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Abstract

:

The Girard and Waring formula and mathematical induction are used to study a problem involving the sums of powers of Fibonacci polynomials in this paper, and we give it interesting divisible properties. As an application of our result, we also prove a generalized conclusion proposed by R. S. Melham.
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1. Introduction


For any integer n≥0, the famous Fibonacci polynomials {Fn(x)} and Lucas polynomials {Ln(x)} are defined as F0(x)=0, F1(x)=1, L0(x)=2, L1(x)=x and Fn+2(x)=xFn+1(x)+Fn(x), Ln+2(x)=xLn+1(x)+Ln(x) for all n≥0. Now, if we let α=x+x2+42 and β=x−x2+42, then it is easy to prove that


Fn(x)=1α−βαn−βnandLn(x)=αn+βnforalln≥0.











If x=1, we have that {Fn(x)} turns into Fibonacci sequences {Fn}, and {Ln(x)} turns into Lucas sequences {Ln}. If x=2, then Fn(2)=Pn, the nth Pell numbers, they are defined by P0=0, P1=1 and Pn+2=2Pn+1+Pn for all n≥0. In fact, {Fn(x)} is a second-order linear recursive polynomial, when x takes a different value x0, then Fn(x0) can become a different sequence.



Since the Fibonacci numbers and Lucas numbers occupy significant positions in combinatorial mathematics and elementary number theory, they are thus studied by plenty of researchers, and have gained a large number of vital conclusions; some of them can be found in References [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]. For example, Yi Yuan and Zhang Wenpeng [1] studied the properties of the Fibonacci polynomials, and proved some interesting identities involving Fibonacci numbers and Lucas numbers. Ma Rong and Zhang Wenpeng [2] also studied the properties of the Chebyshev polynomials, and obtained some meaningful formulas about the Chebyshev polynomials and Fibonacci numbers. Kiyota Ozeki [3] got some identity involving sums of powers of Fibonacci numbers. That is, he proved that


∑k=1nF2k2m+1=15m∑j=0m(−1)jL2m+1−2jj2m+1F(2m+1−2j)(2n+1)−F2m+1−2j.








Helmut Prodinger [4] extended the result of Kiyota Ozeki [3].



In addition, regarding many orthogonal polynomials and famous sequences, Kim et al. have done a lot of important research work, obtaining a series of interesting identities. Interested readers can refer to References [16,17,18,19,20,21,22]; we will not list them one by one.



In this paper, our main purpose is to care about the divisibility properties of the Fibonacci polynomials. This idea originated from R. S. Melham. In fact, in [5], R. S. Melham proposed two interesting conjectures as follows:



Conjecture 1.

If m≥1 is a positive integer, then the summation


L1L3L5⋯L2m+1∑k=1nF2k2m+1








can be written as F2n+1−12P2m−1F2n+1, where P2m−1(x) is an integer coefficients polynomial with degree 2m−1.





Conjecture 2.

If m≥0 is an integer, then the summation


L1L3L5⋯L2m+1∑k=1nL2k2m+1








can be written as L2n+1−1Q2mL2n+1, where Q2m(x) is an integer coefficients polynomial with degree 2m.





Wang Tingting and Zhang Wenpeng [6] solved Conjecture 2 completely. They also proved a weaker conclusion for Conjecture 1. That is,


L1L3L5⋯L2m+1∑k=1nF2k2m+1








can be expressed as F2n+1−1P2mF2n+1, where P2m(x) is a polynomial of degree 2m with integer coefficients.



Sun et al. [7] solved Conjecture 1 completely. In fact, Ozeki [3] and Prodinger [4] indicated that the odd power sum of the first several consecutive Fibonacci numbers of even order is equivalent to the polynomial estimated at a Fibonacci number of odd order. Sun et al. in [7] proved that this polynomial and its derivative both disappear at 1, and it can be an integer polynomial when a product of the first consecutive Lucas numbers of odd order multiplies it. This presents an affirmative answer to Conjecture 1 of Melham.



In this paper, we are going to use a new and different method to study this problem, and give a generalized conclusion. That is, we will use the Girard and Waring formula and mathematical induction to prove the conclusions in the following:



Theorem 1.

If n and h are positive integers, then we have the congruence


L1(x)L3(x)⋯L2n+1(x)∑m=1hF2m2n+1(x)≡0modF2h+1(x)−12.













Taking x=1 and x=2 in Theorem 1, we can instantly infer the two corollaries:



Corollary 1.

Let Fn and Ln be Fibonacci numbers and Lucas numbers, respectively. Then, for any positive integers n and h, we have the congruence


L1L3L5⋯L2n+1∑m=1hF2m2n+1≡0modF2h+1−12.













Corollary 2.

Let Pn be nth Pell numbers. Then, for any positive integers n and h, we have the congruence


L1(2)L3(2)L5(2)⋯L2n+1(2)∑m=1hP2m2n+1≡0modP2h+1−12,








where Ln(2)=1+2n+1−2n is called nth Pell–Lucas numbers.





It is clear that our Corollary 1 gave a new proof for Conjecture 1.




2. Several Lemmas


In this part, we will give four simple lemmas, which are essential to prove our main results.



Lemma 1.

Let h be any positive integer; then, we have


x2+4,F2h+1(x)−1=1,








where x2+4 and F2h+1(x)−1 are said to be relatively prime.





Proof. 

From the definition of Fn(x) and binomial theorem, we have


F2h+1(x)=122h+1x2+4∑k=02h+12h+1kxkx2+42h+1−k2−122h+1x2+4∑k=02h+12h+1kxk(−1)2h+1−kx2+42h+1−k2=14h∑k=0h2h+12kx2kx2+4h−k.



(1)







Thus, from Equation (1), we have the polynomial congruence


4hF2h+1(x)=∑k=0h2h+12kx2kx2+4h−k≡(2h+1)x2h≡(2h+1)x2+4−4h≡(2h+1)(−4)hmod(x2+4)








or


F2h+1(x)−1≡(2h+1)(−1)h−1mod(x2+4).



(2)







Since x2+4 is an irreducible polynomial of x, and (2h+1)(−1)h−1 is not divisible by (x2+4) for all integer h≥1, so, from (2), we can deduce that


x2+4,F2h+1(x)−1=1.











Lemma 1 is proved. □





Lemma 2.

Let h and n be non-negative integers with h≥1; then, we have


(x2+4)F(2h+1)(2n+1)(x)−L2n(x)−L2n+2(x)≡0modF2h+1(x)−1.













Proof. 

We use mathematical induction to calculate the polynomial congruence for n. Noting L0(x)=2, L1(x)=x, L2(x)=x2+2. Thus, if n=0, then


(x2+4)F(2h+1)(2n+1)(x)−L2n(x)−L2n+2(x)=(x2+4)F2h+1(x)−2−x2−2=(x2+4)F2h+1(x)−1≡0modF2h+1(x)−1.








If n=1, then L2(x)+L4(x)=x2+2+x4+4x2+2=x4+5x2+4. Note that the identity F2h+13(x)=1x2+4F3(2h+1)(x)+3F2h+1(x), so we obtain the congruence


(x2+4)F(2h+1)(2n+1)(x)−L2n(x)−L2n+2(x)=(x2+4)F3(2h+1)(x)−x4−5x2−4=(x2+4)(x2+4)F2h+13(x)−3F2h+1(x)−x4−5x2−4=(x2+4)2F2h+13(x)−F2h+1(x)+(x2+4)(x2+1)F2h+1(x)−x4−5x2−4≡(x2+4)2F2h+12(x)+F2h+1(x)F2h+1(x)−1≡0modF2h+1(x)−1,








which means that Lemma 2 is correct for n=0 and 1.



Assume Lemma 2 is right for all integers n=0,1,2,⋯,k. Namely,


(x2+4)F(2h+1)(2n+1)(x)−L2n(x)−L2n+2(x)≡0modF2h+1(x)−1,



(3)




where 0≤n≤k.



Thus, n=k+1≥2, and we notice that


L2(2h+1)(x)F(2h+1)(2k+1)(x)=F(2h+1)(2k+3)(x)+F(2h+1)(2k−1)(x),










L2k+2(x)+L2k+4(x)=(x2+2)L2k(x)+(x2+2)L2k+2(x)−L2k−2(x)+L2k(x)








and


L2(2h+1)(x)=(x2+4)F2h+12(x)−2≡x2+2modF2h+1(x)−1.











From inductive assumption (3), we have


(x2+4)F(2h+1)(2n+1)(x)−L2n(x)−L2n+2(x)=(x2+4)F(2h+1)(2k+3)(x)−L2k+2(x)−L2k+4(x)=(x2+4)L2(2h+1)(x)F(2h+1)(2k+1)(x)−(x2+4)F(2h+1)(2k−1)−L2k+2(x)−L2k+4(x)≡(x2+4)(x2+2)F(2h+1)(2k+1)(x)−(x2+2)L2k(x)−(x2+2)L2k+2(x)−(x2+4)F(2h+1)(2k−1)(x)+L2k−2(x)+L2k(x)≡(x2+2)(x2+4)F(2h+1)(2k+1)(x)−L2k(x)−L2k+2(x)−(x2+4))F(2h+1)(2k−1)(x)−L2k−2(x)−L2k(x)≡0modF2h+1(x)−1.











Now, we have achieved the results of Lemma 2. □





Lemma 3.

Let h and n be non-negative integers with h≥1; then, we have the polynomial congruence


L1(x)L3(x)⋯L2n+1(x)∑m=1hF2m(2n+1)(x)−(2n+1)F2m(x)≡0modF2h+1(x)−12.













Proof. 

For positive integer n, first note that αβ=−1, Ln(x)=αn+βn,


∑m=1hF2m(2n+1)(x)=1x2+4∑m=1hα2m(2n+1)−β2m(2n+1)=1x2+4α2(2n+1)α2h(2n+1)−1α2(2n+1)−1−β2(2n+1)β2h(2n+1)−1β2(2n+1)−1=1L2n+1(x)F(2h+1)(2n+1)(x)−F2n+1(x)



(4)




and


∑m=1hF2m(x)=1x2+4∑m=1hα2m−β2m=1L1(x)F(2h+1)(x)−1.



(5)







Thus, from Labels (4) and (5), we know that, to prove Lemma 3, now we need to obtain the polynomial congruence


L1(x)F(2h+1)(2n+1)(x)−F2n+1(x)−(2n+1)L2n+1(x)F2h+1(x)−1≡0modF2h+1(x)−12.



(6)







Now, we prove (6) by mathematical induction. If n=0, then it is obvious that (6) is correct. If n=1, we notice that L1(x)=x, F3(2h+1)(x)=(x2+4)F2h+13(x)−3F2h+1(x) and F2h+13(x)≡F2h+1(x)−1+13≡3F2h+1(x)−2modF2h+1(x)−12 we have


L1(x)F(2h+1)(2n+1)(x)−L1(x)F2n+1(x)−(2n+1)L2n+1(x)F2h+1(x)−1=xF3(2h+1)(x)−xF3(x)−3L3(x)F2h+1(x)−1=x(x2+4)F2h+13(x)−3xF2h+1(x)−x(x2+1)−3(x3+3x)F2h+1(x)−1≡(x3+4x)3F2h+1(x)−2−3xF2h+1(x)−(x3+x)−3(x3+3x)F2h+1(x)−1≡3(x3+3x)F2h+1(x)−1−3(x3+3x)F2h+1(x)−1≡0modF2h+1(x)−12.











Thus, n=1 is fit for (6). Assume that (6) is correct for all integers n=0,1,2,⋯,k. Namely,


L1(x)F(2h+1)(2n+1)(x)−F2n+1(x)−(2n+1)L2n+1(x)F2h+1(x)−1≡0modF2h+1(x)−12



(7)




for all n=0,1,⋯,k.



Where n=k+1≥2, we notice


L2(2h+1)(x)F(2h+1)(2k+1)(x)=F(2h+1)(2k+3)(x)+F(2h+1)(2k−1)(x)








and


L2(2h+1)(x)=(x2+4)F2h+12(x)−2=(x2+4)F2h+1(x)−1+12−2=(x2+4)(F2h+1(x)−1)2+2(F2h+1(x)−1)+x2+2≡2(x2+4)(F2h+1(x)−1)+x2+2modF2h+1(x)−12.











From inductive assumption (7) and Lemma 2, we have


xF(2h+1)(2n+1)(x)−xF2n+1(x)−(2n+1)L2n+1(x)F2h+1(x)−1=xF(2h+1)(2k+3)(x)−xF2k+3(x)−(2k+3)L2k+3(x)F2h+1(x)−1=xL2(2h+1)(x)F(2h+1)(2k+1)(x)−xF(2h+1)(2k−1)(x)−xF2k+3(x)−(2k+3)L2k+3(x)F2h+1(x)−1≡2x(x2+4)(F2h+1(x)−1)F(2h+1)(2k+1)(x)+x(x2+2)F(2h+1)(2k+1)(x)−xF(2h+1)(2k−1)(x)−x(x2+2)F2k+1(x)+xF2k−1(x)−(x2+2)(2k+1)L2k+1(x)F2h+1(x)−1+(2k−1)L2k−1(x)F2h+1(x)−1−2xL2k(x)+L2k+2(x)F2h+1(x)−1≡2x(F2h+1(x)−1)(x2+4)F(2h+1)(2k+1)(x)−L2k(x)−L2k+2(x)+(x2+2)xF(2h+1)(2k+1)(x)−xF2k+1(x)−(2k+1)L2k+1(x)F2h+1(x)−1−xF(2h+1)(2k−1)(x)−xF2k−1(x)−(2k−1)L2k−1(x)F2h+1(x)−1≡2x(F2h+1(x)−1)(x2+4)F(2h+1)(2k+1)(x)−L2k(x)−L2k+2(x)≡0modF2h+1(x)−12.











Now, we attain Lemma 3 by mathematical induction. □





Lemma 4.

For all non-negative integers u and real numbers X, Y, we have the identity


Xu+Yu=∑k=0u2(−1)kuu−ku−kkX+Yu−2kXYk,








in which [x] denotes the greatest integer ≤x.





Proof. 

This formula due to Waring [15]. It can also be found in Girard [14]. □






3. Proof of the Theorem


We will achieve the theorem by these lemmas. Taking X=α2m, Y=−β2m and U=2n+1 in Lemma 4, we notice that XY=−1, from the expression of Fn(x)


F2m(2n+1)(x)=∑k=0n(−1)k2n+12n+1−k2n+1−kk(x2+4)n−kF2m2n+1−2k(x)(−1)k=∑k=0n2n+12n+1−k2n+1−kk(x2+4)n−kF2m2n+1−2k(x).



(8)







For any integer h≥1, from (8), we get


∑m=1hF2m(2n+1)(x)−(2n+1)F2m(x)=∑k=0n−12n+12n+1−k2n+1−kk(x2+4)n−k∑m=1hF2m2n+1−2k(x).



(9)







If n=1, then, from (9), we can get


L1(x)L3(x)∑m=1hF6m(x)−3F2m(x)=L1(x)L3(x)(x2+4)∑m=1hF2m3(x).



(10)







From Lemma 1, we know that (x2+4,F2h+1(x)−1)=1, so, applying Lemma 3 and (10), we deduce that


L1(x)L3(x)∑m=1hF2m3(x)≡0modF2h+1(x)−12.



(11)







This means that Theorem 1 is suitable for n=1.



Assume that Theorem 1 is correct for all integers n=1,2,⋯,s. Then,


L1(x)L3(x)⋯L2n+1(x)∑m=1hF2m2n+1(x)≡0modF2h+1(x)−12



(12)




for all integers 1≤n≤s.



When n=s+1, from (9), we obtain


∑m=1hF2m(2s+3)(x)−(2s+3)F2m(x)=∑k=0s2s+32s+3−k2s+3−kk(x2+4)s+1−k∑m=1hF2m2s+3−2k(x)=∑k=1s2s+32s+3−k2s+3−kk(x2+4)s+1−k∑m=1hF2m2s+3−2k(x)+(x2+4)s+1∑m=1hF2m2s+3(x).



(13)







From Lemma 3, we have


L1(x)L3(x)⋯L2s+3(x)∑m=1hF2m(2s+3)(x)−(2s+3)F2m(x)≡0modF2h+1(x)−12.



(14)







Applying inductive hypothesis (12), we obtain


L1(x)L3(x)⋯L2s+1(x)∑k=1s2s+32s+3−k2s+3−kk×(x2+4)s+1−k∑m=1hF2m2s+3−2k(x)≡0modF2h+1(x)−12.



(15)







Combining (13), (14), (15) and Lemma 3, we have the conclusion


L1(x)L3(x)⋯L2s+3(x)·(x2+4)s+1∑m=1hF2m2s+3(x)≡0modF2h+1(x)−12.



(16)







Note that x2+4,F2h+1(x)−1=1, so (16) indicates the conclusion


L1(x)L3(x)⋯L2s+3(x)·∑m=1hF2m2s+3(x)≡0modF2h+1(x)−12.











Now, we apply mathematical induction to achieve Theorem 1.
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