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Abstract: The flow and heat transfer analysis in the conventional nanofluid Al2O3 −H2O and hybrid
nanofluid Cu −Al2O3 −H2O was carried out in the present study. The present work also focused
on the comparative analysis of entropy generation in conventional and hybrid nanofluid flow. The
flows of both types of nanofluid were assumed to be over a thin needle in the presence of thermal
dissipation. The temperature at the surface of the thin needle and the fluid in the free stream region
were supposed to be constant. Modified Maxwell Garnet (MMG) and the Brinkman model were
utilized for effective thermal conductivity and dynamic viscosity. The numerical solutions of the
self-similar equations were obtained by using the Runge-Kutta Fehlberg scheme (RKFS). The Matlab
in-built solver bvp4c was also used to solve the nonlinear dimensionless system of differential
equations. The present numerical results were compared to the existing limiting outcomes in the
literature and were found to be in excellent agreement. The analysis demonstrated that the rate of
entropy generation reduced with the decreasing velocity of the thin needle as compared to the free
stream velocity. The hybrid nanofluid flow with less velocity was compared to the regular nanofluid
under the same circumstances. Furthermore, the enhancement in the temperature profile of the
hybrid nanofluid was high as compared to the regular nanofluid. The influences of relevant physical
parameters on flow, temperature distribution, and entropy generation are depicted graphically and
discussed herein.

Keywords: irreversibility analysis; hybrid nanofluid; thin needle; energy dissipation; heat transfer;
Runge-Kutta Fehlberg scheme (RKFS)

1. Introduction

The first law of thermodynamics deals with conservation and conversion of energy. It stipulates
that when a thermodynamic process is carried out, energy is neither gained nor lost. Energy only
transforms from one form into another, and the energy balance is maintained. The law presumes that
any change of a thermodynamic state can take place in either direction. However, this is not true,
particularly in the inter-conversion of heat and work. Processes proceed spontaneously in certain
directions—but not in opposite directions—even though the reversal of processes does not violate
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the first law. The second law of thermodynamics puts a limit on the conversion of a given amount
of heat into work. Complete conversion of heat into work is not possible, i.e., a portion of heat
supplied to any thermodynamic system must be rejected. This simply implies that the efficiency of any
thermodynamic system can never be equal to 100%. Entropy is the measure of unviable energy (the
portion of energy that is not utilizable). The amount of unviable energy increases with the increase in
entropy generation. Consequently, the efficiency of the thermal system declines. Bejan [1] introduced
the innovative idea of minimization of entropy generation (MEG) to enhance the quality of energy.
Recently, Afridi et al. [2] utilized the Sparrow-Quack-Boerner local non-similarity approach to study
the effects of thermal dissipation on entropy generation in mixed convection flow under the influence
of a constant magnetic field. Flow over a bidirectional stretching sheet with entropy generation was
reported by Afridi and Qasim [3]. Numerical study of entropy generation in a fluid flow over a curved
surface with variable thermal conductivity was studied by Afridi et al. [4]. The comparative analysis
of entropy generation in nanofluid and working fluid flow over a curved surface was carried out
by Afridi et al. [5]. Butt et al. [6] studied the inclination effects on entropy generation in a flow of
nanofluid over a stretching cylinder. Makinde and Eegunjobi [7] studied the entropy production in
the presence of magnetic field heat source, thermal radiation, and porous medium. The combined
effects of the porous medium and the magnetic field on the rate of entropy production were reported
by Butt et al. [8]. The second law analysis of fluid flow between the two-permeable stretched surface
with Hall effects was carried out by Khan et al. [9]. Some of the recent and innovative research on
entropy generation in fluid flow is mentioned in [10–14].

Cooling by fluid flow has received considerable attention in a variety of fields, such as electronics
automobile and metallic plate cooling. In all such cooling processes, different working fluids such as
water, propylene glycol, ethylene glycol (C2H6O2) bio fluids, engine oil, polymeric solutions, blends of
water and glycol, and other basic fluids are utilized as coolants. To enhance the thermal conductivity
of liquid coolants, several researchers played an important role in the past two decades. Choi et al. [15]
introduced the idea of boosting the thermal conductivity of working fluids by insertion of nanoparticles.
Nanofluids are basically the amalgamation of solid nanoparticles and liquid coolants. This new type of
coolant revolutionized the modern industrial world. The nanoparticles have amazing capabilities to
increase the heat transfer phenomenon and the thermal conductivity of the working fluid. After the
seminal work of Choi et al. [15], several researchers investigated the effects by adding different solid
nanoparticles into the various working fluids (base fluids) [16–26]. Recently, an advanced version of
nanofluid known as hybrid nanofluid was introduced. Hybrid nanofluid is colloidal suspensions of
two distinct nanoparticles in the base fluid. Hybrid nanofluid has numerous applications in medical,
lubrication, solar heating, refrigeration, microfluids, electronic cooling, nuclear system cooling, welding,
vehicle thermal management, and generator cooling. The hybrid nanofluid works more efficiently as a
cooling agent compared to regular nanofluid. Recently, Devi and Devi [27] reported the influences of
mass suction on heat transfer in hybrid nanofluid flow over an elastic permeable stretching surface.
Afridi et al. [28] compared the flow and heat transfer in two different base fluids and two different
hybrid fluid flows by utilizing the three-stage Lobatto IIIA formula. Farooq et al. [29] reported the
transpiration effects on entropy generation in hybrid nanofluid flow with energy dissipation. Some
recent innovative research on hybrid nanofluid is mentioned in [30–34].

The aim of this study was to report the impacts of energy dissipation on heat transfer and entropy
generation in the flow of conventional and hybrid nanofluid. The boundary layer flow was considered
to be over a moving thin needle in the presence of parallel stream flow. It is worth mentioning that the
probes of measuring devices such as a shielded thermocouple or a hot wire anemometer are often a
thin wire or needle-like in shape. Therefore, the analysis of fluid flow over needle-shaped bodies is of
considerable practical interest [35].

The parallel stream flow was assumed to be in the direction of the moving needle. The
partially coupled governing equations were changed into dimensionless forms by virtue of similarity
transformations. The numerical solution of the dimensionless nonlinear equations was obtained by
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using shooting and the Runge-Kutta Fehlberg scheme. The following sections consist of a mathematical
formulation, a numerical solution, and a graphical representation of the numerical solution, qualitative
discussions, and concluding remarks.

2. Mathematical Formulation

Consider the flow of hybrid nanofluid Cu−Al2O3 −H2O over a thin needle with frictional heating
(energy dissipation). The coordinate system and the geometry of the physical flow model are shown
in Figure 1. The free stream velocity (u∗∞) is in the direction of the x-axis, i.e., along the surface of
the thin needle. The velocity of the thin needle (u∗w) and the temperature at the surface of the thin
needle (T∗w) are supposed to be constant. Furthermore, the temperature in the free stream region (T∗∞)
is considered to be constant such that T∗w > T∗∞. Following the Tiwari and Dass Model (TDM) [36] with
boundary layer approximations, the governing equations for the hybrid nanofluid are:

∂
∂x∗

(r∗ u∗) +
∂
∂r∗

(r∗ v∗) = 0, (1)

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂r∗
=

µhn f

ρhn f r∗
∂
∂r∗

(
r∗
∂u∗

∂r∗

)
, (2)

u∗
∂T∗

∂x∗
+ v∗

∂T∗

∂r∗
=

khn f(
ρCp

)
hn f

(
∂2T∗

∂r2∗ +
1
r∗
∂T∗

∂r∗

)
+

µhn f(
ρCp

)
hn f

(
∂u∗

∂r∗

)2

, (3)

with the following boundary conditions: u∗ = u∗w, T∗ = T∗w, v∗ = 0, at r∗ = R(x∗),

u∗(x∗, r∗ →∞)→ u∗∞, T∗(x∗, r∗ →∞)→ T∗∞.
(4)
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Figure 1. Geometry of the problem with coordinates axes. Figure 1. Geometry of the problem with coordinates axes.

Here, (u∗, v∗) represents the velocity components along the x∗ and r∗-axes, respectively, T∗ shows

the local temperature within the boundary layer, R(x∗) =
aνb f x∗

U∗ [37] describes the shape of the surface
of the thin needle, a shows the size of the needle, x∗ is the axial coordinate, νb f represents the kinematic
viscosity of the base fluid, and U∗ shows the composite velocity. On the other hand, the effective
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thermal conductivity khn f , viscosity µhn f , specific heat at constant pressure
(
ρCp

)
hn f

, density ρhn f , and

thermal diffusivity αhn f of the hybrid nanofluid are defined as [33]:

khn f
kb f

=

(φk)Al2O3
+(φk)Al2O3

φAl2O3
+φAl2O3

+2kb f +2
(
φAl2O3

kAl2O3
+φCukCu

)
−2

(
φAl2O3

+φCu
)
kb f

(φk)Al2O3
+(φk)Al2O3

φAl2O3
+φAl2O3

+2kb f−
(
φAl2O3

kAl2O3
+φCukCu

)
+

(
φAl2O3

+φCu
)
kb f

, (5)

µhn f =
µb f(

1−φAl2O3 −φCu
)2.5 , ρhn f = φAl2O3ρAl2O3 + φCuρCu +

(
1−φAl2O3 −φCu

)
ρb f , (6)

(
ρCp

)
hn f

=
(
1−φAl2O3 −φCu

)(
ρCp

)
b f
+ φAl2O3

(
ρCp

)
Al2O3

+ φCu
(
ρCp

)
Cu

, (7)

ρhn f = φAl2O3ρAl2O3 + φCuρCu +
(
1−φAl2O3 −φCu

)
ρb f , αhn f =

khn f(
ρCp

)
hn f

. (8)

We introduce the dimensionless variables as [37]:

ξ =
U∗r∗2

νb f x∗
, ψ = νb f x∗g(ξ), θ =

T∗ − T∗∞
T∗w − T∗∞

, (9)

where ψ denotes stream function defined such that u∗ = 1
r∗
∂ψ
∂r∗ and v∗ = − 1

r∗
∂ψ
∂x∗ , g(ξ) stands for

dimensionless stream function, ξ is the similarity variable, θ presents the dimensionless temperature
distribution, the subscripts hn f and b f denote the hybrid nanofluid and the base fluid, respectively,
and U∗ = u∗w + u∗∞ , 0 indicates composite velocity.

Equation (1) is identically satisfied by Equation (9), whereas Equations (2)–(4) yield:

2(ξg′′′ + g′′ ) +
(
1−φCu −φAl2O3

)2.5
1−φCu −φAl2O3 +

(ρφ)Cu + (ρφ)Al2O3

ρb f

gg′′ = 0, (10)

khn f
kb f

(ξθ′′ + θ′) + 0.5Pr
(
1−φCu −φAl2O3 +

(φρCp)Cu+(φρCp)Al2O3

(ρCp)b f

)
gθ′ + 4EcPrξg′′ 2(

1−φCu−φAl2O3

)2.5 = 0, (11)

g(a) = a
2ε, g′(a) = ε

2 , g′(ξ→∞)→ 1−ε
2

θ(a) = 0, θ(ξ→∞)→ 0

. (12)

Here, ε stands for velocity ratio parameter, φCu and φAl2O3 for the solid volume fraction of copper
and aluminum oxide nanoparticles, respectively, Ec for Eckert number, and Pr for Prandtl number.
The above-mentioned parameters are defined as follows:

ε =
u∗w
U∗

, Ec =
U∗2(

Cp
)
b f
(T∗w − T∗∞)

, Pr =
νb f

(
ρCp

)
b f

kb f
. (13)

3. Irreversibility Analysis

The entropy generation due to frictional and thermal irreversibilities in the two-dimensional flow
of the hybrid nanofluid over a thin needle is given by [38]:

.
E
′′′

Gen =
khn f

T∗2

(
∂T∗

∂r∗

)2

︸        ︷︷        ︸
H.T.I

+
µhn f

T∗

(
∂u∗

∂r∗

)2

︸        ︷︷        ︸
F.I

. (14)
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The first term on the right side of Equation (14) indicates the heat transfer irreversibility (H.T.I)
(entropy generation due to heat transfer), and the last term represents the frictional irreversibility
(entropy generation due to frictional heating). To non-dimentionalized Equation (14), the characteristic
entropy generation

( .
E
′′′

Gen

)
c

is defined as given below:

( .
E
′′′

Gen

)
c
=

4kb f U∗

νb f x∗
. (15)

With the utilization of dimensionless variables defined in Equations (9) and (15), Equation (14)
takes the following useful form:

Ns =

.
E
′′′

Gen( .
E
′′′

Gen

)
c

=

(khn f

kb f

)
ξθ′2

(ω+ θ)2 +
4EcPrξg′′ 2(

1−φCu −φAl2O3

)2.5
(ω+ θ)

. (16)

Here, NHT =
(

khn f
kb f

)
ξθ′2

(ω+θ)2 is the heat transfer irreversibility and NFF =
4EcPrξg′′ 2(

1−φCu−φAl2O3

)2.5
(ω+θ)

is the

fluid friction irreversibility.

4. Numerical Solution

The non-linear self-similar Equations (10) and (11) with the dimensionless boundary conditions
were solved by applying the Fehlberg fourth order Runge-Kutta method and the shooting technique.
The Fehlberg fourth order Runge-Kutta method works for first order initial value problems. Since our
problem was boundary value and higher order, we first reduced our problem to a first order initial
value problem. The following are the three basic steps:

i. Convert Equations (10) and (11) to a set of first order initial value problems.
ii. The shooting technique is used to determine the missing initial conditions such that the

conditions at ξ→∞ are satisfied.
iii. Finally, the Fehlberg fourth order Runge-Kutta method (initial value problem method) is

utilized to get the required numerical solutions.

The fourth order accurate solution is defined as follows:

y j+1 = y j +
( 25

216
ko +

1408
2565

k2 +
2197
4104

k3 −
1
5

k4

)
h. (17)

Each iteration consists of five steps that are given below:

ko = f
(
x j, y j

)
k1 = f

(
x j +

h
4 , y j +

hko
4

)
k2 = f

(
x j +

3h
8 , y j + h

(
3

32 ko +
9

32 k1
))

k3 = f
(
x j +

12h
13 , y j + h

(
1932
2197 ko −

7200
2197 k1 +

7296
2197 k2

))
k4 = f

(
x j + h, y j + h

(
439
216 ko − 8k1 +

3860
513 k2 −

845
4104 k3

))


(18)

Equations (10) and (11) with the corresponding boundary conditions (12) are transformed to a
system of initial value problems by taking:

g = Q1, g′ = Q2, g′′ = Q3

θ = Q4, θ′ = Q5

. (19)



Symmetry 2019, 11, 663 6 of 14

By substituting Equation (19) in the Equations (10)–(12), we obtain a system of first order differential
equations with initial conditions, as given below:

2
(
ξQ′3 + Q2

)
+

(
1−φCu −φAl2O3

)2.5
1−φCu −φAl2O3 +

(ρφ)Cu + (ρφ)Al2O3

ρb f

Q1Q3 = 0, (20)

khn f
kb f

(
ξQ′5 + Q5

)
+ 0.5Pr

(
1−φCu −φAl2O3 +

(φρCp)Cu+(φρCp)Al2O3

(ρCp)b f

)
Q1Q5 +

4EcPrξQ3
2(

1−φCu−φAl2O3

)2.5 = 0, (21)

Q1(a) = a
2ε, Q2(a) = ε

2 , Q3(s1)

Q4(a) = 0, Q5(a) = s2

. (22)

The missing initial conditions s1 and s2 are calculated by the utilization of an iterative scheme known
as the shooting technique such that the boundary conditions g′(ξ→∞)→ 1−ε

2 and θ(ξ→∞)→ 0
are satisfied. The iterative procedure continues until the solution converges to the desired accuracy of
10−5. Furthermore, the step size used in the simulation is ∆ξ = 0.001.

5. Results and Discussion

The dimensionless Equations (10) and (11) were highly nonlinear and had variable coefficients.
Therefore, it was not possible to obtain the closed form solution of these equations. This fact forced us
to solve these equations numerically. The Runge-Kutta Fehlberg schemes (RKFS) and the shooting
method (SM) were utilized to get the solution of Equations (10) and (11) numerically. To analyze the
impacts of different parameters on g′(ξ), θ(ξ) and Ns(ξ), the obtained numerical results were plotted
against the similarity variable ξ for various values of emerging parameters. The solid volume fractions
of aluminum oxide and copper nanoparticles are represented by φ1 and φ2, respectively, whereas
φ = φ1 + φ2. The thermophysical properties of nanoparticles and base fluid (water) are tabulated in
Table 1. Table 2 shows the comparison of the present numerical values and the existing values in the
literature when φ1 = φ2 = 0 and ε = 0. It was found that the numerical values were close enough and
validated our numerical simulation.

Table 1. Thermophysical properties of base fluid (water) and some nanoparticles.

Properties. Base Fluid (Water) Al2 O3 (Aluminum Oxide) Cu (Copper)

cp(J/kgK) 4179 765 385
k(W/mK) 0.613 40 401
ρ
(
kg/m3

)
997.1 3970 8933

Pr 6.8 - -

Table 2. Numerical values of g′′ (a) when φ1 = φ2 = 0 and ε = 0.

a Ishak et al. [39] Chen and Smith [40] Present Results
Shooting Scheme

Present
Results Bvp4c

0.1 1.2888 1.28881 1.28872 1.28881
0.01 8.4924 8.49244 8.49127 8.49233

0.001 62.1637 62.16372 62.16369 62.16370

Figure 2 demonstrates the variation of the velocity profile g′(ξ) with the thickness of the thin
needle a. The plot shows that g′(ξ) enhanced with the decreasing of a. Physically, the drag force
decreased as the size of the needle diminished; consequently, the velocity enhanced. The hybrid
nanofluid flowed with less velocity compared to the regular nanofluid. This was because the density
rose with the hybridity and consequently slowed down the fluid motion.
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Figure 2. Effects of a on g′(ξ).

Figure 3 shows that temperature θ(ξ) dropped with the decreasing values of a. Figure 3 also
reveals that, under the same circumstances, the temperature of the hybrid nanofluid was higher than
the regular nanofluid. High thermal conductivity of the hybrid nanofluid was responsible for these
high values of temperature.
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Figure 3. Effects of a on θ(ξ).

The increase in the thermal dissipation parameter (Eckert number Ec) enhanced the temperature
of both types of nanofluids, as demonstrated in Figure 4. This rise in temperature was due to the
increment in friction between the nanofluid layers. The kinetic energy of the nanofluid converted into
the thermal energy because of the frictional heating, which lead to rise in the temperature.
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Figure 4. Effects of Ec on θ(ξ).

The temperature had direct relation with the solid volume fraction of the nanoparticles, as shown
in Figure 5. Furthermore, it was also observed that the hybrid nanofluid had a thick thermal boundary
layer as compared to the regular nanofluid, and this was because of the high thermal conductivity of
the hybrid nanofluid.
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The effect of the thickness of the thin needle on entropy generation Ns is represented in Figure 6.
The plot reveals that Ns decreased with increasing a for both types of nanofluids, but for the fixed
value of a, less entropy was generated in the regular nanofluid as compared to the hybrid nanofluid.
Furthermore, the surface of the thin needle was the region where maximum entropy was generated.
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Figure 6. Effects of a on Ns.

The effects of Eckert number and solid volume fraction of both nanoparticles on entropy generation
Ns are respectively shown in Figures 7 and 8. These plots show that Ns enhanced with these parameters.
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Figure 9. Effects of ω on Ns.

The impacts of the velocity ratio parameter ε on entropy generation Ns are shown in Figures 10
and 11. It was found that entropy generation enhanced with the velocity ratio parameter ε subjected to
the condition that the free stream velocity was less than the velocity of the thin needle. The decrement
in Ns was observed with the rising of the velocity ratio parameter subjected to the condition that the
velocity of the thin needle was less than that of the free stream velocity.
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Figure 10. Effects of ε on Ns when u∗w > u∗∞.
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6. Conclusions

A theoretical study of heat transfer and entropy generation in the flow of dissipative hybrid
nanofluid over a needle was conducted. The results of this study led to the following prime conclusions:

• The temperature and the entropy generation were found to decrease with needle size decrement.
• The velocity profile was reduced with the increment in the size of the needle.
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• The velocity of the hybrid nanofluid Cu−Al2O3 −H2O was observed to be lower than the regular
nanofluid Al2O3 −H2O, whereas the rate of heat transfer was greater in the hybrid nanofluid as
compared to the regular nanofluid.

• A reduction in entropy generation Ns was found by raising the values of ω.
• It was perceived that Ns and temperature distribution were directly proportional to Eckert number

Ec and φ.
• High entropy generation was found in the hybrid nanofluid as compared to the regular one.
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