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Abstract: Chiral crystals were discovered due to spontaneous resolution when enantiomers of
4-phenyldiazenyl-2-[(R or S)-(1-phenylethyl)-iminomethyl]phenol and its racemic mixture were
prepared. Using two ligands per molecule, optically active R,R and S,S enantiomers and meso
R,S diastereomer of Cu(II) complexes were prepared. Strong chiral recognition was expected for
them. Laccase has attracted attention as a catalyst that reduces oxygen to water in a cathode of
biofuel cells, which can be effectively mediated by metal complexes. Furthermore, azobenzene can
align perpendicularly to the polarization direction of irradiating linearly polarized ultraviolet light
(Weigert effect) as well as to the conventional cis-trans photoisomerization accompanying the shift of
redox potential. Thus, we also studied the photo-induced control of cis-trans forms and the alignment
of these Cu(II) complexes as a mediator to fit laccase appropriately. We discuss photo-induced control
on not only electronically but also sterically-favored redox conditions. The meso(R,S)-form of the
Cu(II) complex in cis-form was found to be the best at increasing the current of cyclic voltammetry
(CV) among the three R,R and S,S enantiomers and the R,S diastereomer of the Cu(II) complexes.

Keywords: chiral Schiff base; spontaneous resolution; enantiomer; diastereomer; azobenzene; Weigert
effect; copper(II) (Cu(II)) complex; laccase

1. Introduction

Laccase has attracted attention as a catalyst for the four-electron oxygen reduction reaction which
is used for the electrodes of biofuel cells [1,2]. Proteins of this type containing functional copper atoms
are referred to as members of the multicopper oxidase family [3]. Among them, laccase is used as
a catalytic enzyme on the cathode side of biofuel cells. Biofuel cells have the advantage of being
able to generate electricity at room temperature and under low environmental loads [4,5]. The four
copper atoms, which are the active centers of the laccase, are divided into three types, T1, T2 and T3,
respectively, and T2 copper and two T3 copper atoms form triple nuclear clusters, which catalyze
the reduction of oxygen (O2) to water (H2O) [6]. Substrates are oxidized at the T1 copper site and
electrons are transferred to the cluster site, followed by four-electron reduction. However, there are
also problems related to the instability of the enzyme and small electric power compared to other fuel
cells. Herein, we explore some ways to solve this problem of low power [7].

In this case, a redox substance called a mediator is generally used for electron transfer between the
electrode and laccase [2]. In order to facilitate electron transfer between the electrode and the oxygen
reductase in the biofuel cell cathode, our laboratory studied the use of Schiff base metal complexes as
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mediators [8–11]. Mediators are required to be able to fit to the hydrophobic pocket sites on the laccase
surface to supply electrons to the electron accepting T1 site inside the laccase molecule. We have
searched for methods to introduce not only central metal ions (Cu, Mn), but also redox groups of
anthraquinone [8,9] and polarization orientation of azobenzene [10,11], to organic ligands. However,
whether photoisomerization and photo-induced orientation of the azobenzene moiety is effective for
increasing current, and what the appropriate way to fit a complex to laccase is, are still unknown.

Herein, we designed new enantiomers and diastereomers of Cu(II) complexes as mediators
(Figure 1) incorporating 1-phenylethylamine derivative ligands. The purpose was to investigate
favorable docking with the hydrophobic pocket site of the laccase surface using chiral molecular
recognition. In addition, cis-trans forms produced by photoisomerization of three enantiomer and
diastereomer Cu(II) mediators by chirality were compared by means of computational simulations.
It was found that chiral molecular recognition resulting from spontaneous resolution could be observed
for the racemic organic ligand.
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(0.01 mM acetone): 260 (π–π *), 400 (n–π *). Circular dichroism (CD) (0.01 mM acetone): 260 (positive, 
π–π *), 400 (negative, n–π *), 640 (positive, d–d) nm. 

Figure 1. Structures of Cu(II) complexes (X = R, Y = R for 1; X = S, Y = S for 2; X = R, Y = S for 3).

2. Materials and Methods

2.1. General Procedures

Chemicals of the highest commercial grade available (solvents from Kanto Chemical (Japan), organic
compounds from Tokyo Chemical Industry (Japan), and metal sources from Wako (Japan)) were used as
received without further purification. 4-Phenyldiazenyl-2-[(1-phenylethyl)-iminomethyl]phenol and its
single crystals were prepared according to methods detailed in the literature [12] and checked with X-ray
crystallography, proton nuclear magnetic resonance (1H-NMR), and infrared (IR) spectroscopy (not shown).

2.2. Preparation of Complexes

To an orange methanol solution of 4-phenyldiazenyl-2-[(1-phenylethyl)-iminomethyl]phenol of
appropriate chirality, Cu(II) acetate hydrate (0.2012 g, 1.00 mmol) was added, and this was stirred at
313 K for 2 h to give rise to a dark brown solution as the resulting complex. This crude compound was
filtered and recrystallized from chloroform or diethyl ether, and dried in a desiccator for several days.

1: Yield: 0.5861 g (81.37%). Anal. found: C, 69.19; H, 4.70; N,11.59%. Calcd for C84H74Cu2N12O5:
C, 69.17; H, 5.11; N, 11.52%. IR (KBr): 1617 cm−1 (C=N). UV–vis (diffuse reflectance): 550 nm. UV–vis
(0.01 mM acetone): 260 (π–π *), 400 (n–π *). Circular dichroism (CD) (0.01 mM acetone): 260 (positive,
π–π *), 400 (negative, n–π *), 640 (positive, d–d) nm.

2: Yield: 0.4763 g (66.12%). Anal. found: C, 68.69; H, 5.05; N,11.55%. Calcd for C42H38CuN6O3:
C, 68.32; H, 5.19; N, 11.38%. IR (KBr): 1616 cm−1 (C = N). UV–vis (diffuse reflectance): 550 nm. UV–vis
(0.01 mM acetone): 260 (π–π *), 400 (MLCT). CD (0.01 mM acetone): 260 (negative, π–π *), 400 (positive,
MLCT), 640 (negative, d–d) nm.
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3: Yield: 0.4505 g (62.54%). Anal. found: C, 69.29; H, 4.97; N,11.82%. Calcd for C84H74Cu2N12O5:
C, 69.17; H, 5.11; N, 11.52%. IR (KBr): 1616 cm−1 (C=N). UV–vis (diffuse reflectance): 550 nm. UV–vis
(0.01 mM acetone): 260 (π–π *), 400 (MLCT) nm.

The hybrid materials of the complexes and laccase were treated according to procedures described
in the literature [11,13]; namely, 1–3 were prepared by mixing 0.5 mL of acetone solution (0.0019 g in
5 mL acetone) and laccase (0.0152 g in 2 mL Tris buffer) with 1–3. Cast films of the complex and laccase
were prepared and measured using polarized UV–vis spectra before and after polarized UV light
irradiation. Cyclic voltammetry (CV) was measured using a Nafion-coated glassy carbon electrode
before and after UV light irradiation.

2.3. Physical Measurements

IR spectra were recorded on an FT-IR 4200 spectrophotometer (JASCO, Tokyo, Japan) in the
range of 4000–400 cm−1 at 298 K. (Polarized) electronic (UV–vis) spectra were measured on a V-650
spectrophotometer (JASCO, Tokyo, Japan) equipped with a polarizer in the range of 800–220 nm at
298 K. CD spectra were measured on a J-725 spectropolarimeter (JASCO, Tokyo, Japan) in the range of
800–200 nm at 298 K. Fluorescence spectra were measured on an FP-6200 spectrophotometer (JASCO,
Tokyo, Japan) in the range from 720 to 220 nm at 298 K. Electrochemical CV was carried out on an
SEC2000-UV/VIS and ALS2323 system (BAS, Tokyo, Japan) with Ag/AgCl electrodes in the range of
−0.50 to 0.80 V vs. Ag/Ag+. Photo-illumination was carried out using a lamp (1.0 mW/cm2) made by
Hayashi Tokei (Tokyo, Japan) with optical filters (UV λ = 200–400 nm) led to a sample using optical
fibers and polarization through optical filters.

2.4. X-Ray Crystallography

Orange prismatic crystals of 4-phenyldiazenyl-2-[(1-phenylethyl)-iminomethyl]phenol from
S-1-phenylethylamine (S-form crystallized in C2 with a = 22.506 (3) Å, b = 5.9736 (9) Å, c = 13.435 (2) Å,
β = 106.461 (2)◦, V = 1732.2 (4) Å3) or racemic 1-phenylethylamine (the picked-up crystal was
R-form crystallized in C2 with a = 22.460 (7) Å, b = 5.9618 (19) Å, c = 13.478 (4) Å, β = 106.301 (4)◦,
V = 1732.2 (9) Å3) were glued to the top of a glass fiber rod. We coated the rod with a thin layer of
epoxy resin. Intensity diffraction data were collected on a Bruker APEX2 CCD diffractometer (Bruker,
Billerica, MA, USA) with graphite-monochromated Mo–K radiation (λ = 0.7107 Å). Data analysis
was carried out with a SAINT program package (Bruker, Billerica, MA, USA). The structures were
solved by direct methods with a SHELXS-97 program [14], expanded by Fourier techniques, and
refined by the full-matrix least-squares methods based on F2 using the SHELXL-97 program [14].
An empirical absorption correction was applied by the SADABS program (Bruker, Billerica, MA, USA).
All non-hydrogen atoms were readily located and refined using anisotropic thermal displacement
parameters. All hydrogen atoms were located at geometrically calculated positions and they were
refined using riding models. Only selected crystallographic data were reported herein, because they
were merely re-determination consequently.

2.5. Computational Methods

Calculations of all complexes were performed using the Gaussian 09W software Revision D.02
(Gaussian, Inc., Wallingford, CT, USA) [15]. All geometries were optimized by using the B3LYP level
of theory and SDD as a basis set. We also performed frequency calculations on optimized geometry
using the same level of theory and basis set.

A complex and protein docking simulation was carried out using GOLD suite calculation software
(ver. 5.5.0) (Cambridge, UK) [16]. From the Protein Data Bank [17], we obtained 1GYC single crystal
structure data of laccase from Trametes versicolor and used this to calculate how the complex behaves in
the vicinity of the hydrophobic pocket at coordinates close to the T1 site.
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3. Results and Discussion

3.1. Ligands Exhibiting Spontaneous Resolution

The chiral photochromic Schiff base compound 4-phenyldiazenyl-2-[(1-phenylethyl)-iminomethyl]
phenol (C21H19N3O) was synthesized from {racmic-1-phenylethylamine} or {(S)-1-phenylethylamine}
and the salicylaldehyde of an azobenzene derivative. The molecule corresponds to the S-enantiomer
of the previously reported {(R)-1-phenylethylamine} and the C=N and N–C bond distances are 1.278(2)
and 1.475(2) Å, respectively (Figure 2). There are two important intramolecular interactions in the
crystal. The diazenyl group adopts a cis form with an N–N distance of 1.243(2) Å. On the other hand,
racemic-1-phenylethylamine yields the R-enantiomer [12] (re-determination of reported structure)
crystals by spontaneous resolution, where the C=N and N–C bond distances are 1.272(3) and 1.477(3)
Å, respectively. An intramolecular O–H . . . N hydrogen bond occurs. The diazenyl group adopts a
trans form with an N=N distance of 1.237(3) Å. As shown in Figure 3, characteristic intermolecular
interactions, such hydrogen bonds and CH–pi interactions, were observed in the crystal structures.
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Optical isomers of chiral or racemic 1-phenylethylamine derivatives may be some of the basic
units to obtain enantiomers or diastereomers of crystalline compounds [18], though it is sometimes
difficult to compare all R, S, and racemic derivatives. Indeed, spontaneous resolution is one of the
well-known phenomena associated with chirality, even for catalytic compounds [19]. We aimed to
obtain diastereomers or racemic crystals of previously reported chiral derivatives, and we employed
the racemic precursor for this. Of course, structural features of the R-form from racemic amine were
trivial because they were similar to previously reported ones prepared from pure R-form of amine.

3.2. Complexes of Enantiomers and Diastremers

Crystals 1–3 were prepared by using 4-phenyldiazenyl-2-[(R)-(1-phenylethyl)-iminomethyl]phenol,
4-phenyldiazenyl-2-[(S)-(1-phenylethyl)-iminomethyl]phenol and racemic 4-phenyldiazenyl-2-
[(1-phenylethyl)-iminomethyl]phenol (prepared from racemic 1-phenylethylamine) and confirmed
by means of CD spectra. That 1 and 2 are symmetric, and 3 is absent, suggests formation of the
meso complex from racemic 4-phenyldiazenyl-2-[(1-phenylethyl)-iminomethyl]phenol in solution).
Unfortunately, single crystals of all 1–3 could not be obtained; hence, a structural discussion was
carried out using density functional theory (DFT) optimized structures, which was confirmed
by a qualitatively reasonable comparison of simulated and experimental UV–vis and CD spectra
(not shown) of the related compounds [20]. Cis-trans photoisomerization of the azo-moiety was also
confirmed for 1–3 by alternate irradiation of UV and visible light for 3 min [21].

Changes in the electrochemical properties of 1–3 in an isotropic media by linearly polarized UV
light were examined by CV as follows. The working electrode was a glassy carbon electrode, the
reference electrode was an Ag/AgCl electrode, and the counter electrode was a platinum electrode.
The buffer solution was a 200 mM acetate buffer solution at pH 5.0, and the scan rate was measured
at 0.05 V/s. Complexes 1–3 (5 mg) were dissolved in 2 mL of acetone to prepare solutions 1–3, and
solutions 1–3 (40 µL) were applied to the electrode. To prevent the electrode material from eluting into
the buffer solution, 20 µL of Nafion®was added after drying. The electrode material was irradiated
with UV light and linearly polarized UV light for 3 min, and the CV spectra were measured under an
oxygen atmosphere. Potential shifts from about −0.4 to −0.2 V and about −0.5 to −0.3 V were also
observed for 1 and 2, respectively, similar to that of 3 (Figure 4), because of cis-trans photoisomerization
of the azo-moiety. This feature suggested that 1–3 can act as mediators for laccase as cis-form but not
as trans-form.Symmetry 2019, 11, x FOR PEER REVIEW 6 of 11 
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3.3. Hybrid Composites of Complexes in Laccase

The polarized UV–vis spectra measurement results showed that induced optical anisotropy was
increased in systems 1–3 in laccase (anisotropic media). Hybrid materials 1–3 were prepared by
mixing 0.5 mL of acetone solution with 1–3 (0.0019 g in 5 mL acetone) and laccase (0.0152 g in 2 mL
Tris buffer) dropwise onto the PMMA film and drying at room temperature for 2 days. Docking of 1–3
in laccase was also confirmed with the quenching of the fluorescence intensity of laccase (λem = 350 nm,
λex = 270 nm). For the evaluation of the Weigert effect, we employed two parameters (R and S) to
determine the degree of photo-induced optical anisotropy [22,23]:

R =
A0

A90
;

S =
A0 −A90

A0 + A90
,

where A90 and A0 denote the absorbance measured perpendicular and parallel to the direction of electric
vector of irradiation polarized light with the polarizer. For both polarized UV–vis spectra, complete
isotropic systems of S = 0 and R = 1 and both S and R parameters were changed as the dichroism
by alignment increased. As for the intense π–π* bands around 320 nm, the S and R parameters were
0.8530 and −0.0515 for 1 and laccase, 0.8559 and −0.0545 for 2 and laccase, and 0.8403 and −0.0562
for 3 (Figure 5) and laccase, respectively. The assignments of the most intense peaks were HOMO-3
to LUMO+1 (HOMO-2 to LUMO), HOMO to LUMO+2 (HOMO-2 to LUMO+1), and HOMO-8 to
LUMO (HOMO-1 to LUMO+2) for the trans-forms (cis-forms) of 1–3, respectively. Therefore, it is
confirmed that the azobenzene derivative chiral Schiff base Cu(II) complex is photo-aligned in laccase.
A control test for pure laccase cast films afforded R = 0.9871 and S = −0.0043 without radiation damage
by UV light.
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Figure 5. (Left) Polarized UV–vis spectra of 3 and laccase, and (right) angular dependence of absorbance
of these spectra at 320 nm (π–π*) before (blue; random trans-form) and after (orange; orientated cis-form)
linearly polarized UV light irradiation for 3 min, as determined by the polarizer.

As a preliminary result of the CV measurement in the hybrid system of each complex and laccase
(not shown), it was confirmed that the oxygen reduction current value increased compared with the
simple substance of trans-form complexes (showing similar behavior to Figure 6) and laccase (whose
currents at −0.7 V and +0.2 V were increased under an oxygen rather than a nitrogen atmosphere)
alone. Thus, all complexes fully fulfilled their functions as mediators for laccase under oxygen [11].

Besides the addition of the complexes as mediators, and as a result of CV measurements before
and after UV light irradiation, the reduction potential was possibly positively shifted due to cis-trans
photoisomerization as well as molecular orientation. To resolve both effects, we compared natural
(non-polarized) UV light and linearly polarized UV light irradiation (Figure 7). For all complexes,
natural UV light irradiation resulted in a positive shift in the reduction potential, which could be
attributed to photoisomerization of complexes to cis-form. On the other hand, linearly polarized
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UV light irradiation resulted in not only a potential shift but also an increased current for oxygen
reduction. In detail, a slight increase in current was observed for 1 and 2 in laccase, while a considerable
increase in current was observed for 3 in laccase. Thus, it is considered that the oxygen reduction
reaction of laccase was further promoted by the molecular orientation of the appropriate stereochemical
molecules [9,10].
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Since laccase supplies electrons from the T1 copper site and oxygen is reduced by T2/T3 copper
sites, it is desirable that the ligand complex intervenes at the electrode–T1 copper site and functions as an
electron mediator. Therefore, a calculation was done to join the coordinates (x, y, z) = (13, 25, 38) such
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that they entered the hydrophobic region pocket including the T1 copper site. As for the trans-forms of
1–3, docking scores by GOLD were 55.6926, 54.1818, and 58.6724 with the distance of the Cu(II) of 1–3
to the T1 site being 9.913, 10.448, and 10.918 Å, respectively (Figure 8). On the other hand, assuming
UV light irradiation of the cis-forms of 1–3, docking scores by GOLD were 44.2980, 42.4267, and 65.4168
with distances of the Cu(II) of 1–3 to the T1 site of 9.990, 10.030, and 10.9898 Å, respectively (Figure 9).
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and 8.4552 D, respectively.

Low docking scores were obtained for the cis-forms of enantiomers 1 and 2 in laccase, which
suggested enlarged molecular orientation distances between the Cu(II) in complexes and the T1 site
without keeping suitable docking features. However, for cis-forms of diastereomer 3 in laccase, suitable
docking features were kept after photoisomerization and molecular orientation, which resulted in an
increase in the current values of CV.
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4. Conclusions

In summary, as a ligand, only racemic 4-phenyldiazenyl-2-[(1-phenylethyl)-iminomethyl]phenol,
exhibited spontaneous resolution. A characteristic hydrogen bond that could affect chiral molecular
recognition was identified in the crystals of spontaneous resolution. Using this ligand, enantiomer or
diastereomer Cu(II) complexes were obtained and were effective for the chiral molecular recognition
of laccase, as were their cis-trans stereoisomers. The cis-form of 3 exhibited the best docking score,
which corresponded to the shortest Cu(II)–T1 side distance and increased the current of CV for 3 under
an oxygen atmosphere. Additionally, 3 showed a change in redox potential due to the molecular
orientation accompanying cis-trans photoisomerization, which was separately confirmed for the first
time by using polarized and natural UV light. Thus, it can be expected that 3 exhibits docking
advantages for the oxygen reduction reaction of laccase by proving optical orientation control, thereby
affecting the improvement of electron transfer toward laccase. In the application to cathode material
as an enzyme type biofuel cell, this concept of photo-tunable mediators may be a promising new
strategy for molecular design. Further study of this method and the analogous materials is currently
in progress.
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