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Abstract: To meet the increasing demand of covert underwater acoustic communication, biologically
inspired mimicry communication watermarking the data in symmetrical humpback whale song is
presented. Mimicry is an entirely different approach from traditional covert communication where
data are transmitted by spreading the waveform at a low signal to noise ratio. In this innovative
technique, the carrier signal is imitated symmetrical to the ocean background noise, which can be
shipping noise, anthropological noise, or the vocals emitted by sea animals. The eavesdropper can
detect the communication signal, but will assume it to be real ocean noise due to its symmetry.
It excludes the mimicked signal from recognition, which makes the communication covert. In
this research, we watermarked the covert information in humpback whale song using discrete
cosine transform in the frequency domain. The mimicked symmetrical signal provided excellent
imperceptibility with the real song and an outstanding camouflage effect was calculated. We validated
the novel concept by simulation and underwater tank experiment. 10−4 BER was achieved in
the underwater tank experiment, which was diminished to zero error by using matching pursuit
estimation and virtual time reversal equalization. This novel bionic covert communication technique
is feasible for clandestine underwater acoustic communication in the presence of an eavesdropper
with better imperceptibility.

Keywords: underwater acoustic communication; bionic; covert communication; watermarking; DCT;
humpback whale; mimicry

1. Introduction

Transferring information furtively in the underwater acoustic channel is one of the most vital
requirements for military, oceanography, defense, and naval operations [1,2]. Transmitting data
covertly in the underwater medium is termed as covert underwater acoustic communication (CUAC).
The information needs to be kept secret from any eavesdroppers [3], but can be decoded by the intended
receiver. A variety of ways have been investigated for CUAC, which includes low SNR communication,
encryption, and disguising as sea marine mammals [4,5].

Covert communication can be divided as low probability of detection (LPD) and low probability
of interception (LPI) [6]. In LPD communication, the enemy does not know of the existence of the
communication and has less chances to perceive the signal. Usually, this is achieved by reducing the

Symmetry 2019, 11, 752; doi:10.3390/sym11060752 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-8221-2389
https://orcid.org/0000-0002-7084-591X
http://dx.doi.org/10.3390/sym11060752
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/6/752?type=check_update&version=2


Symmetry 2019, 11, 752 2 of 15

SNR below the noise level. LPI constraint communication allows the communication signal to be
sensed by the eavesdropper, who has negligible chances to extract the information from the signal. The
information is encoded or watermarked in the communication signal. Our research focused on the LPI
constraint communication where the data are watermarked in natural sea sounds. The eavesdropper
is tricked as it recognizes the signal as the real sea sound due to its signature. This is termed as low
probability of recognition (LPR) constraint communication.

Traditionally, during the last decade, covert communication in the underwater acoustic channel
was achieved by shielding the communication signals in background noise by reducing the SNR and
modulating the waveform by different modulation methods [7–9]. These techniques have excellent LPD
capability, however, when the eavesdropper approaches the transmitter, it can detect the communication
signal through an energy detector [10,11] as the SNR is increased by limiting distance. Therefore, the
communication cannot be made truly covert for all distances between the transmitter and receiver.
Other major drawbacks of this technique include a shorter transmission distance and an extremely low
throughput due to low SNR.

To enhance the security and effectiveness of CUAC, biologically inspired communication
mimicking natural sea sounds was introduced [5,12,13]. The communication signal is structured
analogous to real ocean noise, which can include jingles produced by ships, cetaceans, wind, tides, rain
drops, etc. The mimicked waveform can be sensed by an adversary, but it will recognize the signal as a
natural sea sound due to its signature. The eavesdropper is tricked and assumes the communication
signal to be ocean noise, which means that the communication is made truly covert. Therefore, this
technique provides perfect clandestine communication across all communication ranges without
reducing the SNR. Thus, CUAC is possible in the presence of eavesdroppers and gives excellent LPR
characteristics [4,14].

Sea creatures emit a variety of sounds in a frequency range from 15 Hz–100 kHz. The
communication of cetaceans is based on acoustic waves due to less visibility in oceans under ten meters.
They produce vocal sounds to identify prey and predators. They also emit sounds for echo localization
and social interaction [5]. Cetaceans can be divided into two main groups, namely Mysticeti and
Odontoceti. Mysticeti emit vocally at a low frequency with a high source level. Odontoceti emit
vocally at a high frequency with a lower source level [15]. In this research, we focused on humpback
whale vocals that are in the Mysticeti family. Its sound can be utilized for long range clandestine
communication due to its low frequency and high source level. Biologically inspired CUAC can be
established by taking advantage of natural cetacean sounds. The information is watermarked in the
cetacean vocal by slightly varying a parameter within its operational range.

The first covert experiment using mimicry communication was performed by H.S. Dol et al. and
mimicked dolphin sounds [13]. They used whistles and clicks as synchronization and information
signals, respectively. Liu et al. also used the clicks of dolphin for clandestine communication [12] where
secret information was encoded between the time intervals of the clicks. The data rate of 37 bps was
achieved, which was later improved to 69 bps by using the M-ary technique [16]. In [17], dolphin clicks
were mimicked to establish furtive communication using time hopping–pulse position modulation
(TH–PPM). A. ElMoslimany et al. conducted successful tests for covert communication using the
whistles of the dolphin Lagenorhychus obliquidens and whale Globicephala melas [18]. The minimum
shift keying (MSK) modulation technique also uses dolphin whistles for clandestine communication.
A 10 bps data rate was achieved with a BER of 10−3 [19]. Yin Jing-Wei et al. used dolphin whistles for
stealthy covert communication [20,21] where the covert information was watermarked in the interval
of whistles.

In this research, we used humpback whale vocals for covert communication due to their natural
characteristics. Humpback whales emit a long duration vocal termed as song. The bandwidth of
the song lies from 50 to 4000 Hz [22]. We opted for this natural vocal as a carrier for this research
due to its frequency and duration [23]. Low frequency allows for a larger transmission distance,
which benefits the accomplishment of furtive communication in a bigger region. The long duration
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of humpback whale song adds a surplus advantage to performing a surreptitious operation for an
elongated period. The secret information was watermarked in the natural song in the frequency
domain using discrete cosine transform (DCT). The information is spread over the bionic signal and
gives excellent imperceptibility. We verified our novel concept in an underwater tank and conducted
simulations for long range communication. The novel concept can be applied by a variety of acoustic
modems [24] whose frequency lies in the range of humpback whale song.

The rest of this paper is structured as follows: Section 2 addresses the acoustic properties of
humpback whales. Section 3 describes the synchronization and watermarking technique using DCT.
Imperceptibility and the camouflage effect is estimated in Section 4. Section 5 validates our novel
concept through the experiments. Finally, Section 6 concludes the paper and highlights the future
research direction.

2. Humpback Whale Song

This section describes the acoustic properties of humpback whale song. The humpback whale
Megaptera novaeangliae is one the largest sea mammals in the ocean. Male whales are famed for
producing loud songs with time durations lasting from several minutes to hours [25,26]. If there was to
be a song contest among cetaceans, humpbacks would no doubt emerge victorious [27]. These songs
have been and are still being studied extensively, mostly to understand why humpback whales sing.
Generally, the male humpback sings the song when swimming alone in the winter breeding season.
Smith et al. claims that humpback whales produce songs for intersexual interactions [28], however, the
exact purpose of emitting the song has not been clearly defined yet.

Humpback whales may sing the song continuously for hours and the sound is typically composed
of fewer than ten themes that are repeated in a particular order during the song. A theme is made up
of phrases or sequences lasting about fifteen seconds. Its main energy lies in the bandwidth between
50 Hz–4000 Hz. The source level of the song is measured around 175–188 dB re 1µPa @ lm [29]. We
opted to use this unique complex song as a carrier to establish a long transmission distance due to
its low frequency and high source level features. The long singing duration of the humpback whale
benefits covert operations being conducted for elongated periods. Figures 1 and 2 show a phrase of
humpback whale song depicted from the oceans acoustic library [30].
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Figure 1. Humpback whale song in time domain.

It can be seen in Figure 1 that humpback whale song has several high amplitude time patches.
The main energy duration of song is extracted and the data are watermarked using DCT in the peak
positions in the transform domain through a unique way known to the intended receiver. The imitated
signal along with the watermarked data looks identical to the real humpback whale sound, thus
producing a perfect covert signal.
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Figure 2. Time frequency representation of humpback whale song.

The frequency spectrum of a real humpback whale song is shown in Figure 2. The song has a
wide range of frequencies; however, the main energy lies in the low frequency region around 150 Hz.
Due to this feature, humpback whale song can be heard from several kilometers in the ocean. We took
advantage of this feature to realize covert communication over long distances.

3. Watermarking

Watermarking is a process of embedding data in the digital signal [31,32]. It is used to verify the
credibility of the content, copyright protection, or covert communication. In this section, the concept
of watermarking is discussed, and introduces the novel concept of DCT watermarking in humpback
whale song.

Generally, watermarking can be categorized by two broad categories termed as visible and
invisible watermarking. Visible data embedded as watermarks is termed as visible watermarking and
is usually used for copyright protection. For invisible watermarks, the embedded data are invisible
and inaudible in the case of audio. These is used for covert communication as the information is
hidden inside the carrier. The carrier signal is visible to the users, however, the data are concealed in
such a way that their existence are unknown to intruders. It is decoded by a unique method known to
the receiver. Several techniques of digital audio watermarking have been developed in the time and
frequency domain [33]. Transform domain audio watermarking is more robust than the time domain
due to the signal properties and auditory characteristics. The DCT based audio watermarking scheme
is the most robust, imperceptive, and has high capacity [34–36].

3.1. Frame Structure

For biologically inspired covert communication, the complete signal should be identical to a
natural sea sound including the synchronization signal. The frame structure for the novel concept is
shown in Figure 3.
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The synchronization header consists of a humpback whale song segment with a checksum of bits.
We added a checksum as it will verify the mimicked signal for the receiver. As there are plenty of
humpback whales in the oceans and they emit sounds, the purpose of the checksum is to distinguish
between the real humpback whale song and the mimicked signal for the receiver. The communication
frame consists of the DCT watermarked mimicked signal.

3.2. Modulation

DCT audio watermarking is used to modulate covert information in the frequency domain in
humpback whale song. DCT is similar to DFT, however, DCT has several benefits. It has a lower
computational overhead and gives high capacity in low frequency components [34]. The embedded
watermark is unnoticeable to human ears and vigorous against signal attacks. Mathematically, DCT
can be written as [37]

X(k) = c(k)
N−1∑
i=0

f (x) cos
(
π(2i + 1)k

2N

)
(1)

where, c(k) =


√

1
N , k = 0√
2
N , k , 0

and k = 0, 1, 2, 3, . . . N − 1.

The modulation process of watermarking secret information in bionic sound is presented in
Figure 4. The high energy duration of a humpback whale’s song is extracted and transformed to the
frequency domain using DCT. Similarly, the information to be watermarked is also converted to the
transform domain. The data are watermarked in the unique positions of bionic sound. These positions
hold significant importance and will be needed for the demodulation of data at the receiver. These
positions act as secret keys for covert communication. If the positions are known to the intruder, they
might be able to decode the message if the eavesdropper recognizes it as a mimicked signal. However,
the modulated signal looks identical to the humpback whale song and cannot be identified by the
human auditory system (HAS) or through computer aided programs. The similarity between the real
and mimicked signal will be discussed in detail in the next section.
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Figure 4. Modulation of data in bionic sound.

The bionic signal and watermark are summed up in the frequency domain by an amplification
factor ‘A’. ‘A’ plays a significant role; as ‘A’ is increased, the transmission distance is increased, thus
degrading its imperceptibility with the original sound. The value of ‘A’ is adjusted considering the
actual practical scenario. The mimicked signal with the watermarked covert data is converted back in
the time domain and is transmitted in the underwater acoustic channel.

3.3. Demodulation

The watermarked bionic signal akin to the humpback whale song is recovered at the receiver
using an energy detector. The demodulation procedure is demonstrated in Figure 5.



Symmetry 2019, 11, 752 6 of 15

Symmetry 2018, 10, x FOR PEER REVIEW  5 of 16 

 

DCT audio watermarking is used to modulate covert information in the frequency domain in 

humpback whale song. DCT is similar to DFT, however, DCT has several benefits. It has a lower 

computational overhead and gives high capacity in low frequency components [34]. The embedded 

watermark is unnoticeable to human ears and vigorous against signal attacks. Mathematically, DCT 

can be written as [37] 

( ) ( ) ( )
( )1

0

2 1
cos

2

N

i

i k
X k c k f x

N

−

=

+ 
=  

 
   (1) 

              where, ( )

1
,k 0

2
,k 0

N
c k

N


=


= 






  and k = 0,1,2,3,…N-1. 

The modulation process of watermarking secret information in bionic sound is presented in 

Figure 4. The high energy duration of a humpback whale’s song is extracted and transformed to the 

frequency domain using DCT. Similarly, the information to be watermarked is also converted to the 

transform domain. The data are watermarked in the unique positions of bionic sound. These 

positions hold significant importance and will be needed for the demodulation of data at the receiver. 

These positions act as secret keys for covert communication. If the positions are known to the 

intruder, they might be able to decode the message if the eavesdropper recognizes it as a mimicked 

signal. However, the modulated signal looks identical to the humpback whale song and cannot be 

identified by the human auditory system (HAS) or through computer aided programs. The similarity 

between the real and mimicked signal will be discussed in detail in the next section. 

 

 

Figure 4. Modulation of data in bionic sound. 

The bionic signal and watermark are summed up in the frequency domain by an amplification 

factor ‘A’. ‘A’ plays a significant role; as ‘A’ is increased, the transmission distance is increased, thus 

degrading its imperceptibility with the original sound. The value of ‘A’ is adjusted considering the 

actual practical scenario. The mimicked signal with the watermarked covert data is converted back 

in the time domain and is transmitted in the underwater acoustic channel. 

3.3. Demodulation 

The watermarked bionic signal akin to the humpback whale song is recovered at the receiver 

using an energy detector. The demodulation procedure is demonstrated in Figure 5. 

 

 

Bionic Sound

Selection of 

Watermark 

poistions

DCT

Watermark 

Bits
AmplificationDCT

IDCT
Watermarked 

Signal+

Synchro-

nization

Extraction of 

watermark
DCT

Position of 

watermarks 

Error 

Correction
IDCT

Watermarked 

data

Figure 5. Demodulation of the mimicked signal.

The first step in extracting the watermark signal is synchronization. The synchronization header
consisting of the song segment known to the receiver is correlated to identify it as the mimicked signal.
It is further verified by the check sum of bits. The watermarked communication signal is extracted and
converted to the transform domain using DCT. As discussed above, the positions of the watermarked
bits act as secret keys to extract the information. These positions are known to the receiver or can be
transmitted in a coded format. We assumed that these positions were known to the receiver for the
sake of simplicity. The covert information is extracted at these positions by equating the amplification
‘A’, as per the modulation process. The data are recovered in the transform domain and converted to
the time domain by taking the inverse DCT (IDCT). Mathematically, the IDCT can be equated as [38]

f (x) =
N−1∑
k=0

c(k)X(k) cos
(
π(2i + 1)k

2N

)
(2)

where, c(k) =


√

1
N , k = 0√
2
N , k , 0

and i = 0, 1, 2, 3, . . . N − 1.

Since the signal is degraded severely in the underwater acoustic channel due to noise, multipath
arrivals, and absorption, the data are further processed through the equalization and error correction
process. We validated our concept through simulation and an underwater tank test, which is elaborated
in detail in Section 5.

3.4. Channel Estimation and Equalization

The underwater channel degrades the signal adversely due to multipath arrivals, the Doppler
shift, absorption, and attenuation losses [39]. To overcome these effects, the channel is estimated and
the errors are minimized through channel equalization. In this paper, we estimated the channel by
the matching pursuit (MP) technique due to its robustness in changing the SNR and computational
efficiency [40]. It can sequentially identify and estimate the channel tap coefficients. Let us assume that
the multipath channel has additive white Gaussian noise (AWGN) with a variance σ2. The received
signal can be written as [41]

y(n) =
L−1∑
l=0

x(n− l)∗h(l) + v(n) (3)

where n = 0, 1, 2 . . . , N − 1, x(n) is the transmitted signal, h(n) is the channel impulse response and
v(n) is the AWGN. Equation can be expanded as

y(0)
y(1)

...
y(N − 1)

︸          ︷︷          ︸
Y

=


x(0) 0 · · · 0
x(1) x(0) · · · 0

...
...

. . .
...

x(N − 1) · · · · · · x(N − l)

︸                                        ︷︷                                        ︸
X

X


h(0)
h(1)

...
h(N − 1)

︸         ︷︷         ︸
h

+ v(n) (4)
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As almost all the components of channel tap are near to zero, the data is formed by accumulating
the columns of X. The residual vector ri−1 is the subtraction of vector Y with X in all i − 1 repetitions,
with r0 = Y. At ith cycle, the column of X gives residual vector ri−1 has the maximum projection
denoted as xi which can be equated as [12]

xi = arg max
j<Ii−1

|Xh
j ri−1|

2

‖X j‖
2 (5)

where Ii , {x1, x2, x3, . . . , xi−1} is the index set of all previously selected columns. ĥi, member of h is
calculated as

ĥi =
Xh

Si
ri−1

‖XSi‖
2 (6)

The residual vector is computed as
ri = ri−1 − ĥiXSi (7)

The aim of the MP algorithm is to estimate the effect of the multipath response in the underwater
acoustic channel. The channel multipath response is required for equalization, which adds the
distributed energy of the multipath to reduce errors. We equalized the errors using the virtual time
reversal method (VTRM). The framework of the VTRM is shown in Figure 6. The communication
system is mathematically defined as

r(t) = s(t) ⊗ h(t) + n(t) (8)

where s(t), r(t), h(t) and n(t) denotes the transmitted signal, received signal, impulse response and
noise respectively. ⊗ represents the convolution operator. The estimated channel h′(t) is reversed in
time domain h′(−t) and convolved with r(t) to give the final virtual received signal.Symmetry 2018, 10, x FOR PEER REVIEW  8 of 16 
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Therefore;
sr(t) = r(t) ⊗ h′(−t) (9)

sr(t) = [s(t) ⊗ h(t) + n(t)] ⊗ h′(−t) (10)

sr(t) = s(t) ⊗ [h(t) ⊗ h′(−t)] + [n(t) ⊗ h′(−t)] (11)

Here, ĥ(t) = h(t) ⊗ h′(−t) represents the VTRM channel. When h′(t) approaches to the real
channel h(t), the multipath signals are overlapped which makes the signal energy vigorous. The
central peak amplitude of ĥ(t) is higher than the side lobes verifying the addition of signals. It also
restrains inter symbol interference caused by multi path arrivals.

4. Imperceptibility and Camouflage Effect

The key aspect behind biologically inspired covert communication is the resemblance of man-made
signals with the real natural vocals. In this section, the imperceptibility of the mimicked symmetrical
signal and real ocean noise is calculated. The mimicked signal containing the watermark should be akin
to the actual cetacean voice. If the intruder senses the mimicked communication signal, they should
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identify it as a natural sea noise due to its resemblance in structure, time duration, intensity, frequency,
and modulation. The geographical location of a particular cetacean should also be considered and
covert experiments should be performed in the same particular region where the specific cetacean exists.

There are several ways to check the imperceptibility and camouflage effect for audio signals.
Usually, imperceptibility is measured through the human auditory system (HAS), time correlation,
and comparing the frequency spectrum [33,36]. In this paper, we used time correlation to measure the
imperceptibility between the real humpback whale song and the watermarked signal. Correlation is a
matching process that shows how close two signal matches are to each other. The higher correlation
value signifies a higher imperceptibility. Mathematically, correlation can be given as [42]

Rxy(τ) =

∫ +∞

−∞

x(t)y(t + τ)dt f or−∞ < τ < +∞ (12)

where Rxy(τ) is the correlation for all values of τ. x(t) and y(t) are the real humpback whale song
and the mimicked watermark song, respectively. The signals are correlated in the time domain. The
correlation peak and their sub band identify the similarity between the two signals. The peak value is
divided by the summation of the sub bands. A larger value indicates a higher imperceptibility.

We compared the resemblance of the real and mimicked signal by varying the amplification factor
‘A’. ‘A’ holds a significant importance for this biologically inspired covert communication because
when this factor is increased, it increases the transmission distance in the underwater acoustic channel
and degrades the similarity with the real humpback song. In Figure 7, the correlation peaks of the
mimicked signal and the original humpback whale song were plotted with various values of ‘A’. The
correlation peak with less side lobes showed that the signal was more identical. As the side lobes
increased, the resemblance with the real sound decreased. Figure 7 proves that the imperceptibility
was degraded by increasing the value of the amplification factor ‘A’.
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The value of ‘A’ can be adjusted with the real application scenario. For short distance
communication, a lower value of ‘A’ should be selected to gain the benefit of high imperceptibility.
For long distance communication, ‘A’ needs to be increased, but should not be increased above 25 as
the imperceptibility severely degrades beyond this value, as shown in Figure 7d–f.

5. Experimental Validation

To verify the feasibility of the innovative idea, we conducted experiments in an underwater tank
and simulations in MATLAB. For long range covert communication, we proved our concept through
simulations using the bellhop acoustic model and experiments in an underwater tank provided the
results for short range communication.

5.1. Simulation

A numerical simulation for long range covert communication was conducted in MATLAB. The
sound speed profile in shown in Figure 8. First, we conducted the simulation in AWGN by varying
amplification factor ‘A’. The BER curve at the AWGN channel is presented in Figure 9 and shows that
BER decreased with the increase of SNR. It can be clearly seen that above −5 dB SNR, the BER was less
than 10−2. By increasing factor ‘A’, the BER decreased effectively, however, it disturbed the similarity
with the real humpback whale song as discussed in the previous section. The value of ‘A’ should be
chosen through a tradeoff with BER and imperceptibility.
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The simulation parameters for the multipath channel using the bellhop ray tracing model are
listed in Table 1. We conducted simulations at various distances to obtain the maximum transmission
distance with the lowest error. The BER curve for the multipath channel is displayed in Figure 10.
It can be clearly seen that as the value of ‘A’ increased, the BER decreased. It can be concluded that by
keeping the amplification factor between 15–25, we could attain covert communication up to 4 km with
an acceptable BER of 10−2. For short distance communication of around 2 km, the BER was extremely
lower, regardless of the amplification factor ‘A’. However, for long distance communication of 5–6 km,
‘A’ should be considered with a tradeoff of the BER and imperceptibility.
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Table 1. Technical parameters for the simulation.

S. No. Parameters Value

1 Sea Depth 3000 m

2 Depth of Transmitter 100 m

3 Depth of Receiver 150 m

4 Transmission Distance 1–6 km

5 Operating Frequency 48,000 Hz

6 Transmitter/Receiver quantity 01 each

7 Beam Angle −30◦ to 30◦
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5.2. Underwater Tank Experiment

To validate our innovative concept of DCT watermarking covert communication in the underwater
multipath channel, pool experiments were conducted at Harbin Engineering University on 18 January,
2019. The length and breadth of the underwater tank was 45 meters and 6 meters, respectively, with
the depth of 5 meters uniformly. The transmitter and receiver were placed at the depths of 2 meters
and 2.5 meters, respectively. The distance between the transducers was 8.35 meters. A schematic and
picture of the experimental setup is shown in Figure 11.
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The transducers were connected through a computer via a power amplifier, as shown in Figure 11b.
The mimicked DCT watermarked acoustic signal was transmitted in the underwater tank through
the computer software using a transducer. The communication signal created multiple arrivals at the
receiver due to rebounds from the walls, top, and bottom surface of the underwater tank. Each path
created a delayed arrival with a lower intensity. The intensity of the signal was reduced due to the
absorption and attenuation of the signal. The communication signal was degraded rigorously due to
severe multipath effects.

To overcome the effects of multipath effects, the MP algorithm and VTRM technique were used
for channel estimation and equalization, respectively. The estimated channel of the underwater tank is
shown in Figure 12. From the figure, we can see that there were plenty of multipath arrivals in the
tank. Each energy was an arrival of the signal and due to the echoes from the borders and surface of
the underwater tank. The high energy components were accumulated, while the low energy delayed
arrivals were ignored for the sake of simplicity. The errors were equalized using the VTRM equalization
technique as discussed in Section 3.4.
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Figure 13 displays the BER curve of the DCT watermarked mimicked signal in the underwater
tank experiment without channel estimation and equalization. A 10−4 BER was achieved at 10 dB SNR
when the amplification factor ‘A’ = 25. At the same SNR, considering an ‘A’ between 15–20, 10−2 BER
was attained while the BER reached 10−1 by further decreasing the value of ‘A’. The BER was increased
drastically by reducing the value of ‘A’. The errors were minimized by passing the signal from the
estimated channel impulse response.
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Figure 14 shows the BER curve of the DCT watermarked mimicked signal in the underwater tank
experiment with channel estimation and equalization. It can clearly be seen from the figure that the BER
was decreased by channel equalization. By comparing Figures 13 and 14, there was an evident −5 dB
shift of the SNR by doing channel estimation, which means that this technique effectively reduced the
errors. An almost negligible error was achieved above a 0 dB SNR after channel equalization, which
proves that this innovative concept is feasible for covert underwater communication and is capable of
efficiently transmitting the covert data at sea.
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6. Conclusions

An innovative idea of biologically inspired covert under water acoustic communication mimicking
humpback whale song was presented in the article. The data were watermarked in the complex
song using DCT. The mimicked signal looked symmetrical to the humpback whale song, which
was verified by calculating the imperceptibility. The communication signal could be detected by an
eavesdropper but was excluded from the process of recognition due to its similarity with the real
humpback whale song. This gives perfect LPR constrained communication. The imitated signal is
perceived by the intended receiver through a unique bionic synchronization signal with a checksum
of bits. The innovative concept was verified through simulation and underwater tank experiments.
Less than 10−2 BER was achieved with high imperceptibility at the transmission distance of 4 km. The
communication distance could be further increased by degrading the imperceptibility. The underwater
pool experiment was conducted to verify the effect of multipath induced in the mimicked signal.
A 10−4 BER was achieved in the underwater tank experiment using the MP estimation and VTRM
equalization technique. Our novel bionic covert communication technique was verified to be ideal for
perfect furtive communication in the presence of an eavesdropper with better imperceptibility.

Future work includes a demonstration through lake and sea trails. The effect of the mimicked
signal to marine life needs to be researched. The reaction of cetaceans or any possible harmful effects
to the life of aquatic fauna needs to be addressed. The novel DCT watermarking techniques needs to
be verified by other natural sea sounds, which will increase the locations for covert operations.
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