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Abstract: In high energy particle accelerators, a careful modeling of the electromagnetic interaction
between the particle beam and the structure is essential to ensure the performance of the experiments.
Particular interest arises in the presence of angular discontinuities of the structure, due to the
asymmetrical behavior. In this case, semi-analytical models allow one to reduce the computational
effort and to better understand the physics of the phenomena, with respect to purely numerical
models. In the paper, a model for analyzing the electromagnetic interaction between a traveling charge
particle and a perfectly conducting angular slot of a negligible thickness is discussed. The particle
travels at a constant velocity along a straight line parallel to the axis of symmetry of the strip.
The longitudinal and transverse coupling impedances are therefore evaluated for a wide range
of parameters.

Keywords: particle accelerator; coupling impedance; dual integral equations

1. Introduction

Recent discoveries in high-energy particle accelerators are connected to the possibility to reach
higher level of energies in the experiments [1]. One of the main limitations to the involved energy,
that is to say to the current of the beam, is the instability of the particle due to the electromagnetic
interaction with the surrounding structures [2]. The synthetic design parameter commonly adopted in
literature to describe the electromagnetic interaction between a traveling particle and a structure is the
coupling impedance [3–5]. This parameter is proportional to the energy lost by the traveling charge
due to the interaction with the scattered fields produced by the surrounding structures. Equivalently,
it is proportional to the energy that has to be spent to keep its speed constant, neglecting the slowing
effect of the surrounding structures. For structures invariant along the charge traveling direction,
a per-unit-length coupling impedance has to be introduced [4], whose longitudinal and transverse
components can be defined as

Z|| (r, ϕ, k) = −1
q

1
L

L/2∫
−L/2

Ez (r, ϕ, z, ω) ejkz/βdz Z⊥ (r, ϕ, k) =
1
k
∇⊥Z|| (r, ϕ, k) , (1)

where L is an unitary length, Ez (r, ϕ, z, ω) the x-component of the electric field in the frequency
domain, k the wavenumber, and the charge q is moving at constant velocity v = βc along the z axis.
The second equation in (1) is known as the Panofski–Wenzel theorem [6].

The research of new shapes of cavities with proper coupling impedances is actually of high interest
for the design of even more efficient particle accelerators [7–9]. Nowadays, powerful tools allow
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performing the electromagnetic numerical analysis of complex structures [10]. However, analytical
or semi-analytical solutions still play a valuable role in this field, enabling to better understand the
physics of some phenomena. Modal analysis is often adopted for close structures [11,12], diffractive
methods for high-frequency solutions, and integral formulations for open geometries or in the presence
of edges [13,14].

Most of the studies related to the coupling impedance consider, in a cylindrical reference
system, axially symmetric geometries. This choice is both because they represent most of the
structures of interest and because the symmetry allows finding the solution with less effort or even in
a semi-analytical form. In this paper, we want to analyze the interaction of a particle with a axially
asymmetric structure, in particular an angular slot, as shown in Figure 1. This configuration is
representative of particle accelerator components that break the axial symmetry. The proposed method
is quite general and can be adopted for a wide class of scattering and diffraction problems [15–20].
It can be easily generalized and adopted to analyze similar geometries.

Figure 1. Geometry of the problem.

The problem is formulated in the particle frame at first. Assuming the geometry invariant
along the traveling direction, in the particle frame a stationary model is adoptable, this simplifies
the formulation and the solution. In order to evaluate the coupling impedance, the electromagnetic
quantities are then obtained in the slot frame by means of Lorentz transforms.

The angular slot is assumed to be perfectly conductive; this is a common choice in the literature.
Although the finite conductivity of the strip can be taken into account with some complications,
neglecting it does not have a concrete effect on the validity of the analysis. The validity of such a choice
is discussed more in detail in the last section of the paper.

The primed notation is adopted to identify the quantities in the particle frame, the unprimed
notation in the slot frame.

The paper is composed of 6 sections: after this introduction, in the next section the problem is
formulated in the particle frame and a methodology for computing the unknown current density is
presented. In the following sections, the electromagnetic fields are evaluated in the particle and in
the structure frame and then the coupling impedance is estimated. Then, some numerical results are
presented. Finally, the conclusions are discussed.

2. Formulation of the Problem in the Particle Frame

In this section let us consider the geometry shown in Figure 1: a perfectly conducting angular slot
S = {r = a, |ϕ| ≤ ϕa, z} at distance a from the axis and covering an angular sector of 2ϕa. A travelling
charge q moves parallel to the slots’s axis, placed at (rq, ϕq), at constant speed v = βc, c being the speed
of light in free space.

The problem is formulated in term of integral equations and its solution is reduced to the
resolution of a linear system.

The electromagnetic interaction between the particle and the structure can be easily formulated
and solved in the particle frame, being an electrostatic model adequate for such a problem. Once the
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electromagnetic quantities are computed, their values in the slot frame can be obtained by means of
Lorentz transforms.

The electrostatic potential produced by the charge is

V′q =
q

4πε0

√
r′2 + r2

q − 2r′rq cos
(

ϕ′ − ϕq
)
+ z′2

, (2)

while the potential produced by the induced charge density σ′(ϕ′, z′) on the slot can be expressed as

V′=
a

4πε0

∫
S

σ′(ϕ0, z0) dϕ0dz0√
r′2 + a2 − 2r′a cos (ϕ′ − ϕ0) + (z′ − z0)

2
. (3)

Being a perfectly conducting slot, the boundary condition to be verified is that the tangential
components of the electric field vanishes on the slot. This corresponds to impose that

V′(r′ = a, ϕ′, z) + V′q(r
′ = a, ϕ′, z) = 0 (4)

for every (ϕ′, z′) ∈ S.
Considering Equations (2) and (3), the boundary condition leads to

∫
S

σ′(ϕ0, z0) dϕ0dx0√
2a2 − 2a2 cos (ϕ′ − ϕ0) + (z′ − z0)

2
= − q/a√

a2 + r2
q − 2arq cos

(
ϕ′ − ϕq

)
+ z′2

(5)

From this equation, it is worth noting to observe that there is complete induction on the slot for
such a kind of geometry. In fact, by multiplying Equation (5) for the denominator of its second member
and performing a limit for z going toward +∞, it is possible to obtain that∫

S

σ′(ϕ0, z0) a dϕ0dz0 = −q. (6)

This result will be usefully employed later on in the computation of the coupling impedance.
In order to solve the problem it is necessary to recall a relevant integral ([21] R6.616.4)

π√
D2 + Z2

=

+∞∫
−∞

K0 (Dw) e−jwZdw, (7)

and its derived form
π Z

(D2 + Z2)
3/2 = j

+∞∫
−∞

wK0 (Dw) e−jwZdw. (8)

Then it is useful to introduce a spatial Fourier transform along the z axis, namely

σ̃′(ϕ, w) =
1

2π

+∞∫
−∞

σ′(ϕ, z)ejwzdz. (9)

By using Equation (7) on the integral Equation (5) and applying the inverse Fourier transform to
both members, with some manipulations it becomes
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ϕa∫
−ϕa

σ̃′(ϕ0, w)K0

(√
2a w

√
1− cos (ϕ′ − ϕ0)

)
dϕ0 =

= − q
2πa

K0

(
a w
√

1 + (rq/a)2 − 2(rq/a) cos
(

ϕ′ − ϕq
))

. (10)

Equation (10) has to be verified on S, whereas the induced charge density vanishes outside the
angular slot, namely

+∞∫
−∞

σ̃′(ϕ0, w) e−jwzdw = 0. (11)

Equations (10) and (11) constitute a dual system of integral equation with respect to the induced
current density. An efficient solution of such a problem can be obtained by representing the unknown
in terms of Neuman series [22]:

σ′(ϕ′, z′) =


− q

2πa ϕa

∞
∑

n=0
σn(z′)

Tn (ϕ′/ϕa)√
1− (ϕ′/ϕa)

2
, |ϕ| ≤ ϕa

0, |ϕ| > ϕa

(12)

where Tn(·) is the Chebychev polynomial of order n [23,24]. Such polynomials exhibit several relevant
properties [25,26] that can be adopted for the solution of some classes of electromagnetic problems.
According to Equation (9), then the induced current density in the transformed domain is

σ̃′(ϕ′, w) = − q
2πa ϕa

∞

∑
n=0

σ̃n(w)
Tn (ϕ′/ϕa)√
1− (ϕ′/ϕa)

2
. (13)

With such a normalization, dimensionless expansion coefficients are obtained in the
transformed domain.

The chosen representation is a form of the more generic Neuman series, particularized for this
problem [27]. The chosen representation automatically matches the right edge behavior, this regularizes
the method and reduces the number of required coefficients.

In addition, the chosen current density representation already satisfies Equation (11). So,
by substituting it into the remaining Equation (10), it is found that

∞

∑
n=0

σ̃n(w)

ϕa∫
−ϕa

Tn (ϕ′/ϕa)√
1− (ϕ′/ϕa)

2
K0

(√
2a w

√
1− cos (ϕ′ − ϕ0)

)
dϕ0 =

= ϕaK0

(
a w
√

1 + (rq/a)2 − 2(rq/a) cos
(

ϕ′ − ϕq
))

. (14)

This equation has to be verified for every |ϕ′| ≤ ϕa. In order to impose this condition, Equation (14)
is projected on the same basis functions adopted for the representation of the current density (Galerkin
scheme). This converts Equation (14) in the linear system

AAAσ̃̃σ̃σ = bbb, (15)

where σ̃̃σ̃σ is the vector of the unknowns σ̃n, AAA is a symmetric matrix whose coefficients, obtained with
some trivial manipulations and changes of variable as

Anm =

π∫
0

π∫
0

K0

(
2a w

∣∣∣sin
( ϕa

2
(
cos ψ0 − cos ψ′

))∣∣∣) cos (mψ0) cos
(
nψ′
)

dψ0dψ′ (16)
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and bbb the known term vector defined as

bm =

π∫
0

K0

(
a w
√

1 + (rq/a)2 − 2(rq/a) cos
(

ϕa cos ψ′ − ϕq
))

cos
(
mψ′

)
dψ′. (17)

It is worth noting that for rq = 0, that is to say when the particle is in the axis of the slot, all the
coefficients bm are zero but the first one, that is b0 = πK0 (a w).

3. Electromagnetic Fields in the Slot Frame

In order to complete the problem formulation, it is proper to express the electromagnetic fields in
the slot frame, too. This can be realized by applying the Lorentz transforms to the fields computed in
the previous section in particle frame.

Let us consider at first the z component of the electric field. The contribution provided by the
traveling charge in the frequency domain is well known and is

Ez,q =
jqκζ0

2πβγ
e−jzk/βK0

(
κ
√

r2 + r2
q − 2rrq cos (ϕ)

)
, (18)

where γ = 1/
√

1− β2 is the Lorentz factor, κ = k/ (βγ), and ζ0 =
√

µ0/ε0 is the characteristic
impedance of free space.

The contribution produced by the induced current density on the slot can be obtained with some
manipulations as function of the representation coefficients σn.

In the particle frame, starting from Equation (3) it is possible to obtain

e′z(r
′, ϕ′, z′) =

a
4πε0

∫
S

σ′(ϕ0, z0) (z′ − z0) dϕ0dz0[
r′2 + a2 − 2r′a cos (ϕ′ − ϕ0) + (z′ − z0)

2
]3/2 . (19)

Lorentz transforms are now applied to obtain the electric field in the slot frame. In this specific
case they are

e′z = ez, σ′ = σγ, r′ = r, ϕ′ = ϕ, z′ = γ (z− vt) . (20)

Applying these transforms to Equation (19), it is found that

ez(r, ϕ, z, t) =
aγ

4πε0

∫
S

σ(ϕ0, z0) (γ (z− vt)− z0) dϕ0dz0[
r2 + a2 − 2ra cos (ϕ− ϕ0) + (γ (z− vt)− z0)

2
]3/2 . (21)

By means of Equation (8) and applying a spatial Fourier transform according to Equation (9), it is
found that

ez(r, ϕ, z, t) =
ja γ

2πε0

+ϕa∫
−ϕa

+∞∫
−∞

σ̃(ϕ0, w)wejwγvtK0

(
w
√

r2 + a2 − 2ra cos (ϕ− ϕ0)

)
e−jwγzdϕ0dw. (22)

Finally, by performing a time Fourier transform and then the integral on w, the required field is
finally found as

Ez(r, ϕ, z, ω) =
ja kζ0

β2 e−jzk/β

+ϕa∫
−ϕa

σ̃ (ϕ0, κ)K0

(
κ
√

r2 + a2 − 2ra cos (ϕ− ϕ0)

)
dϕ0. (23)

The last integral can be performed by substituting the representation of the current density (13),
leading to the very simple expression of the z-component of the electric field in the slot frame:
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Ez(r, ϕ, z, ω) = − jqkζ0

2πϕaβ2 e−jzk/β
∞

∑
n=0

σ̃n(κ)bn (r, ϕ, κ), (24)

where coefficients bn (r, ϕ, κ) have the same expression of Equation (29) but are computed as the
generic point (r, ϕ) and for w = κ.

With a similar procedure, all the other fields can be expressed. For instance, it is possible to easily
find that the charge density induced on the slot is

σ (ϕ, z, ω) = − q
aϕaγ

∞

∑
n=0

σn (κ)
Tn (ϕ/ϕa)√
1− (ϕ/ϕa)

2
. (25)

4. Coupling Impedance

In order to compute the coupling impedance, just the longitudinal component of the electric field
produced by the induced currents is required, since the electric field produced by the traveling charge
does not contribute to the coupling impedance.

So, given Equation (24), the per-unit-length longitudinal coupling impedance (1) can be easily
computed in a generic point in the transverse plane as

Z|| (r, ϕ, k) =
jkζ0

2πϕaβ2

∞

∑
n=0

σ̃n(κ)bn (κ, r, ϕ). (26)

It is worth noting that, since the matrix and the known term vector in Equation (15) are purely real,
all the unknown terms σn are real, too. So, the longitudinal coupling impedance is purely imaginary.
This result is expected since there are not diffraction losses.

From Equation (26), by means of the definition (1) it is possible to find the expression of the
transverse coupling impedance, that is

Z⊥ (r, ϕ, k) =
jkζ0

2πϕaβ2

∞

∑
n=0

σ̃n(κ)

{
∂ bn (κ, r, ϕ)

∂r
r̂ +

1
r

∂ bn (κ, r, ϕ)

∂ϕ
ϕ̂

}
. (27)

In order to compute the transverse coupling impedance in a practical way, it is worth recalling
the addition theorem for the Hankel functions

K0 (wR) =
+∞

∑
p=−∞

(−1)p Ip
(
ρ′w
)

Kp (ρw) ejp(ϕ−ϕ′), (28)

being R =
√

ρ′2 + ρ2 − 2ρ′ρ cos (φ′ − φ) and ρ′ ≤ ρ.
With some manipulations, it can be used to analytically compute the integral in Equation (17),

expressing the coefficients bn as series of products of Bessel functions, namely

bm
(
rq, ϕq, w

)
= π



I0
(
rqw

)
K0 (aw) + 2

+∞
∑

p=1
(−1)p Ip

(
rqw

)
Kp (aw) J0 (pϕa) cos

(
pϕq

)
, m = 0,

2jm
+∞
∑

p=1
(−1)p Ip

(
rqw

)
Kp (aw) Jm (pϕa) cos

(
pϕq

)
, m even,

2jm
+∞
∑

p=1
(−1)p Ip

(
rqw

)
Kp (aw) Jm (pϕa) sin

(
pϕq

)
, m odd.

(29)

Then, the derivatives required in Equation (27) can be expressed as
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∂bn

∂r
(r, ϕ, κ) = 2π jn



1
2

I1 (rκ)K0 (aκ) +

+
+∞
∑

p=1
(−1)p

[ p
r

Ip (rκ) + Ip+1 (rκ)
]

Kp (aκ) J0 (pϕa) cos (pϕ), m = 0,

+∞
∑

p=1
(−1)p

[ p
r

Ip (rκ) + Ip+1 (rκ)
]

Kp (aκ) Jn (pϕa) cos (pϕ), n even,

+∞
∑

p=1
(−1)p

[ p
r

Ip (rκ) + Ip+1 (rκ)
]

Kp (aκ) Jn (pϕa) sin (pϕ), n odd.

(30)

and

1
r

∂bn

∂ϕ
(r, ϕ, κ) =

2π jn

r


+∞
∑

p=1
(−1)(p+1) pIp (rκ)Kp (aκ) Jn (pϕa) sin (pϕ), n even,

+∞
∑

p=1
(−1)(p+1) pIp (rκ)Kp (aκ) Jn (pϕa) cos (pϕ), n odd.

(31)

Among all the possible positions in the transverse plane, a relevant one is when the particle is
in the center of the slot, namely r = 0. In fact, in a particle accelerator, the particle is supposed to
travel along the radial axis of the structure, or eventually in a position very close to it. In this case,
as previously stated, all the coefficients bn (κ, 0) vanishes but the one for n = 0.

So the longitudinal coupling impedance Equation (26) assumes the very simple expression

Z|| (r, ϕ, k) =
jkζ0

2πϕaβ2 σ̃0(κ)b0 (κ, 0) . (32)

Then, performing the limits for r going to zero of Equations (30) and (31), the coefficients of
Equation (27) reduces to

∂bn

∂r
(r, ϕ, κ) = −π jnK1 (aκ) Jn (ϕa)

{
cos (ϕ) , n even,
sin (ϕ) , n odd.

(33)

and
1
r

∂bn

∂ϕ
(r, ϕ, κ) = π jnK1 (aκ) Jn (ϕa)

{
sin (ϕ) , n even,
cos (ϕ) , n odd.

(34)

So the transverse coupling impedance (27) can be easily expressed in Cartesian coordinates
and becomes

Z⊥ (r, ϕ, k) = − jkζ0

2ϕaβ2 K1 (a κ)
∞

∑
n=0

jnσ̃n(κ)Jn (ϕa) x̂. (35)

Such a result is coherent with the physics of the problem since, due to symmetry reasons, for such
particle position it is expected that the transverse coupling impedance is along the bisector of the
angular slot.

5. Numerical Results

Some numerical results are presented in this section, in order to discuss the efficiency of the
proposed method. In all the simulations, the shape of the angular slot is a = 1 cm, ϕa = 60◦. A Simpson
rule with an adaptive spacing is adopted to compute the matrix coefficients (16), while a Gaussian
quadrature algorithm is used for the coefficients (17). Since the kernel of the terms in Equation (16)
exhibits a logarithmic singularity and gives rise to computational problems, proper numerical
manipulations have to be introduced to navigate the problem. The adopted solution is discussed
in the Appendix A. At first, the behavior of the coefficients σn is shown for different values of the
frequency and of the distance between the particle and the structure. In Figure 2a the absolute values
of expansion coefficients are shown for different frequencies. The particle is in the center of the axis,
as that is the most realistic case in practice. At lower frequencies, the coefficients’ amplitudes quickly
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decrease, with few of them being enough to properly represent the current density: for aκ = 0.01,
the third coefficient is already four orders of magnitude lower than the first one. At higher frequencies,
the amplitude of the coefficients decreases more slowly, so an higher number of coefficients is required,
as expected.

In Figure 2b the coefficients are shown in case of offset of the particle beam. As expected,
the amplitude of the coefficients increases as the distance of the particle from the structure decreases.
Additionally, while the odd coefficients vanish in case of centred particle, they grow proportionally to
the particle offset.

(a) (b)

Figure 2. Absolute values of the expansion coefficients at βγ = 1 for: (a) different frequencies (rq = 0),
(b) different offsets of the particle (aκ = 1, ϕq = 30◦).

Then, in Figure 3 we show the behavior of the current density induced on the angular slot as in
Equation (25), for different values of the frequency, normalized with respect to the charge. The adopted
coefficients are the same as in Figure 2a. As expected, at low frequencies induced currents have a very
flat behavior, just exhibiting a divergence at the boundaries. As the frequency grows, the behavior
of the current density is more variable even in the middle of the angular slot. The results have been
successfully validated with a finite element tool, providing a very good correspondence in the middle
of the structure and being unable to reproduce the proper divergent boundary behavior, as expected.

Figure 3. Behavior of the current density induced on the structure (rq = 0, βγ = 1).
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Finally, the coupling impedance is discussed. In Figure 4a, the longitudinal coupling impedance
is shown, as a function of the frequency and of the particle speed. As already discussed, in practice it
is a coupling reactance, the real part being null. The shape is slightly influenced by the particle speed.
As expected, the coupling impedance drops to negligable values for high frequencies.

In Figure 4b, the transverse coupling impedance (reactance) is shown, as function of the frequency
and of the particle speed, with similar considerations with respect to the longitudinal impedance.

(a) (b)

Figure 4. Normalized per unit length (a) longitudinal and (b) transverse coupling reactance for different
frequencies (rq = 0).

6. Discussion

A method for the evaluation of the coupling impedance of a particle travelling parallel close to
a perfectly conducting angular slot has been presented. The method is accurate and effective, and can
be easily generalized to similar geometries exhibiting angular variation in cylindrical coordinates.

As stated in the introduction, the angular slot is assumed to be perfectly conducting.
This assumption is widely accepted in the literature on particle accelerator cavity design, for several
reasons. First of all, the coupling impedance mainly takes into account the electromagnetic interaction
between the particle and the surrounding structure, which is often mainly connected to structure shape.
In this sense, the real part of the coupling impedance aims to take into account the diffractive losses.
For this reason, most of the scientific paper consider the structure as perfectly conducting. In most of
the cases where the conductivity of the structure is taken into account, this aspect is usually added
to the perfectly conducting model with perturbative approaches and its effect usually smooths some
rough behaviors but does not produce relevant changes. For this reason, the study of structures with
perfectly conducting walls is often considered a valuable analysis, even if the inclusion of the finite
conductivity is of course an added value. Regarding our specific problem, most of the analysis does not
lose validity, even when adding the finite conductivity of the slot. Since the problem is formulated in
the particle frame at first, the model is stationary regardless of whether the slot’s conductivity is finite
or not. So the first part of the paper is not affected. After applying the Lorentz transforms, once the
current density is found in the strip frame, it is possible to evaluate the resistive power dissipation on
the slot. Finally, in real particle accelerators, despite whether the particle speed is close to the light
speed, the charge is extremely small and the current is not very high, usually hundreds of mA at most.
Therefore, the current densities in practical cases are not huge.

The angular slot and the travelling charge are placed in an open space. In a particle accelerator,
all the components are closed in a metallic pipe, which is necessary to maintain a vacuum. With respect
to the proposed formulation, it is possible to add the presence of the pipe by partially changing the
kernel of Equations (16) and (17). However, such a change just introduces some poles in the kernel,
connected to the pipe resonances, independent of the asymmetry of the angular slot. Since the aim of
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the paper is to propose a method to deal with angularly asymmetric structures, just focussing on that
and not mixing different phenomena, the external pipe has been neglected.

The proposed method has proven to be accurate and the series is quickly convergent. It is
suitable to analyze structures with angular asymmetry. The obtained results can be used to
benchmark numerical solutions or as reference geometry for more complex structures typical of
particle accelerators.

Author Contributions: Conceptualization, D.A. and L.V.; methodology, D.A. and L.V.; software, D.A.; validation,
D.A. and L.V.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Computation of the Linear System

For low values of the argument, the kernel of the integral of Equation (16) exhibits a logarithmic
singularity, namely

K0 (z) ∼= − log (z/2)− γ0, (A1)

with γ0 being the Eulero–Mascheroni constant. For its efficient numerical computation, it is worth
adopting the variational form

Anm = Alog
nm + A0

nm, (A2)

where

A0
nm =

π∫
0

π∫
0

[
K0

(
2a w

∣∣∣sin
( ϕa

2
(
cos ψ0 − cos ψ′

))∣∣∣)+
+ log

(
a w

∣∣∣sin
( ϕa

2
(
cos ψ0 − cos ψ′

))∣∣∣)+ γ0

]
cos (mψ0) cos

(
nψ′
)

dψ0dψ′. (A3)

The new integral in Equation (A3) has no singularities and can be numerically computed with
minimal effort. Regarding the logarithmic, by means of the relevant expansion

log |sin (x/2)| = −
∞

∑
p=1

cos px
p
− log 2 , (A4)

with some manipulations it can be easily found that

Alog
nm = −

π∫
0

π∫
0

[
log
(

a w
∣∣∣sin

( ϕa

2
(
cos ψ0 − cos ψ′

))∣∣∣)+ γ0

]
cos (mψ0) cos

(
nψ′
)

dψ0dψ′ =

=



−π2[ log (a w/2) + γ0
]
, m = n = 0

π2
∞
∑

p=1

Jm (p/ϕa) Jn (p/ϕa)

p
, m + n odd,

0, m + n even.

(A5)
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