application of fractional calculus is very broad, and the differential equations involving
Riemann-Liouville and Caputo operators of fractional orders arise in many scientific disciplines,
such as the mathematical modeling of earthquake analysis, mechanics and electricity, the memory of
many kinds of material, electrolysis chemical, electronic circuits, etc. [1-6]. In recent years, the subject
of fractional differential equations is gaining much importance and attention. For details, see [1-4,6-11]
and the references therein.

In 1908, Langevin [12] applied Newton’s second law to a Brownian particle to give an elaborate
description of Brownian motion which is now called the “Langevin equation” [13].

The classical Langevin equation for the apparently random movement of a Brownian particle in a
fluid due to collisions with the molecules of the fluid is described by

d%x dx

where x denotes the position of the particle, m denotes the particle’s mass, and f denotes the force
acting on the particle from molecules of the fluid surrounding the Brownian particle. The force f may
be written as a sum of two parts. The first one is the viscous force proportional to the particle’s velocity
with coefficient A. The second one denoted by 7(t) is the random force arising from rapid thermal
fluctuation [14].

The fractional Langevin equation was introduced by Mainardi et al. in the early 1990s [14,15].
Much work since then has been devoted to the study of the fractional Langevin equations in the field
physics (e.g., [16-22]). Moreover, the fractional Langevin equations have been applied to describe
various anomalous diffusive process, such as single file diffusion and crossover dynamics between
different diffusive regimes (see, e.g., [23-26]).

Recently, there has been a significant development in solving fractional Langevin equation
(see [7-10] and the references therein). To the best of our knowledge, there are few papers dealing with
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B

anti-periodic BVP involving fractional Langevin equation with two fractional orders “Dfj, “Dy, u(a €
(0,1), B,a+ B € (1,2)) [10].

In this paper, we study the following anti-periodic boundary value problem of nonlinear fractional
Langevin equations:

“Df. (‘DY +Mu(t) = f(t,u(t), te]:=(01], M
u(0) +u(1) =0, u'(0) +u'(1) =0, thrgl+ t“(HDg;“u)(t) =0, ()

wherea, & € (0,1), B,a+B€ (1,2),A>0,0<a+§—af <1 °Df. is the standard Caputo fractional
derivative, HDgf is the Hilfer fractional derivative, f : ] x R — R is an appropriate function to be
specified later.

As mentioned in [7] and the references therein, the existence results of fractional differential
equations involving Caputo differential operator of order «a, f € (0, 1) are obtained by Mittag-Leffler
functions E.(z) and E,g(z), since Eq(z) and E,g(z) have “good” properties, such as explicit
boundedness, monotonicity and nonnegativity. However, for a, p € (1,2), the above properties
do not hold anymore, which leads to difficulties for the theoretical analysis. In this paper, using some
techniques, we study the properties of Eg(z) and Egg(z)(B,0 € (1,2)) and obtain the existence result
of solutions to (1) and (2) under the weak assumptions on f(t,u(t)).

The plan of this paper is as follows. In Section 2, we present some basic concepts, notations about
fractional calculus. In Section 3, we prove some properties of Mittag-Leffler functions. In Section 4,
we present the definition of solution to (1) and (2). In Section 5, we employ Krasnoselskii’s fixed point
theorem to obtain the existence of solutions to problem (1) and (2). An example is given in Section 6 to
demonstrate the application of our result.

2. Preliminaries

In this paper, we denote by C(],R) the Banach space of all continuous functions from ] to R,
LP(J,R) the Banach space of all Lebesgue measurable functions [ : | — R with the norm ||I||;, =

1
( /, ] [1(t)|” dt) ’ < oo and by AC([a,b], R) the space of all absolutely continuous functions defined on
[a, b]. Moreover, forn =1, 2,

AC™([a,b], R) = {f : f € C""([a,b], R)and f"*~V) € AC([a,b], R)}.
In particular, AC'([a, b], R) = AC([a,b], R).

Definition 1. [3,4] The fractional integral of order vy with the lower limit a for a function x(t) €
LY([a, +00),R) is defined as

(17, x)(t) = —— /t(t—s)V_lx(s)ds, t>a, 7>0,

where I'(-) is the gamma function.

Definition 2. [3,4] If x(t) € AC"([a,b],R), then the Riemann-Liouville fractional derivative LD;lx(t) of
order vy exists almost everywhere on [a, b] and can be written as

(DT x)(t) = r(nl_w (;t) ‘/:(t o)y (s)ds = (i) (IS0, t>a, n—1<y<n.
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Definition 3. [3,4] If x(t) € AC"([a,b],R), then the Caputo derivative CD{Lx(t) of order vy exists almost
everywhere on [a, b] and can be written as

Y L ' x 0 (a) K
(‘DLx)(t) = | *DJ, |x(s) = ). - (s—a)| | (t), t>a, n—1<y<n
k=0 :
Moreover, if x(a) = x'(a) = --- = x(""1)(a) = 0, then (CD;’+x)(t) = (LD;x)(t).

Definition 4. [5] The Hilfer fractional derivative of order 0 < v < 1and 0 < a < 1 with lower limit a is
defined as
, 1- -
(HDI ) (1) = 70 (EDT ) (1),

We introduce the following fixed point theorem.

Theorem 1. (Krasnoselskii’s fixed point theorem) Let B be a closed, convex, and nonempty subset of a Banach
space U, and let A1, Ay be operators such that:

(i)  Aqu+ Ayv € B whenever u,v € B,
(ii) Aq is compact and continuous,
(iii) Ajg is a contraction mapping.

Then there exists z € B such that z = A1z + A»rz.

3. Properties of Mittag-Leffler Functions

In this section, we prove some properties of the Mittag-Leffler functions.

Definition 5. [3,4] For y,v > 0, z € R, the classical Mittag-Leffler functions E,(z) and the generalized
Mittag-Leffler functions E,, , (z) are defined by
=) Zk (=) Zk
E(z) =) ———, En(z)=) —/——.
# kgol“(yk—i-l) v kgol"(yk—l—v)

Clearly, E;1(z) = Eu(z2).

Lemma 1. [3]If1 < B < 2, v is an arbitrary real number, %ﬁ < u < 1tf, then
[Epr(2) <C, p<largzf <m, [z[ 20,

where C is a positive constant.

Lemma 2. [4,11] For«y,u,v,A >0, t > 0,g € L(0,t), the usual derivatives of Ey,y and the Riemann-Liouville
integration of E,,, are expressed by

(i) (%)"[tv—lﬁw(ﬂ\m] = U, L (—AHY), n>1;
Lod _
(i) Ep(—AH) = — A" YEuu(—At);

t
(iii) Ig+(sV*1EW(—As”))(t) = F(l'y)/o (t— s)VflsvflEW(—)\s”)ds = t"*“*lE%%v(—)\t”);
(iv)

YA DU G VR DG

- /0 (t— 1) IE, L (—A(t— T)")g(T)dT.
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Lemma 3. For A > 0,1 < B < 2,0 > B, the generalized Mittag-Leffler functions have the following
properties:

1 1
j APy =~ _ABPY(1 — VP24
(i) Elg,‘g( At ) = F(,B—l) /01 Eﬁ( AtPs )(1 S) ds;
1
. B CAtBBYB-T(1 _ \O—B—1 ..
(i) Epg(—AtP) = 71"(9—,3)/0 Egp(—AtPsP)sP (1 —s) ds;

t
(iii) tEgo(—AtF) = / Ep(—AsP)ds.
0
Proof. We denote the beta function by B(-, -), then

Epp(—MF) TBk+p)  T(B-1) & T(Bk+1)

i (—AtP)k i —Ath kIB%(ﬁk+1 B—1)

- 1 1® (A tﬁsﬁ)k
o F(ﬁ—l)/o = T(Bk+1)
1

1
= m/o Eg(—AtPsP) (1 —s5)P~2ds, 3)

(1—5)P2ds

and

R (—AtP)E > Atﬁkﬁ(ﬁk—l—ﬁe B)
Ego(—AtF) = ; T(Bk+0) I(6 ,; T(Bk+ B)

B 1 (— Atﬁsﬁ)k _
- b L 0o

1 ! -1 0-p-1
Using Lemma 2 (i) for v = 2, n = 1, we obtain (iii). O
Similar to the arguments in [3,4], we can obtain the following results.

Lemmad4. For A >0, a,{,a+¢—af € (0,1), 0 >a, B,a+p € (1,2), then

(i) [‘D&. Eg(—AsP)] (t) = —Atﬁ*“Eﬁlﬁ,Hl(—)\tﬁ).

(i) [“D&,s°Egga( Asﬂ] (£) = t"""Egg_ar1(—AtF),
(i) |°DY, sPEg 5. 1(—AsP)| (£) = Eg(—AtF), [ §+5E52(—Asﬁ)} (£) = —AtEga(—Ath).
(i) |MDS s B 1(—AsP)| (t) = 9" Egg_yiq (—ALF).

Proof. From Lemma 2.7 of [11], (i) holds. From Definition 2-4 and Lemma 2, it follows that

1 d rt _
[CDSﬁSGEﬁ,eH(—Asﬁ)} (t) = ma/o (t—5)""s"Eggi1(—AsP)ds
d
= dt {te “Ego—ata(— Afﬁ)}
= B "Egp ni1(—AtF),
and

VN B L (d\* 1-Bgh B
DO+S Eﬁ,ﬁ+1(—)\s )i| (t) - m E /0 (t—S) S Eﬁ,ﬁJrl(_AS )ds

d2
= ﬁ[szm(—/\fﬁ)] = Eg(—AtF),
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and
D5 sEpa(—2s)] (1) = FEo ﬁ)( >/(t—s)1 B(sEpa(—AsP) — s)ds
2
N ( ) [tw(E’“ﬁ ﬁ)_r(41—ﬁ)>}
) AP
N [ AtBk_Ol“(Bk:L)AL
= —)ttEM( AtP),
and
D5 (s*Eposa(—2sP)) | (1)
= [ e (—A5P)] ()
= teiaEﬁ,97a+1(_)‘tﬁ)-
O

For A >0, B € (1,2) and v > 0, from Lemma 3.2 in [10], we find that

Ep(—Ath) = /O+°° Q(r, Hydr + V (1),

where

1

r 7 exp(=rf) rsin(m(1—7)) + At sin(m(1—y +B))

O
—
3
-~
N~—
|

B u(t) '
U(t) = r*+2ArtP cos(nB) + A%t%P,
1—y
V() = Llexp(t)x%cosz)cos t/\%sinz—z(’y—l) .
BAYTE B BB

50f 15

®)

Lemma5. Let B € (1, 2),{ € (0,1], 0 > B be arbitrary. Then the functions Eg, Eg g, Eg; and Eg g have the

following properties:

(i) Foranyt € ], Eg(—MP) <1, Egg(—AtP) < A, Ego(—AtF) < ho
(ii) Foranyty, tr € ],

(— /15)| = O(lta—t]), as th—t,
gp(— /15)| = O(lta—t4]), as tp —ty,
|Eﬁ,g< At'% (A = O(t—hl), as b —h,
s(~AD| = O(—h), as -t
2(=A1)] ( )

= O(lta—t1]), as t2— t.

Proof. (i) From Lemma 3.4 of [10], we have Eﬁ(—)\tﬁ ) < 1. Using Lemma 3, the second and the third

inequalities hold.
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(ii) From (5), for B € (1, 2), ¢ € (0,1], we can see

Ep(—Ath) = /0+°° O(r, Hydr + V (),

where
1- 1
~ B P oexp(—rP) rsinn@—l—)\tﬁsm(ﬂ(g—ﬁ))
Q) = B (o) ’
V() = ﬁ exp(t)\% cos E) cos [Mf]5 sin = — E(@ —1).
‘BAl—% B p B
Clearly,
U(t) = (r+ AP cos(mB))? + A% sin?(rB) > A2 sin®(7B) > O,

and

U(t) = (r — AP)2 4+ 2ArtP (cos(mB) + 1) > 4ArtP cosz(%ﬁ) > 0.

Assume that 0 < t; < t; <1, by (6), (7) and Lagrange’s mean value theorem, we obtain

L S O E U R R TG

U(ta)  U(ty) UU(R) 822 cost () = O(|ta — t4]),

fu) —Buw)| A )+ 2200 o)

U(tl)U(fz) - U(tl)U(tz)
1 1 i
= (16/\zcos4(7;’g)+)\25in4(”ﬁ)> tlﬁtl;
- 1,1 ]ﬁ(tz—h)

16cost(ZE)  sin*(np)

2
2 A2t1ﬁ
= O(t—tl),

and

V(t2) = V()]

IN

2 -6 2 } 5
| 2 11 | + ; ’exp(tz)\ﬁ COSE) —eXp(tl)\ﬁ COSE)’
prh g ’

+exp(t1)x% cosz)‘ cos {/\étz sin 2 — E(g - 1)} — cos [Aétl sin * — 5@ - 1)] ‘}

B BB
2_q
( 2 +4Aﬂ ) (tr — 1) := O(|ta — 11]).

g B

ﬁ/\l’%tg P

6 of 15

(6)

@)

®)

)

(10)
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According to (8)—(10), as t, — t1, we arrive that

Epz(—A) — Epe(-af)| < [T 100, 1) = Qlr, t)ldr +|V(t2) = V(1)
1 [ 1=+p 1 1 1
< ket ﬁ)(u )
oo 1-— ﬁ ~ ~
2 [T eper Bl S 2 s () - Vo)
< Mo er D MP=Er D2 ol — hl) = O(lt — 1.

In particular, when ¢ = 1, we get |E5(—At§) - Eﬁ(—/\tlﬁ)| = O(|ta — t1]). From Lemma 3, the remain
estimates can be proved. [

Remark 1. Obviously, for p € (1,2],z € R, Eg(z) and Eg g(z) are not always nonnegative.

Lemmaé6. IfA >0,a € (0,1), 8, a+p € (1,2),t €], then

re 1, 2 N
‘tﬁEﬁ,ﬁJrl(*Atﬁ)' < A27[sin(7B)| s + ,3)\17% exp(tAF cos B ) (11)
rg-1 1 2 N
|tEﬁ,2(*)\t/5)| < A sm(nB)] P + ﬁ)ﬁ’l exp(tAP cos E)I (12)
g r1-a) 1 1 1 2 I
P B g (—AP)] < —— [4COSZ(7;/5) + Sin2(nﬁ):|tlzx + mexp(w cos 3)' (13)
Proof. From (5), we have
5 oo 2t=F 1o 1.7
Egpi1(—AtF) = Q1 (r, t)dr + — exp(tAP cos — ) cos |:t)\'3 sin — — 71} ,
J0 ,3)\ B /3 /3
) -1
Elgrz(—/\tﬁ) = /0+ Qa(r, t)dr + ﬁi\tl_ﬁ exp(t)\é cos %) cos [t)xﬁ s1n% g} ,
o 1-a—p
E'B,a_i_‘g(—/\tﬁ) = /0+ Qs(r, t)dr + 2’;/\1 T exp(t/\ﬂ COS%) cos [t/\ﬁ sin % %(zx +B— 1)}
where
—1 _ 1 . _
_1 1 £ B
D1, 1) = r ﬁe?ﬁ( rf) At sml(;zgﬂ 1))’
00— r P exp(—rh) rsin(r(1—a—B)) + M sin(re(1 - a))
W np u |

Using (6) and (7), we derive that

1

exp(—rP) T_%GXP( l)
QDL < Sagsfan(rpy 12U 1S g sin(ep)”

1 1 n 1 1‘;—ﬁ ( %)
r xp(—rP),
Amtpth 4cos2(%ﬁ) sin?(7tB) P

Qa(r, B)] <
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then
r'(B) 1 2 1 T
tPE —AtP < R LB )
[tPEp,pr1( )| A27t|sin(7tB)| tP ‘B/\lfﬁ exp(tAF cos 'B)
|tE/5,2(—)\tﬂ)\ < -1 1 + 5 eXp(t/\% cos —),

Art|sin(B)| B ‘[5)»1_3

F(l — 06) 1 1 1 2
+ - 2 1—u 1
ATT 4(:052(%.3) sin’ (7'[[3) t ﬁ)LliB

[P Eg o p(—AHF)| <

O

4. Solutions of BVP

In this section, we present the formulas of solutions to problem (1) and (2).

Lemma 7. [4] For 6 > 0, a general solution of the fractional differential equation *D§, u(t) = 0 is given by

n—1 .
u(t) =Y Gt
i=0
where C; € R, i=0,1,2,--- ,n—1(n = [0] + 1), and [0] denotes the integer part of the real number 6.

Lemma 8. Fora € (0,1), B € (1,2), h € L'(0,1), if “Dfy (CDg+ +A) u(t) = h(t), t € J, then
2 t

u(t) = EcitlilE‘B/i(—)\tﬁ) + Cot‘BEﬁ/ﬁ+1(—)\tﬁ) +/ (t - S)“Jr‘BilE‘B’aJrﬁ(—)\(t — s)ﬁ)h(s)ds, te ],

i=1 0
whereC; € R,i=0,1,2.

Formally, by Lemma 7, for C; € R(i = 0,1,2), we have (CD(’?+ —+ A) u(t) = Co + (I h)(t) and
u(t) = —A(IP,u)(8) + 1F, (Co + (I8 h)) (1) + Cy + Cat.

Based on the arguments of (see [4], pp. 222-223) and Lemma 2, we obtain

u(t)

= CiEg(—AtP) + CotEgr(—AtP) + /Ot(t —$)P T Eg g(—A(t — 5)P)(Co + (I§. h)(s))ds

(=ATA)(t —s — 1)* h(s)
I'(a)

dtds

t pt—s TP—1E
ClEﬁ(—/\tﬁ)+C2tEﬁ,2(_)\t'3)+C0tﬁE‘B’ﬁ+1(_)\tﬁ)+/o /o B.B

! -1
clgﬁ(—)uﬁ)jtcztzsﬂ,z(—mﬁ)+c0t/5Eﬁ,,g+1(—Atﬂ)+/O (t=5)" P Eg oy g(—A(t —5)P)h(s)ds.

We define Cg([0,1,R) = {u € C(],R) : thu(t) € C([0,1],R)} with the norm llullg =

m[ax] t|u(t)| and we abbreviate Cp([0,1],R) to Cg.
te01
(H1) f : ] x R — R satisfies f(-,u) : ] = R is measurable forallu € Rand f(t,-) : R — Riis

1 _
continuous for a.e. t € J, and there exists a function ¢ € L?1 (J,RT)(0 < p; < min{a, Hg 1} such
that [f(t, u(t))| < ¢(t).

Definition 6. A function u : | — R is said to be a solution of (1) and (2) if

(i) ue AC*(],R);
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(ii)  u satisfies the equation “Dy. (CDB +A)u(t) = f(t,u(t)) onJ;
(i) u(0) +u(1) = 0,u/(0) +u/(1) =0, lim 1 (MD5 " u) (1) = 0.

Lemma9. Forallsy,sy € ], 51 < s,
S
/0 (52— )2 — (s — 1) B2 p(T)dT 0, (51— 52).

Proof. From the Holder inequality, we have

‘/ zx+ﬁ 2 (51 7 T)a+ﬁ—2]q)(T)dT
! 1 1-m
< ||§0||L% UO [(s2 — T)a+/3—2 — (51— T)a+ﬁ—z|1,,,l dr}
$1 51 B 1% 1-p
= - pllol | 1)@ oee g
Y 51 1-p1
< M |:/0 ((sl - T)(S — (52 — T)(S)d'r:|

M 1-m
= Giorh {(sz — )10 sl 4 S%HS} —0, as sy —sq.

where M > 0is a constant, § = ‘Hﬁ# €(-1,0). O

Fort € |, y > pj, using the Holder inequality, we have

t 1 p t 1y;1d 1-p1 1-pm liplyp u
F— - < t— -r _— t/H .
[e=ortowas< ([e-sas) ol = (;=2) loll - a9

For convenience, we define
t
(Fou)(t) =/0(f—S)g’lEﬁ,g(—?\(t—S)’g)f(sfu(S))dS-
Lemma 10. Assume that (H1) holds. For u € Cﬂ, t € J, we have
(i1 {CDﬁ F*% )| (0 = (Fru)(e), [Dg. (F*Pu)] (1) = (FPu)(t);

(iii) [°Dg, (F*u)] (t) = —A(FPu)(t) + f(t,u(t));
(iv) [HD“PHﬁu)}() (FPu)(¢).

(i) (F*TPu)(t) € AC%(],R);
D

Proof. It follows from the definition of derivative for the Lebesgue integration and (14) that

TEPu) (1) = (PP 1) 1), (15)
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Next, we show that (F**#~1u)(t) € AC(J,R). For every finite collection {(aj,bj) }1<j<n on ] with

n
Y (bj —aj) — 0, noting Lemmas 1, 5 (ii), 9 and (14), we derive
=1

n

2|

Fuc+5 1, ) _ (th-&-ﬁ—lu)(aj)‘
j=1

n

Z/ (b =) P 2Ep a1 (=A(b) = 5)P) — (a; = 5)* P 2Eg s p1 (= A(aj = 5)P)| - [ f(s,u(s))|ds

IN

* Z/ by = 5|2 Eg g1 (= A(b; — 5)P)| - [£(s, u(s))|ds

IN

2/ 8)" P72 — (a; — )" P2] | Egaypo1 (—A(b; — 5)P) | p(s)ds
+ 2/ — 8" 2Egarp1(=A(bj = )P) = Eparp1(—Aaj —5)P)|g(s)ds

b1 [y ol g g a(AG P (el
=174
—

Hence, (F**P~1u)(t) is absolutely continuous on J. Furthermore, for almost all t € ],
[CD(’?+ (F**Pu)(s)] (t) and [ D&, (F**Pu)(s)] (t) exist. Similarly, [ D&, (F*u)(s)] (t) exists.
Moreover, similar to (15), one has

d2

T (0 = (Fa)(), T (EFu)(e) = (FPu)(). (16)

Noting that Lemma 2 and (14) we can see
(13 (Fw)| () = (F7 o) (®), for 1,8>0 and 748> pr a7)

From the Definition 2, (16) and (17), we get

<DL (FPu)] (1) = (jt)2 [ (P (1) = (2)2 (F¥¥2u) (1) = (F*u) (1),

and
(0§ (FPu)] (1) = & (e (respu)| (1) = L EF ) () = (FPu) 1) 18)
and
D5 (P (1) = [ () dt/ Egp(—A(t— 1)P)f(r,u(7))dr
~ —A/O (t—r)ﬁflgﬁ,ﬁ(—A(t—r)ﬁ)f(T,u(T))dr+f(t,u(t))
— A(FPu)(8) + f(tu(t)),
and

d

i TFPE0y) (1) = (FFE020) (). (19

Dy )| () =

Lot (P | (1) =
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Noting that Definitions 3 and 4, (17) and (19) we obtain

[HDé,a(sz—&-ﬁu)} (t) _ [Iﬁ(lflx)(LDgre’fucé(sz-&-ﬁu)} (t)

LG IO

= [ ¢(1=2) pp- §+wéu)} (1)
= (FPu)().
O
For convenience, we shall use the following notation:
M(A) = Epa(—A)-Epp(—=A) —Eppr1(=A)- (1+Eg(—A)).
Lemma 11. Assume that (H1) holds. A function u is a solution of the following fractional integral equation
u(t) = (Pu)(t) + (Qu)(t) + (F*"Pu)(t) (20)

if and only if u is a solution of the problem (1) and (2), where

tPEg g1 (—AtP)(1+ Eg(—A)) — tEgo(—AtP)Eg 5(—A)

(Pu)() = —* I A ety ),
O = ‘EalAT )Eﬁﬁﬂ(—)‘;w—( )fj Bpprt(FAP)EB2 (=) paipr,y )

Proof. (Sufficiency) Let u be the solution of (1) and (2), Lemmas 8, 2 and 4 imply

u(t) = aEg(—AtP) +btEgy(—AtP) + ctPEg g 1 (—AtF) + (F*TPu) (1),
W(t) = (=Aa+ )P 1Egg(—AtP) + bEg(—AtP) + (F*P~1u)(b),
(DSt u)(t) = at ™ Ep1_o(—AtP) + b1 " Egp_ o (~AF) + ctF2Epg 5 o1 (—AtE) + (FPu)(t),

where 4, b, ¢ are constants. Using the boundary value condition (2), we derive that 2 = 0 and

bEgo(—A) 4 cEggi1(—A) + (F*TPu)(1) =0,
b(1+4 Eg(—A)) 4 cEgg(—A) + (F*"F~1u)(1) =

then
= (FPu)(1) - Egp(—A) + (F*TP~1u)(1) - Egpia(—A)
M(A) ’
= (FPTu) (1) - Egp(—A) + (F*PPu) (1) - (14 Eg(—A))

Now we can see that (20) holds.
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(Necessity) Let u satisfy (20). Noting that Lemma 10, (CDngCDf;u) (t) exists and

(D§: D ) (1)

_ —Atﬁ_aEﬁ,ﬁfaJrl(_)‘tﬁ)(l + Eﬁ(]\;;\/\))) + /\tl—"‘E‘B,Z,a(—)\tﬁ)Eﬁ,ﬁ(_}\) (P"“"ﬁu)(l)
L M Egaa (AP Egpn (_?V)I(;)MﬂaEﬁ'ﬁ—aH (ZA#)Epa(~N) (FF=1u) (1)
—A(FPu)(t) + f(t,u(t)),

A(CDgyu)(t)

- [ CADO B s CADRACN ety

N tl_"‘E/g,za(—At’S)Eﬁ,ﬁ+l(_A])VIZ ;)ﬁ“"Eﬁ,ﬁm(—?\fﬁ )Epa(—A) (FF-1)(1)

+(F/5u)(t)],

then “Dg. (CDg+ + A)u(t) = f(t,u(t)) for t € J. Clearly, the boundary value condition (2) holds and
hence the necessity is proved. O

For convenience of the following presentation, set

_ T(1-«) 1 1
A(A) = = 4cos2(nzﬁ)+5in2(7'f,3)]’
_ 2 ()
B(A) = ‘B)Ll—%’ C(A)_A2n|sin7t/3|'
(C(A) +B(A) [Eg(—A)| + (2524 + B() ) [Egp(—0)]
N M) '
(254 + BO)) [Eppia(=A)] + (C(A) + B(A)) [Ega(~A)]
R = M| :
1-p
L = (Aw (=) +B<A>> ol 1.
o - (Am (=2 p2+B<A>> Il -

5. Existence Result

In this section, we deal with the existence of solutions to the problem (1) and (2). To this end,
we consider the following assumption.

(H2) There exists a function i € L7 (J,RT)(p2 € (0, a)) such that
f(tx) = f(Ey)] < p(@)]x = yllg-

Theorem 2. Assume that (H1) and (H2) are satisfied, then the problem (1) and (2) has at least a solution
ue Cp(])ifL(A) < L.
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Proof. We consider an operator F : C4 — Cg defined by

(Fu)(t) = (Pu)(t) + (Qu)(t) + (F*Pu)(t).

Clearly, F is well defined. Obviously, the fixed point of F is the solution of problem (1) and (2).
By (11)—(14) and (H1), the following inequalities hold:

tP1tPEp i1 (—AHP) (14 Eg(—A)) — tEpa(—AP)Eg (=)
|M(A)] -
tFItEg o (—AF)Eg i1 (—A) — tPEg it (AP Ega(—A)|
|M(A)] -

(t — )% Lg(s)ds + B(A) /O " p(s)ds < L(A). 1)

(PP < A) [

0

Moreover, from Lemma 1, there exists a constant C such that [Eg 151 (—AtP)| < C, then

|(FHB=1u) ()] < c/ ) P 20(s)ds < C (“_i_llg_’il_pl)l_pl H(PHL%' (22)
Furthermore
1-p 1-py
Pulls < NOLO), 1Quls < RO (5] ol e @

Let B, = {u € Cg : |[ullg < r}, where r > L(A)(1+ N(A)) + CR(A) (H};ig’gp) |\<p||m

It follows from (21) and (23) that || (Fu)||s < r. Now, we can see that (Fu)(t) € B, forany u € B,
and t € J.

Setting

(Fru) () = (Pu)(t) + (Qu)(1),  (Fau)(t) = (F**Pu)(t).

According to (H2), (13) and (14), we obtain

IN

| F2u — Faollg (A(A) ./0t<t —5)" " 'y(s)ds + B(A) /Ot 1/J(s)ds> lu —ollg

f()\)Hu—vH/g, for u,v € B,.

IN

This implies that J; is a contraction mapping.
Let {uy} be a sequence such that u, — u in Cg, then there exists e > 0 such that ||u, —ullg <e
for n sufficiently large. By (H2), we have

[f (8 un () = f(£u(B))] < p(E)e.
Moreover, f satisfies (H1), we get f(t,u,(t)) — f(t,u(t)) as n — co for almost every t € J.

Then (13), / (t—s5)* Ly(s)ds < ( ) ||llJH 1 and the Lebesgue dominated convergence
P2

theorem imply that | (F**Pu,)(t) — P"‘+ﬁu (t)] — o0, furthermore,

|Puy — Pullg — 0, as n — oco.
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t _ 1=p2
Similarly, from Lemma 1 and /0 (t — )" P2y (s)ds < (uc—i—;ﬂ—rljz—pz) ||lP||L%, we derive

|(F* 1w, ) () — (F*"P~1u)(t)| — 0, then ||Qu, — Quflg — 0, as n — co. Now we see that
J1 is continuous.

Moreover, by Lemmas 1 and 5, (21) and (22), {(Fu)(t) : u € B,} is an equicontinuous and
uniformly bounded set. Then, F; is a completely continuous operator on B;. The proof now can be
finished by using Theorem 1. [J

6. Application

In this section, we give an example to illustrate our result.

sin(2+ t2u(t))
=Sy e
1(0) + u(1) = 0, u'(0) +u'(1) = 0, lim ¢3(DZ!

t—0t

2 3
D3, (‘DZ. +10)u(t) te]:=(01]

) (24)

u)(t) = 0.

Corresponding to (1) and (2), wehavea = 2,& = %, B = 3,1 =10, f(t,u(t)) = (sin(2+ t%u(t)))/ Vt.

The space Cg := {u € C(J,R) : t2u(t) € C([0,1],R)} with the norm ||u||% = m[gx] £3u(t)).
tefo,1

Obviously, [ f(t,u(t))| < ¢(t) and |f(£,u(t)) = f(£,0(£))] < $(B)[[u — ol 5, where (t) = 9(t) =
=€ L%[O,l](pl =pp = &) and ||| 1= 25, By direct computation, we have
L7

V7
A = r(l)\;a)[ 17Tl3 1 1:3r(g)/
4cos?(%F)  sin“(7P) 207t
A
e ﬁ;é:Sxéz/ﬁ’ (i—zi) Tt
) = (A(A) (i_';i)lpz+B<A>> ||w||Lp12—(3“2%02“3%“4%)xzézo.%a.

Thus, by Theorem 2, problem (24) has at least one solution.

7. Conclusions

In this paper, we have presented existence results to the nonlinear Langevin fractional differential
equations with the anti-periodic boundary value conditions and some properties of the Mittag-Leffler
functions Eg(z) and Egg(z)(B, 6 € (1,2)). We prove the equivalence of the problem (1) and (2) and
the integral Equation (20) under the weak assumption (H1). Moreover, when 8,0 € (1,2), Eg(z) and
Eg6(z) do not possess the monotonicity and nonnegativity, using Lemma 6, we successfully obtain
some estimates for the Mittag-Leffler functions. Our results are new and significantly contribute
to the existing literature on fractional order differential equation with anti-periodic boundary value
conditions. In fact, our approach is simple and can easily be applied to a variety of real world problems.

In this area, our future work will focus on studying the more complex model, such as the
boundary value problem for the mixed type fractional differential equations with the Caputo and the
Riemann-Liouville fractional derivative.
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