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Abstract: The prediction of chaotic time series has been a popular research field in recent years. Due
to the strong non-stationary and high complexity of the chaotic time series, it is difficult to directly
analyze and predict depending on a single model, so the hybrid prediction model has become a
promising and favorable alternative. In this paper, we put forward a novel hybrid model based on
a two-layer decomposition approach and an optimized back propagation neural network (BPNN).
The two-layer decomposition approach is proposed to obtain comprehensive information of the
chaotic time series, which is composed of complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) and variational mode decomposition (VMD). The VMD algorithm is used
for further decomposition of the high frequency subsequences obtained by CEEMDAN, after which
the prediction performance is significantly improved. We then use the BPNN optimized by a firefly
algorithm (FA) for prediction. The experimental results indicate that the two-layer decomposition
approach is superior to other competing approaches in terms of four evaluation indexes in one-step
and multi-step ahead predictions. The proposed hybrid model has a good prospect in the prediction
of chaotic time series.
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1. Introduction

Chaotic time series exist in a wide range of areas, such as nature, the economy, society, and
industry. They contain many important and valuable information, useful for complex system modeling
and prediction. Time series data mining is an important means of the control and decision-making of
practical problems in various fields [1,2]. In recent years, scholars have carried out a great amount of
research work on chaotic time series analysis and prediction. Han et al. [3] proposed an improved
extreme learning machine combined with a hybrid variable selection algorithm for the prediction of
multivariate chaotic time series, which can achieve high predictive accuracy and reliable performance.
Chandra [4] put forward a competitive cooperative coevolution algorithm to train recurrent neural
networks (RNNs) for chaotic time series prediction. Yaslan et al. [5] presented a hybrid model based
on empirical mode decomposition (EMD) and support vector regression (SVR) for electricity load
forecasting. Chen [6] proposed a prediction model of a radial basis function (RBF) neural network
optimized by an artificial bee colony algorithm for prediction of traffic flow time series. A multilayered
echo state machine with the addition of multiple layers of reservoirs was introduced in [7], and it could
be more robust than the echo state network with a conventional reservoir in dealing with chaotic time
series prediction.
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The time series prediction models proposed in recent years are usually divided into three types:
statistical models, artificial intelligence models, and hybrid models. The statistical models mainly
include autoregressive (AR) models [8], the autoregressive moving average (ARMA), the autoregressive
integrated moving average (ARIMA) [9], multivariate linear regression, the Gaussian process [10], and
so on. Since statistical models require time series to be subject to certain a priori assumptions, such as
stationarity, they are not ideal for practical systems with many uncertainties. With the development of
computational intelligence, artificial intelligence models have obtained widespread attention. They
are data-driven methods that do not require any a priori assumptions and thus have a wide range of
applications. Commonly used artificial intelligence models include support vector regression [11], RBF
neural networks [12], Elman neural networks [4], echo state networks [7], deep neural networks [13],
extended Kalman filters [14], adaptive neuro-fuzzy inference systems (ANFISs) [15–17], etc. So as
to improve the performance of single-model-based prediction models, a novel framework based on
decomposition algorithm has been introduced for time series prediction [18]. Multiple decomposition
methods have been put forward to analyze time series, thus forming the hybrid prediction models [19].
The subsequences obtained by the decomposition algorithms are much easier to predict than the
original time series, which brings forward a new means of predicting nonlinear and non-stationary
time series [20]. Ren et al. [21] introduced a hybrid model, EMD combined with kNN, for wind
speed prediction. The model generated a set of feature vectors from the components obtained by
EMD, and kNN was then employed for prediction. The suggested hybrid model performed well for
long-term wind speed forecasting. An ensemble EMD (EEMD)–ARIMA model has been proposed to
predict annual runoff time series [22]. According to the experimental results, it was concluded that the
introduction of EEMD could observably improve prediction performance, and the EEMD–ARIMA
model was superior to the ARIMA. It is confirmed that hybrid models perform better than their
corresponding single models in chaotic time series prediction.

Though these existing hybrid prediction models have indeed increased the performance of chaotic
time series prediction, they still cannot handle the chaotic time series with strong non-stationary and
nonlinear very well. Hence, the hybrid models can be further improved to obtain more accurate
predictions. For the sake of enhancing the accuracy of actual chaotic time series prediction, we put
forward a novel hybrid model based on a two-layer decomposition technique and an optimized
back propagation neural network (BPNN). The main contents and contributions of this paper are
summarized as follows.

1. A hybrid model based on a two-layer decomposition technique is proposed in this paper. For the
sake of solving the problem that the prediction model based on single decomposition technique
cannot completely deal with the nonlinear and non-stationary of chaotic time series, this paper
puts forward a two-layer decomposition technique based on CEEMDAN and VMD, which is able
to fully extract the complex characteristics of time series and improve prediction accuracy.

2. A firefly algorithm (FA) is applied to optimize the weights between input and hidden layer, the
weights between the hidden and output layer and the thresholds of neuron nodes, which can
reduce the human interference of parameter settings and improve the function approximation
ability of the neural network. A BPNN optimized by the FA is applied to predict the subsequences
obtained by two-layer decomposition.

3. The real world chaotic time series, daily maximum temperature time series in Melbourne, is
used to assess the validity of the proposed hybrid model. The experimental results indicate
that our hybrid model has a significant improvement in prediction accuracy compared to
the existing single-model-based approaches and hybrid models based on the single layer
decomposition technique.

The remainder of the paper is organized as follows. Preliminaries and related works are introduced
in Section 2. In Section 3, we introduce the principles and the implementation steps of the proposed
method. Section 4 presents the experiments illustrating the availability of the proposed model. Finally,
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conclusions and future directions are demonstrated in Section 5. For the convenience of reading, the
notations used in this paper are shown in Table 1.

Table 1. The notations used in this paper.

Notation Meaning

ε(t) independent Gaussian white noise with unit variance
ω0 a noise coefficient

r1(t) the first residue
E j(·) a function to extract the j-th intrinsic mode function (IMF) decomposed by EMD
uk(t) the k-th mode of decomposition
ωk the center frequency of mode k
∂t(·) partial derivative
σ the Dirac distribution
∗ convolution computation
α the balancing parameter of the data-fidelity constraint
λ the Lagrangian multiplier

f̂ (ω) the Fourier transforms of f (t)
I0 the intensity of the light source
γ the light absorption coefficient
ri j the distance between firefly i and j
β0 the attractiveness at the light source (r = 0)
si the space positions of firefly i

2. Preliminaries and Related Works

In this section, we will firstly introduce the basic methods, including CEEMDAN, VMD, and the
FA. Furthermore, related works of the hybrid prediction model will be described.

2.1. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

Ensemble EMD (EEMD) adds white noise to the original signal to solve the mode mixing problem
of EMD. However, the white noise sequence cannot be absolutely canceled through the finite average,
and the magnitude of reconstruction error depends on the times of integration. In addition, increasing
the times of integration would lead to an increase computational burden. To solve these problems,
CEEMDAN was proposed as an improved version of EEMD [23]. By adding a finite number of
adaptive white noise at each stage, the CEEMDAN method is able to obtain the reconstruction error
close to zero through a small average number of times of integration. Thus, CEEMDAN avoids the
mode mixing problem in EMD, while reducing computational complexity compared to EEMD.

2.2. Variational Mode Decomposition

VMD is a novel non-recursive signal processing approach [24], which decomposes the original
signal into a group of subsequences. Each subsequence is called a mode and is concentrated near a
specific central pulsation frequency. For assessing the bandwidth of each mode, there are three main
schemes: Firstly, apply the Hilbert transform to each mode separately, calculate the associated analytic
signals, and then obtain a number of unilateral frequency spectrums. Then, adjust each mode to its
estimated center frequency by adding an exponential term, so as to shift the frequency spectrums of
these modes to the respective baseband. Finally, estimate the bandwidth of every mode by means of
the Gaussian smoothness of the demodulated signal, for example, the L2-norm of the gradient.

2.3. Firefly Algorithm

The firefly algorithm (FA) [25] is a heuristic optimization algorithm based on firefly behavior,
whereby flash signals are used to attract potential mates for positional movement. It is a swarm
intelligence optimization algorithm and therefore has the advantages of a swarm intelligence algorithm.
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In addition, compared with other similar algorithms, it has the following two advantages. Firstly, it
can realize automatic segmentation, which is well suited for solving highly nonlinear optimization
problems. Secondly, the FA has multi-modal characteristics and can deal with multi-modal problems
quickly and efficiently. The basic idea of the FA is to treat every point in space as a firefly, which is
attracted to the brighter fireflies and moves in this direction. During the movement of the weakly
glowing firefly, the position is updated until the optimal position is found. Since it is proposed, FA has
been widely used to solve various practical problems.

2.4. Related Works

Aiming at the analysis of nonlinear and non-stationary time series, many hybrid models have been
proposed. In [26], the EMD–BPNN is presented and applied to forecast tourism demand, namely the
number of tourists. The hybrid model showed better performance than a single BPNN or ARIMA model.
Zhou et al. [27] put forward a hybrid model of EEMD–GRNN (general regression neural network)
for PM2.5 forecasting. Simulation results indicated that the EEMD–GRNN model outperformed the
GRNN, multiple linear regression, and the ARIMA. This research was significant for the development
of air quality warning systems. Moreover, a comparison work of hybrid prediction models based
on wavelet decomposition, wavelet packet decomposition, EMD, and fast EEMD was implemented
in [28]. The study investigated the decomposition and prediction performance of multiple hybrid
models. In [29], VMD was adopted to decompose wind power time series into multiple modes, and
Gram–Schmidt orthogonalization was used to eliminate redundant attributes. Next, the hybrid model
based on VMD and extreme learning machines was proposed for short-term wind power forecasting.
Similarly, Lahmiri [30] proposed a hybrid model for economic and financial time series forecasting,
called VMD–GRNN. Jianwei E et al. [31] raised a hybrid model VMD–ICA–ARIMA for crude oil price
forecasting. Wang et al. [32] suggested a hybrid model based on VMD, phase space reconstruction,
and a wavelet neural network, which is reliable for multi-step prediction of wind speed time series.

As mentioned before, hybrid models based on decomposition methods, such as EMD, EEMD, and
VMD, have been extensively used for time series modeling and have exhibited satisfactory performance.

3. Methodology

3.1. The Structure of CEEMDAN–VMD–FABP Model

Subsequences obtained by an effective decomposition technique are much easier to analyze than
an original time series, and a single-layer decomposition pattern is one of the most commonly adopted
methods in existing hybrid models. Models based on a single-layer decomposition technique are
able to increase the predictive performance of various chaotic time series to some extent, but they are
difficult in completely reflecting the non-stationarity and irregularity of original signals. In view of
this, we propose a novel two-layer decomposition approach using CEEMDAN and VMD for chaotic
time series forecasting, which is shown in Figure 1. In addition, we adopt a BPNN optimized by an
FA (FABP) to predict subsequences obtained by a two-layer decomposition operation. FABP has the
ability to automatically optimize weights and thresholds, which is able to reduce the randomness of
parameter selection and ultimately strengthen the function approximation ability of a neural network.
Next, we will comprehensively introduce the structure of the proposed model.
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Figure 1. The structure of the two-layer decomposition prediction model.

The CEEMDAN method with noise robustness is first used to decompose the original signal.
CEEMDAN has good performance in anti-noise, so the original signal is not denoised in this paper.
At present, many scholars are committed to improving the CEEMDAN algorithm by increasing its
robustness and improving its adaptive anti-noise performance so that it omits the process of denoising
the original signal. Therefore, the original signal is automatically decomposed into a group of intrinsic
mode functions (IMFs), namely IMF1, IMF2, . . . , IMFn, and a residue.

IMF1 has the highest frequency, which is the most difficult to track and predict. To improve
the overall prediction accuracy of the original signal, the VMD algorithm is introduced here for the
secondary decomposition of IMF1. IMF1 is decomposed by the VMD algorithm into VMF1, VMF2, . . . ,
VMFm. Next, they are each predicted by FABP. Afterwards, the prediction results of these subsequences
are combined into the final result of IMF1. Furthermore, the subsequences IMF2, . . . , IMFn and the
residue are each predicted using FABP. The summation of the prediction results of IMF2, . . . , IMFn
and the residue is superimposed with the prediction result of the IMF1. The final forecast result of the
original chaotic signal is obtained. At this point, the entire forecast process is complete.

3.2. Algorithm Design

3.2.1. CEEMDAN for Original Time Series

First, the CEEMDAN decomposition algorithm [23] is adopted to obtain a group of IMFs adaptively.
The computational process of CEEMDAN is as follows.

Step 1. A collection of noise-added original time series is created: xi(t) = x(t) + ω0εi(t),
i ∈ {1, . . . , I}, where ε(t) is independent Gaussian white noise with unit variance, and ω0 is a
noise coefficient.

Step 2. For each xi(t), EMD is used to obtain the first IMF and take the average:

c1(t) =
1
I

I∑
i=1

ci
1(t). (1)

The first residue is then r1(t) = x(t) − c1(t).
Essentially, the procedure of the EMD algorithm is a sifting process from which IMFs can be

obtained [33]. The specific computation process of the signal xi(t) is described as follows. Firstly, we
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obtain every local maxima and local minima of xi(t). Next, the upper envelope u(t) and the lower
envelope l(t) are structured by cubic spline interpolation. Finally, we calculate the average of u(t) and
l(t) and record the average as m(t).

m(t) = (u(t) + l(t))/2. (2)

We subtract m(t) from the original signal xi(t) and record the result as ci
1(t).

ci
1(t) = xi(t) −m(t). (3)

It is then determined whether ci
1(t) is an integral part of the IMF by checking whether ci

1(t) satisfies
the above two conditions. The IMFs should conform to the following two conditions: (1) the absolute
value of the difference between the number of extreme points and zero crossing must be less than or
equal to 1 in the whole data series; (2) the average of the upper envelope and lower envelope must be
zero at any point. If ci

1(t) meets the above two conditions, ci
1(t) is recognized as IMF1. In the meantime,

r(t) = x(t) − c(t) is used as the residue instead of x(t). If ci
1(t) is not an IMF, ci

1(t) is used instead of
xi(t), and the above process is repeated until we IMF1 is obtained.

Step 3. The second IMFs is obtained by decomposing the noise-added residue r1 +ω1E1(ε1(t)):

c2(t) =
1
I

I∑
i=1

E1
(
r1 +ω1E1

(
εi(t)

))
, (4)

where E j(·) represents the j-th IMF obtained by EMD.
Step 4. The remaining IMFs are repeated until the number of extreme points of the residual signal

does not exceed two.
So far, the original signal has been decomposed into a series of IMF components, namely IMF1,

IMF2, . . . , IMFn. Due to the highest frequency and unpredictability of IMF1, this research introduces
the second decomposition of the IMF1 based on the VMD.

3.2.2. VMD for IMF1

The main task of the VMD algorithm [34] is to solve the following constrained
optimization problem:

min
{uk},{ωk}

∑
k
‖∂t

[(
σ(t) + j

πt

)
∗ uk(t)

]
e− jωkt‖

2

2

s.t.
∑
k

uk = f
(5)

where uk(t) denotes the k-th mode of decomposition, ωk is the center frequency of mode k, ∂t(·) denotes
partial derivative, σ indicates the Dirac distribution, ∗ denotes convolution computation, and f is the
original signal to be decomposed.

In order to solve the above constrained optimization problem, a quadratic penalty term and a
Lagrangian multiplier are shown in Equation (6). The former is conducive to enforcing the constraint,
and the latter helps to improve convergence. Hence, the translated unconstrained form is shown as

L({uk}, {ωk},λ) = α
∑

k

‖∂t

[(
σ(t) +

j
πt

)
∗ uk(t)

]
e− jωkt‖

2

2
+ ‖ f −

∑
k

uk(t)‖
2

2

+

〈
λ(t), f (t) −

∑
k

uk(t)
〉
, (6)

where α represents the balancing parameter, and λ is the Lagrangian multiplier.
An alternate direction method of multipliers (ADMM) [35] is applied to settle the optimization

problem of (6). The saddle point of the obtained augmented Lagrangian L in iterative optimization
process is determined by AMDD. The suboptimized solution is embedded into ADMM and optimized
in the Fourier domain. The detailed calculation process can be found in [24]. To implement the
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VMD algorithm and update the modes, uk and ωk are iterated in two directions according to the
following solutions:

un+1
k = argmin

α∑
k

‖∂t

[(
σ(t) +

j
πt

)
∗ uk(t)

]
e− jωkt‖

2

2
+ ‖ f −

∑
k

ui(t) −
λ(t)

2
‖

2

2

, (7)

ωn+1
k = argmin‖∂t

[(
σ(t) +

j
πt

)
∗ uk(t)

]
e− jωkt‖

2

2
. (8)

Subsequently, the solutions are represented as follows:

ûn+1
k (ω) =

f̂ (ω) −
∑
i,k

ûi(ω) +
λ̂(ω)

2

1 + 2α(ω−ωk)
2 (9)

ωn+1
k =

∫
∞

0 ω
∣∣∣ûk(ω)

∣∣∣2dω∫
∞

0

∣∣∣ûk(ω)
∣∣∣2dω

(10)

where f̂ (ω), ûk(ω), and λ̂(ω) represent the Fourier transforms of f (t), uk(t), and λ(t), and n denotes
the number of iterations.

The complete calculation process of VMD is organized in Algorithm 1. IMF1 is decomposed by
VMD algorithm into VMF1, VMF2, . . . , VMFm.

Algorithm 1: ADMM Optimization Process for VMD

Initialize
{
û1

k

}
,
{
ω1

k

}
, λ̂1, n = 0

repeat
n = n + 1
for k = 1 : K do

Update û1
k for all ω ≥ 0

ûn+1
k (ω) =

f̂ (ω)−
∑
i,k

ûi(ω)+
λ̂(ω)

2

1+2α(ω−ωk)
2

Update ωk

ωn+1
k =

∫
∞

0 ω|ûk(ω)|
2dω∫

∞

0 |ûk(ω)|
2dω

end for
for all ω ≥ 0

λ̂n+1(ω)← λ̂n(ω) + γ

[
f̂ (ω) −

∑
k

ûn+1
k (ω)

]
until convergence

∑
k ‖û

n+1
k − ûn

k ‖
2
2/‖ûn

k ‖
2
2
< ε

3.2.3. BPNN Optimized by a Firefly Algorithm

After two-layer decomposition, a BPNN is used to predict all subsequences obtained by
decomposition. The FA is adopted to optimize the parameters of the BPNN and is capable of
improving the BPNN’s function approximation ability.

The search process is related to two important parameters of fireflies: the brightness and mutual
attraction of the fireflies. Bright fireflies will attract the weak fireflies to move to them. The brighter
the lights are, the better their positions are, and the brightest fireflies represent the optimal solution
of the function. The higher a firefly’s brightness is, the more attractive it is to other fireflies. If the
luminance is the same, the fireflies will engage in a random motion, and the two important parameters
are inversely proportional to the distance. The greater the distance is, the smaller the attraction is.
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The relative fluorescent brightness of a firefly is defined as

I = I0e−γri j
2
, (11)

where I0 denotes the intensity of the light source. The better the objective function value is, the higher
the firefly’s brightness is. γ represents the light absorption coefficient. As the distance increases and
the transmission medium weakens the light intensity, the fluorescence gradually decreases. The light
absorption coefficient is set to reflect this characteristic. The parameter ri j denotes the distance between
firefly i and j, which is calculated according to the following formula:

ri j =

√√ n∑
k=1

(
sik − s jk

)2
, (12)

where n represents the dimension of the problem.
Once a firefly is attracted by the flash of other fireflies, the attractiveness β is updated based on

β = β0e−γri j
2
, (13)

where β0 denotes the attractiveness at the light source (r = 0).
The formula for updating the location of fireflies is as follows:

si(t + 1) = si(t) + β0e−γri j
2(

s j(t) − si(t)
)
+ αε, (14)

where si and s j denotes the space positions of firefly i and j, separately. α denotes the step factor, and ε
represents a random value.

The main algorithm process of the FA can be described as Algorithm 2.

Algorithm 2: Process of the Firefly Algorithm

Initialize n, β0, γ, α, ε, t = 0
Define the maximum number of iterations (MaxGeneration).
while t < MaxGeneration

t = t + 1
for i = 1 : n

for j = 1 : i
Calculate light intensity Ii at si position.
If I j > Ii

Move firefly i towards j.
end if
Update the attractiveness values.
Evaluate the new solutions and update the light intensity.

end for
end for
Rank the fireflies and find the current best.

end while
Output the global optimal value.

We then obtain all prediction results of all subsequence, and the final prediction results of all
sub-signals obtained by decomposition are superimposed. The advantages of this approach are verified
in the next section.



Symmetry 2019, 11, 610 9 of 17

4. Experimental Results

In this section, the daily maximum temperature time series in Melbourne is applied to analyze and
verify the availability of the presented method. The experimental data is collected from the real world.
The evaluation criteria are selected as root-mean-squared error (RMSE), normalized root-mean-square
error (NRMSE), mean absolute percentage error (MAPE), and symmetric mean absolute percentage
error (SMAPE). All prediction errors shown next are the mean values of 50 experimental results.
The expressions are as follows:

RMSE =

 1
n− 1

n∑
k=1

[ŷ(k) − y(k)]2


1/2

, (15)

NRMSE =

[
1

n−1

n∑
k=1

[ŷ(k) − y(k)]2
]1/2

ymax − ymin
, (16)

MAPE =
100
n

n∑
k=1

∣∣∣∣∣∣ ŷ(k) − y(k)
y(k)

∣∣∣∣∣∣, (17)

SMAPE =
1
n

n∑
k=1

∣∣∣y(k) − ŷ(k)
∣∣∣∣∣∣y(k)∣∣∣+ ∣∣∣ŷ(k)∣∣∣ , (18)

where y(k) denotes the real value, ŷ(k) denotes the predicted value, and n denotes the number
of samples.

The daily maximum temperature time series in Melbourne is used in the experiment. The dataset
contains the daily maximum temperature from 3 January 1981 to 31 December 31 1990, a total of
3650 samples, which is shown in Figure 2. The training set is made up of the first 3000 samples, and the
testing set is composed of the remaining 650. In order to compare the effectiveness of the model, six
other methods were used in the comparative experiments: an RBF neural network, [36], an ANFIS [37],
the original BP model, FABP, FABP with CEEMDAN decomposition (CEEMDAN–FABP), and FABP
with VMD decomposition (VMD–FABP). The experimental environment involved the Windows 7
operating system, and all experiments were carried out using MATLAB R2016a on a 3.50 GHz, Intel(R)
Core i3-4150M CPU with 6 GB RAM.
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de-noising process of the original time series.
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In this paper, sample entropy is an indicator for judging the way IMF predicts. Figure 4 shows the
sample entropies of the IMFs. The entropy of the original time series is 0.81, which is indicated by
the dotted line. In this research, the IMF components, whose entropy is greater than the entropy of
the original time series, are predicted separately, because these IMFs are highly complex. The IMFs
whose entropies are smaller than the original time series are combined and superimposed. After the
combined operation, the model complexity and computational time are significantly reduced, while
ensuring accuracy of prediction. Based on the results in Figure 4, the first four IMF components should
be predicted separately, while the IMF components from 5 to 13 should be combined for prediction.Symmetry 2019, 11, 610 11 of 17 
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Figure 6 shows the final prediction results of the hybrid model of CEEMDAN and FABP. It can 
be seen that the prediction curve can track the real curve well and that the prediction error is small. 
The prediction result can be obtained in the case of the original time series without denoising. 

Figure 4. Sample entropies of intrinsic mode functions (IMFs).

We obtained the prediction results of five IMF components, as shown in Figure 5. It can be
observed that the prediction curve of each IMF is able to track the actual values, and the prediction
trend is basically consistent. Due to the high frequency characteristics of IMF1, accurate prediction and
tracking is more difficult, resulting in larger prediction errors for IMF1.
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Figure 6 shows the final prediction results of the hybrid model of CEEMDAN and FABP. It can
be seen that the prediction curve can track the real curve well and that the prediction error is small.
The prediction result can be obtained in the case of the original time series without denoising.Symmetry 2019, 11, 610 12 of 17 
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based on the hybrid model of CEEMDAN and FABP.

The prediction errors presented in Figures 5 and 6 are shown in Table 2. As can be seen from
Table 2, the overall prediction error of the time series is 0.7763, while the prediction error of IMF1 is
0.6361. Therefore, if the prediction accuracy of IMF1 can be improved, the overall prediction accuracy
will be greatly improved. Based on the above analysis, we propose the application of a two-layer
decomposition strategy to further decompose the IMF1 component.
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Table 2. Overall prediction error and prediction error of IMF1.

Prediction Error RMSE NRMSE MAPE SMAPE

Overall prediction error 0.7763 0.0325 0.0277 0.0138
IMF1 prediction error 0.6361 0.0808 1.8515 0.5829

The IMF1 component is decomposed into six subsequences based on the VMD algorithm.
The decomposition results of the IMF1 component are shown in Figure 7. We use FABP to predict
VMF1, . . . , VMF6, and we combine the prediction results to obtain the prediction results of the IMF1
component. Next, we combine the prediction results of IMF1 with IMF2, . . . , IMF5’ components,
thereby obtaining the prediction results of daily maximum temperature time series in Melbourne, which
are shown in Figure 8. The error indexes of different prediction models are shown in Table 3. It can
be seen that the proposed two-layer decomposition algorithm can significantly reduce the prediction
error and improve prediction accuracy compared with the direct prediction. This is mainly because the
decomposition algorithm converts complex original signals into several simple and easy-to-analyze
sub-signals, which is conducive to analysis and prediction. Based on the two-layer decomposition
model, the prediction error is smaller than the single-layer approach, and the prediction performance
is improved.Symmetry 2019, 11, 610 13 of 17 
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Figure 7. Decomposition results of IMF1 based on the variational mode decomposition
(VMD) algorithm.

We conducted one-step-, two-step-, three-step-, and five-step-ahead prediction experiments on
the time series. The corresponding prediction errors, including RMSE, NRMSE, MAPE, and SMAPE,
are shown in Tables 3–6. According to the results presented in the tables, the proposed model has a
minimum prediction error in multiple prediction experiments, which indicates that the hybrid model of
CEEMDAN–VMD–FABP has the best prediction performance. We can also say that the hybrid model
based on the two-layer decomposition approach is better than the hybrid models based on a single
decomposition approach. Surprisingly, although the ANFIS performed poorly in one-step prediction,
its one-step prediction and multi-step prediction have similar effects, especially in the five-step ahead
prediction experiment, and its performance is better than the RBF in multi-step prediction. The ANFIS
method shows stability ability in terms of prediction, although the overall effect was not satisfactory.
The prediction results of other models except for the ANFIS basically conform to the actual law.
The more advanced the steps are, the more difficult it is to predict the chaotic time series.
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Figure 8. Prediction results and prediction errors of the daily maximum temperature in Melbourne
based on the two-layer decomposition algorithm and a BPNN optimized by a firefly algorithm (FABP).

Table 3. Prediction errors of daily maximum temperature time series based on different algorithms
(one step ahead).

Model RMSE NRMSE MAPE SMAPE Training
Time

Testing
Time

RBF 1.7241 0.0721 0.0695 0.0345 0.9984 0.1092
ANFIS 3.2410 0.1356 0.1224 0.0598 22.3393 0.0936

BP 1.3818 0.0578 0.0511 0.0255 0.4368 0.0468
FABP 1.3618 0.0570 0.0505 0.0251 34.4294 0.0780

CEEMDAN–FABP 0.7763 0.0325 0.0277 0.0138 151.3834 0.1404
VMD–FABP 0.7026 0.0294 0.0266 0.0132 197.1852 0.2340

CEEMDAN–VMD–FABP 0.5131 0.0215 0.0198 0.0099 307.5092 0.2964

Table 4. Prediction errors of daily maximum temperature time series based on different algorithms
(two steps ahead).

Model RMSE NRMSE MAPE SMAPE

RBF 2.6741 0.1119 0.1051 0.0517
ANFIS 3.4725 0.1453 0.1317 0.0644

BP 2.4105 0.1009 0.0912 0.0454
FABP 2.4032 0.1006 0.0924 0.0456

CEEMDAN–FABP 0.9292 0.0389 0.0346 0.0172
VMD–FABP 0.7240 0.0303 0.0276 0.0138

CEEMDAN–VMD–FABP 0.6910 0.0289 0.0262 0.0130

Table 5. Prediction errors of daily maximum temperature time series based on different algorithms
(three steps ahead).

Model RMSE NRMSE MAPE SMAPE

RBF 3.3242 0.1391 0.1286 0.0628
ANFIS 3.4715 0.1453 0.1330 0.0651

BP 3.1497 0.1318 0.1211 0.0589
FABP 3.1435 0.1315 0.1194 0.0587

CEEMDAN–FABP 1.1266 0.0471 0.0420 0.0209
VMD–FABP 0.9105 0.0381 0.0345 0.0172

CEEMDAN–VMD–FABP 0.8692 0.0364 0.0333 0.0166
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Table 6. Prediction errors of daily maximum temperature time series based on different algorithms
(five steps ahead).

Model RMSE NRMSE MAPE SMAPE

RBF 3.4960 0.1463 0.1353 0.0662
ANFIS 3.4408 0.1440 0.1333 0.0654

BP 3.3497 0.1402 0.1295 0.0633
FABP 3.3595 0.1406 0.1285 0.0632

CEEMDAN–FABP 1.5822 0.0662 0.0598 0.0297
VMD–FABP 1.2500 0.0523 0.0487 0.0242

CEEMDAN–VMD–FABP 0.9864 0.0413 0.0370 0.0183

To show the above experimental results more intuitively, we transform the error values, i.e. the
RMSE, NRMSE, MAPE, and SMAPE shown in Tables 3–6, into a column chart, presented in Figure 9.
It can be seen that the proposed hybrid model of CEEMDAN–VMD–FABP has the best performance.
The proposed two-layer decomposition model has minimum prediction error in one-step-, two-step-,
three-step-, and five-step-ahead prediction.
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Moreover, we compared the training time and testing time in one-step-ahead prediction. Under
different prediction steps, the running time is not much different, so we only list the running time of
one-step prediction in Table 3. As can be seen in the table, the testing time of each method is not much
different. Although the method proposed in this paper has the longest training time, the experimental
results prove that the proposed two-layer decomposition model can obtain the best prediction accuracy,
which shows the effectiveness of the proposed method. Moreover, even if the training time is long, the
overall running time is only a few minutes (not long), completely within the acceptable range.
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5. Conclusions

In this paper, we propose a two-layer decomposition technique consisting of CEEMEAN and VMD.
We obtained a group of subsequences by a two-layer decomposition method. These subsequences
were separately predicted, and the prediction results were combined to obtain the final result. For
the prediction, we used a BPNN optimized by a firefly algorithm. From this work, the following can
be concluded:

1. The actual time series is usually non-stationary and noisy. It is generally difficult to analyze the
original time series. CEEMDAN is an anti-noise decomposition method, and VMD can handle
non-stationary signals very well. Therefore, subsequences decomposed by CEEMDAN and VMD
are easy to analyze and predict.

2. After decomposition of the original signal, the BPNN was used for prediction. At this stage, the
parameters in the BPNN greatly influenced prediction accuracy. Therefore, in order to reasonably
select the model parameters, the FA algorithm was introduced to optimize the parameters of BP.

In general, in order to improve prediction accuracy, the following can be considered for further
study: Firstly, original input variables were analyzed to eliminate factors that are not conducive to
analysis and prediction. Secondly, we optimized the prediction model at the prediction stage. We
studied the two aspects simultaneously, and the experimental results demonstrate the effectiveness of
the proposed method.
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