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Abstract: In this paper, our goal is to improve the recognition accuracy of battlefield target aggregation
behavior while maintaining the low computational cost of spatio-temporal depth neural networks.
To this end, we propose a novel 3D-CNN (3D Convolutional Neural Networks) model, which
extends the idea of multi-scale feature fusion to the spatio-temporal domain, and enhances the
feature extraction ability of the network by combining feature maps of different convolutional
layers. In order to reduce the computational complexity of the network, we further improved the
multi-fiber network, and finally established an architecture—3D convolution Two-Stream model
based on multi-scale feature fusion. Extensive experimental results on the simulation data show
that our network significantly boosts the efficiency of existing convolutional neural networks in
the aggregation behavior recognition, achieving the most advanced performance on the dataset
constructed in this paper.

Keywords: machine vision; aggregation behavior; convolutional neural network; video;
action recognition

1. Introduction

Battlefield target aggregation behavior is a common group behavior in the joint operations
environment, which is usually a precursor to important operational events such as force adjustment,
battle assembly, and sudden attack. To grasp the battlefield initiative, it is important to identify the
aggregation behavior of enemy targets. The intelligence video records the different behaviors of the
battlefield targets, and effectively identifying the aggregate behavior in the video is the main purpose
of this paper.

For the time being, the identification of battlefield aggregation behavior requires a manual
interpretation, which is inefficient in battlefield environments. It is an inevi trend for intelligent
battlefield development to introduce intelligent recognition algorithms to identify the aggregation
behavior. For behavior recognition, intelligent algorithms based on deep learning are the research
hotspots. In particular, 3D Convolutional Neural Networks (3D-CNN), which show significant results
in behavior recognition, provide a technical basis for battlefield target aggregation behavior recognition.

Unfortunately, the traditional 3D-CNN model has certain drawbacks for the battlefield target
aggregation behavior: (1) Compared with the human behavior in the video, the proportion of the target
is uncertain in the intelligence video. The existing 3D-CNN network lacks the interaction of multi-scale
features. The loss of spatial information in the down-sampling process has a great influence on the
detection rate of aggregated behavior; (2) The duration of the aggregation behavior is uncertain, and
the down-sampling in the temporal dimension will cause the loss of timing information, which will
indirectly affect the final recognition accuracy; (3) Traditional 3D-CNN are computationally expensive.
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Therefore, the network structure is difficult to flexibly expand, and it is also difficult to cope with
large-scale identification tasks.

Our article does not consider the disturbances of complex environmental factors (such as complex
weather, etc.), and only focuses on solving aggregation behavior recognition problems with deep
learning networks.

We have improved the traditional 3D-CNN. On the one hand, we construct a multi-scale feature
fusion 3D-CNN model, which combines multi-scale spatio-temporal data of different convolutional
layers to promote the interaction between multi-scale information. This model effectively reduces the
information loss caused by the network down-sampling. The model proposed in this paper effectively
solves the problem that the size of the battlefield target is different and that the aggregation behavior
duration is uncertain, which effectively improves the final recognition accuracy. On the other hand,
this paper uses the improved spatio-temporal multi-fiber network as the backbone network, which
slices a complex neural network into an ensemble of lightweight networks or fibers. Our network
effectively overcomes the huge computational problem of 3D-CNN. At the same time, the depth of the
network is deepened, and the nonlinear expression ability of the neural network is increased.

The rest of the paper is organized as follows. In Section 2, related work is discussed. We present
our method in Section 3 and the dataset in Section 4. We report the experimental results in Section 5.
The conclusion is in Section 6.

2. Related Work

At present, human behavior recognition is a research hotspot in the field of intelligent video
analysis. Battlefield target aggregation behavior recognition and human behavior recognition are
in the same field of behavior recognition but are not identical. The main reason for this is that
single-frame information, which contributes a lot to the human behavior recognition, contributes less to
the aggregation behavior recognition. Therefore, multi-frame information must be processed in order
to enhance the recognition effect of aggregation behavior. In recent years, researchers have proposed a
number of methods for video behavior recognition, which are mainly divided into traditional feature
extraction methods [1–3] and the method based on deep learning [4,5].

The early traditional methods based themselves on the description of spatio-temporal interest
points to extract the features in the video. Wang proposed a dense trajectory method [6], which extracts
local features along trajectories guided by an optical flow. This method achieves a state-of-the-art
level in the traditional method. However, the extraction process of the traditional underlying features
is independent of the specific tasks, and the wrong feature selection will bring great difficulties to
the identification. In addition, due to the cumbersome feature calculation, the traditional method is
gradually replaced by deep learning.

With the wide application of deep learning in the image field, the video behavior recognition
method based on deep learning has gradually become a new hotspot in the field of behavior recognition.
The two-stream architecture [7] uses RGB (Red-Green-Blue) frames and optical flows between adjacent
frames as two separate inputs of the network, and fuses their output classification scores as the final
prediction. Wang [8] constructs a long-term domain structure based on a two-stream architecture.
First, multiple video segments are extracted by sparse sampling, and then a two-stream convolution
network is established on each segment. Finally, the output results of all the networks are combined
for the prediction classification. Many works follow a two-stream architecture and extend this
architecture [9–11]. RNN (Recursive Neural Network) is excellent in capturing the timing information.
Inspired by it, Donahue [12] combines CNN (Convolutional Neural Networks) and RNN to propose
a long-term recursive convolutional neural network. More recently, with the increasing computing
capability of modern GPUs, 3D-CNN has drawn more and more attention. Varol [13] designed a
long-term convolutional network by extending the length of input of the 3D convolutional network,
and studied the influence of different inputs on the recognition results. Carreira [14] introduced
the two-stream idea into 3D-CNN, innovatively used ImageNet to pre-train 2D-CNN, and then
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replicated the parameters of the 2D convolution kernel in the time dimension to form a 3D convolution
kernel. The recognition accuracy was significantly improved. Although 3D-CNN can learn the
motion characteristics from the original frame end-to-end, the network parameters and calculation
amount are huge, so the experimental training and testing need to occupy huge resources. Qiu [15]
proposed Pseudo-3D (P3D), which decomposes a 3D convolution of 3 × 3 × 3 into a 2D convolution
of 1 × 3 × 3, followed by a 1D convolution of 3 × 1 × 1. In addition, S3D [16] and R(2+1)D [17] also
applied a similar architecture. Multi-fiber networks [18], which use multi-frame RGB as the input,
greatly reduce the computational complexity on the basis of ensuring a recognition accuracy. FPN [19]
combines down-top, top-down and lateral connections with using high and low semantic features,
which improves the recognition accuracy.

Traditional 3D networks lack the use of multi-scale information, which affects the recognition
accuracy of the network. The traditional two-stream model uses 2D-CNN to process images, which is
better than the single-stream model but lacks the ability to extract temporal information. In view of
the above problems, this paper combines the advantages of 3D-CNN and the two-stream network
structure to construct a 3D convolution. The two-stream model is based on multi-scale feature fusion.
The experimental results show that the model has a high efficiency and accuracy.

3. The Proposed Method

Battlefield target aggregation is a kind of behavior which can be regarded as the process of the
combat units gathering from the starting position to the target, with obvious temporal and spatial
characteristics. In this paper, we have proposed a new ConvNet called 3D convolution Two-Stream
model based on multi-scale feature fusion. As shown in Figure 1, the 3D ConvNets based on multi-scale
feature fusion (M3D) extracts the features of RGB sequences and optical flow sequences respectively,
and obtains recognition results by averaging the output of the two networks.
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the spatio-temporal information of multi-frame RGB images.  

The input of the optical flow network is a sequence of optical flow images that contains motion 
information. Although RGB images can provide rich exterior information, they are likely to cause 
background interference. Optical flow images can shield background interference, which helps the 
network understand the motion information of the target. Therefore, the optical flow network can 
effectively pay attention to the motion information in the video. The backbone network of this paper 
adopts a modular design, and the main body is composed of multi-fiber modules. 

3.1. Multi-Fiber Unit (MF Unit) 

Figure 1. Two-Stream M3D (3D convolution Two-Stream model based on multi-scale feature fusion).
M3D (3D ConvNets based on multi-scale feature fusion) extracts the features of RGB (Red-Green-Blue)
sequences and optical flow sequences respectively, and gets the recognition results by averaging the
output of the two networks.

The RGB network is a deep learning network that performs behavior recognition by extracting
the spatio-temporal information of multi-frame RGB images.

The input of the optical flow network is a sequence of optical flow images that contains motion
information. Although RGB images can provide rich exterior information, they are likely to cause
background interference. Optical flow images can shield background interference, which helps the
network understand the motion information of the target. Therefore, the optical flow network can
effectively pay attention to the motion information in the video. The backbone network of this paper
adopts a modular design, and the main body is composed of multi-fiber modules.
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3.1. Multi-Fiber Unit (MF Unit)

In order to reduce the computational cost and increase the depth of the network, we use the
improved spatio-temporal multi-fiber network as the backbone network. The calculation amount of
the network is closely related to the number of connections between the two layers. The traditional
conventional unit uses two convolutional layers to learn features, which is straightforward but
computationally expensive. The total number of connections between these two layers can be
computed as:

C = (Min ×Mmid + Mmid ×Mout), (1)

where C represents the connections, Min represents the number of input channels, Mmid represents the
number of middle channels and Mout represents the number of output channels.

Equation (1) indicates that the number of network connections is the quadratic of the network width.
The spatio-temporal multi-fiber convolution network is modular in design, with the multi-fiber

unit splitting a single path into N parallel paths, each path being isolated from the other paths.
As shown in Equation (2), the total width of the unit remains the same, but the number of connections
is reduced to the original 1/N. In this paper, we set N = 16.

C = N × (
Min
N
×

Mmid
N

+
Mmid

N
×

Mout

N
) =

(Min ×Mmid + Mmid ×Mout)

N
(2)

The multiplexer can share information between N paths. The first 1 × 1 × 1 convolutional layer is
responsible for merging the features and reducing the number of channels, and the second 1 × 1 × 1
convolution layer distributes the feature map to each channel. The parameters within the multiplexer
are randomly initialized and automatically adjusted by end-to-end backpropagation. The multi-fiber
module and multiplexer are shown in Figure 2.

Symmetry 2019, 11, x 4 of 12 

 

In order to reduce the computational cost and increase the depth of the network, we use the 
improved spatio-temporal multi-fiber network as the backbone network. The calculation amount of 
the network is closely related to the number of connections between the two layers. The traditional 
conventional unit uses two convolutional layers to learn features, which is straightforward but 
computationally expensive. The total number of connections between these two layers can be 
computed as: 

in mid mid outC M M M M= × ×（ + ）, (1)

where C represents the connections, 
inM  represents the number of input channels, 

midM  represents 
the number of middle channels and 

outM  represents the number of output channels.  
Equation (1) indicates that the number of network connections is the quadratic of the network 

width. 
The spatio-temporal multi-fiber convolution network is modular in design, with the multi-fiber 

unit splitting a single path into N parallel paths, each path being isolated from the other paths. As 
shown in Equation (2), the total width of the unit remains the same, but the number of connections is 
reduced to the original 1/N. In this paper, we set N = 16. 

in mid mid out in mid mid outM M M M M M +M MC N +
N N N N N

× ×= × × × =（ ）
（ ）  (2)

The multiplexer can share information between N paths. The first 1 × 1 × 1 convolutional layer 
is responsible for merging the features and reducing the number of channels, and the second 1 × 1 × 
1 convolution layer distributes the feature map to each channel. The parameters within the 
multiplexer are randomly initialized and automatically adjusted by end-to-end backpropagation. The 
multi-fiber module and multiplexer are shown in Figure 2. 

Previous Unit

Next Unit

Multiplexer

3×3×3

Fiber 1 Fiber 2 Fiber N

…

…

…

Multiplexer

3×3×3 3×3×3

1×3×3 1×3×3 1×3×3

1×1×1

1×1×1

 
Figure 2. Multi-fiber unit and multiplexer. The multiplexer module was incorporated to facilitate the 
information flow between the fibers. 

3.2. 3D ConvNets Based on Multi-Scale Feature Fusion (M3D) 

As shown in Figure 3, 3D ConvNets based on multi-scale feature fusion (M3D) consists of a 
mainstream network and two tributary networks. The input size of the mainstream network is 16 × 
224 pixels × 224 pixels. The network settings are shown in Table 1. We carry out the spatio-temporal 
down-sampling in Conv5_1, Conv3_1 and Conv4_1 with stride (2, 2, 2). In Conv1 and MaxPool, the 
down-sampling of the spatio was carried out, and the stride is (1, 2, 2). The output of Conv5_3 is the 
averaged spatio-temporal pooling, and results in all kinds of recognition probabilities through the 
fully connected layer. 
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information flow between the fibers.

3.1.1. 3D ConvNets Based on Multi-Scale Feature Fusion (M3D)

As shown in Figure 3, 3D ConvNets based on multi-scale feature fusion (M3D) consists of
a mainstream network and two tributary networks. The input size of the mainstream network
is 16 × 224 pixels × 224 pixels. The network settings are shown in Table 1. We carry out the
spatio-temporal down-sampling in Conv5_1, Conv3_1 and Conv4_1 with stride (2, 2, 2). In Conv1 and
MaxPool, the down-sampling of the spatio was carried out, and the stride is (1, 2, 2). The output of
Conv5_3 is the averaged spatio-temporal pooling, and results in all kinds of recognition probabilities
through the fully connected layer.
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Figure 3. Network architecture details for M3D. The input of the first branch is the output of Conv5_3
and Conv4_6. The input of the second branch is the output of the first branch convolution module and
the output of Conv3_4. The classification probability of the three-way network is averaged to obtain
the final recognition probability. In the first branch network, in order to splice the output feature maps
of Conv5_3 and Conv4_6, we use the up-sampling layer to up-sample the feature map of Conv5_3
from 4 × 7 × 7 to 8 × 14 × 14. The spliced feature map is sent to the convolution module to extract the
features, and after the pooling layer the full connection layer obtains the classification probability of
the branch. In the second branch network, with the first branch network feature map, we up-sample
the spatio-temporal resolution by a factor of 2 (using nearest neighbor up-sampling for simplicity).
The up-sampled map is then merged with the feature map of Conv3_4. The spliced feature map is sent
to the convolution module to extract the features and results in the classification probability after the
fully connected layer. Finally, the classification probability of the three-way network is averaged to
obtain the final recognition probability.

Table 1. Mainstream network settings. When the input is an optical flow frame, the number of
input channels of the network is 2. When the input is an RGB image, the network input channel is 3.
The stride is denoted by “(temporal stride, height stride, and width stride)”.

Layer Repeat Channel Stride Output Size

Input 3(RGB)/2(Flow) 16 × 224 × 224
Conv1 1 16 (1, 2, 2) 16 × 112 × 112

MaxPool 16 (1, 2, 2) 16 × 56 × 56
Conv2_X
(MF Unit) 3 96 (1, 1, 1) 16 × 56 × 56

Conv3_X
(MF Unit)

1
192

(2, 2, 2)
8 × 28 × 283 (1, 1, 1)

Conv4_X
(MF Unit)

1
384

(2, 2, 2)
4 × 14 × 145 (1, 1, 1)

Conv5_X
(MF Unit)

1
768

(2, 2, 2)
2 × 7 × 72 (1, 1, 1)

AvgPooling 1 × 1 × 1
FC 2

In the process of multi-scale feature map fusion, it must be ensured that the multi-scale feature can
retain the original information after fusion and maintain the validity of the fusion feature. In view of
the above situation, this paper proposes a number of fusion methods, and the function is expressed as:

y = f
(
xa, xb), (3)

where xa
∈ Pt×h×w and xb

∈ P′t×h×w represent the two-layer feature map that is to be fused. y ∈ P′′ t×h×w

represents the merged feature map, t represents the number of frames, and h, w represent the height
and width, respectively, of the corresponding feature map.
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Concatenation. Cascading the feature maps of two 3D convolutional layers. This can be
represented as Equation (4): ycat

i, j,2k = xa
i, j,k

ycat
i, j,2k+1 = xb

i, j,k
1 ≤ i ≤ h; 1 ≤ j ≤ w; 1 ≤ k ≤ t, (4)

where (i, j, k) represents a coordinate point in the feature map.
Sum. Adding the elements of the same coordinate point in the two feature maps. This can be

represented as Equation (5):
ysum

i, j,k = xa
i, j,k + xb

i, j,k (5)

Maximum. Take the larger of the same coordinate points in the two feature maps. This can be
represented as Equation (6):

ymax
i, j,k = max{xa

i, j,k, xb
i, j,k} (6)

Average. Calculate the mean of the same coordinate points in the two feature maps. This can be
represented as Equation (7):

yave
i, j,k = (xa

i, j,k + xb
i, j,k)/2 (7)

It is worth noting that the three methods of sum, maximum and average do not change the
number of channels. Although the cascade fusion increases the number of channels of the feature map,
the information volume of each channel is not compressed. Therefore, the cascading fusion is more
conducive to retaining the original information.

4. Building Dataset

4.1. Data Collection

Due to the particularity of battlefield target aggregation behavior, intelligence videos are difficult
to obtain. Our article does not consider the disturbances of complex environmental factors (such as
complex weather, etc.). Therefore, we collected video data on a satellite simulation platform and built
the dataset based on the video data. Behavioral simulation data needs to ensure a visual similarity and
behavioral similarity as much as possible. In terms of visual similarity, based on the acquisition of the
static images in the open network, Figure 4 shows that the simulated data set has a visual similarity
with the real data. In terms of behavioral similarity, the aggregate behavior can be seen as the behavior
of groups moving to a certain area. From the perspective of space, the aggregation behavior shows a
relative position change in the battlefield space; from the perspective of time, the aggregation behavior
is a time series of the density of the combat unit from low to high. The warships are not affected by the
terrain, so the trajectory of each target in the gathering behavior is roughly a straight line. Therefore,
the data of our simulation has a certain authenticity.
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The purpose of this paper is to solve the binary classification problem of behavior. The dataset
is divided into two categories: aggregation and others. The aggregate classes include behaviors
such as dual-target aggregation and multi-target aggregation. Other classes include actions such
as target static and target travel. The aggregate behavior class is the positive samples of model
training. Other behavioral classes are negative samples of model training. In reality, in addition to
the aggregation behavior, most of the behaviors captured in the video are target static, no target, and
target travel (no aggregation trend), so the dataset constructed in this paper is representative. Part of
the RGB training samples is shown in Figure 5.
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Figure 5. Dataset RGB sample. The above pictures show a few frames extracted from a video clip.

According to the actual speed of 20 times, 1000 segments of the video are collected. Each video
lasts for 30 to 40 seconds. The resolution of each video is 720 pixels × 480 pixels, and the frame
rate is 25 fps. Our dataset consists of 500 aggregation behavior video and 500 other behavior videos.
Each category is randomly divided into five splits, each containing 100 videos. The data set is shown
in Table 2.

Table 2. Experimental dataset. The dataset consists of 500 aggregation behavior videos and 500 other
behavior videos. Each category is randomly divided into five splits, each containing 100 videos.

Category Split1 Split2 Split3 Split4 Split5

Aggregation 100 100 100 100 100
Others 100 100 100 100 100

4.2. Optical Flow Video

The optical flow can characterize the motion of the object. Using the optical flow data as the
training data is beneficial to improving the recognition rate. On the one hand, the optical flow data can
shield the interference of the complex background; on the other hand, the optical flow graph contains
enough motion information, which can make the network more comprehensively learn aggregation
behavior characteristics. The partial optical flow samples are shown in Figure 6.
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4.3. Data Enhancement

When training deep networks, it is easy to over-fit due to insufficient labeling samples [20].
Data enhancement can effectively avoid over-fitting. This article uses two enhancement strategies
for data. (1) In the video, we extract multiple times with different frames as the first frame, and the
sampling interval is 30 frames. The extracted segments have 16 frames, and there is an overlap between
the extracted segments; (2) Corner cropping. First, we scale the image size to 256 pixels × 256 pixels,
and then crop from the center and 4 diagonal regions into 5 sub-images of 224 pixels × 224 pixels.
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The experimental results show that the data enhancement improves the generalization ability of
the network and improves the recognition accuracy.

5. Experimental Section and Analysis

5.1. Experimental Setup and Training Strategy

We tested our methods in the Ubuntu16.04 environment. The details are shown in Table 3.

Table 3. Experimental configuration.

Operating System Ubuntu16.04

CPU Intel Core I9-7940X
GPU Nvidia GeForce TITANV

Design language Python3.5
Frame Pytorch
CUDA Cuda8.0

The training optimization of the RGB network and optical flow network is based on
Back-propagation (BP). Our models are optimized with a vanilla synchronous SGD algorithm with
the momentum of 0.9. The networks are trained with an initial learning rate of 0.1, which decays
step-wisely with a factor of 0.1. The batch size of the dataset is 16, which is to say that the network has
16 segments per iteration, and the network reaches a steady state when iterating 6000 times. The optical
flow is calculated by TVL1 of the OpenCV algorithm.

5.2. Multi-Scale Network Comparison Test

As shown in Figure 7, we compare the accuracy rates in different fusion methods. The fusion
methods include Concatenation, Sum, Max, and Ave. The experimental results show that the fusion of
concatenation has the highest recognition accuracy.

Symmetry 2019, 11, x 8 of 12 

 

extracted segments; (2) Corner cropping. First, we scale the image size to 256 pixels × 256 pixels, and 
then crop from the center and 4 diagonal regions into 5 sub-images of 224 pixels × 224 pixels. 

The experimental results show that the data enhancement improves the generalization ability of 
the network and improves the recognition accuracy. 

5. Experimental Section and Analysis 

5.1. Experimental Setup and Training Strategy 

We tested our methods in the Ubuntu16.04 environment. The details are shown in Table 3. 

Table 3. Experimental configuration. 

Operating System Ubuntu16.04 
CPU Intel Core I9-7940X 
GPU Nvidia GeForce TITANV 

Design language Python3.5 
Frame Pytorch 
CUDA Cuda8.0 

The training optimization of the RGB network and optical flow network is based on Back-
propagation (BP). Our models are optimized with a vanilla synchronous SGD algorithm with the 
momentum of 0.9. The networks are trained with an initial learning rate of 0.1, which decays step-
wisely with a factor of 0.1. The batch size of the dataset is 16, which is to say that the network has 16 
segments per iteration, and the network reaches a steady state when iterating 6000 times. The optical 
flow is calculated by TVL1 of the OpenCV algorithm. 

5.2. Multi-Scale Network Comparison Test 

As shown in Figure 7, we compare the accuracy rates in different fusion methods. The fusion 
methods include Concatenation, Sum, Max, and Ave. The experimental results show that the fusion 
of concatenation has the highest recognition accuracy. 

The two-stream convolutional network in this paper is divided into the RGB network and optical 
flow network. The network input is 16 frames of the RGB sequence or 16 frames of the optical stream 
sequence. In order to verify the advantages of this network framework in identifying accuracy and 
computational complexity, we tested the identification results of the networks in the dataset 
constructed in this paper. We use FLOPs (floating-point multiplication-adds) to measure the amount 
of computation.  

 

  

(a) (b) 

Figure 7. (a) Accuracy of optical flow branches under different fusion strategies. (b) Accuracy of RGB 
branches under different fusion strategies. We compared the accuracy rates in different fusion 
methods. The experimental result is the average of the results of 5-fold cross-validation tests. 

Figure 7. (a) Accuracy of optical flow branches under different fusion strategies. (b) Accuracy of RGB
branches under different fusion strategies. We compared the accuracy rates in different fusion methods.
The experimental result is the average of the results of 5-fold cross-validation tests. Concatenation
works best because the concatenation method does not merge the channels and can retain the original
information of the feature map.

The two-stream convolutional network in this paper is divided into the RGB network and optical
flow network. The network input is 16 frames of the RGB sequence or 16 frames of the optical
stream sequence. In order to verify the advantages of this network framework in identifying accuracy
and computational complexity, we tested the identification results of the networks in the dataset
constructed in this paper. We use FLOPs (floating-point multiplication-adds) to measure the amount
of computation.
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The experimental comparison method is the I3D [14] network (including the RGB tributary and
optical stream tributaries) and MF-Net [18]. The experimental results are shown in Table 4 and Figure 8.
The M3D proposed in this paper achieves a 94.4% and 96.1% accuracy, respectively, when the input is
the RGB sequence or the optical flow sequence. Comparing the three networks, the recognition results
of the proposed algorithm are improved to different degrees than I3D and MF-Net. The experimental
results show that: (1) Introducing multi-scale feature fusion into the 3D-CNN can effectively improve
the accuracy of the network recognition. (2) The use of multi-fiber modules can greatly reduce the
parameter amount and calculation expenses while ensuring the recognition accuracy.

Table 4. Branch network comparison on the dataset constructed in this paper. Test1–5 represents the
results of the first to fifth cross-validation tests.

Method Test1 Test2 Test3 Test4 Test5 Average

RGB I3D 94.5% 90.5% 91.5% 92.5% 93% 92.4%
Flow I3D 95% 92% 93% 94.5% 95% 93.9%

RGB MF-Net 90% 89.5% 88.5% 91% 89% 89.6%
Flow MF-Net 91.5% 90.5% 90.5% 92.5% 90% 91%

RGB M3D (Ours) 96% 92.5% 94% 95% 94.5% 94.4%
Flow M3D (Ours) 97% 94% 95.5% 97.5% 96.5% 96.1%
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FLOPs for computing the optical flow are not considered.

5.3. Test of Two-Stream Network

In this section, the experimental results obtained by the M3D(RGB) and the M3D(Flow) are
weighted and fused according to different weights, and then the optimal distribution ratio is selected.
The results are shown in Table 5, where the distribution ratio = M3D(RGB): M3D(Flow).

Table 5. The accuracy of the Two-Stream network at different weight ratios, where the distribution
ratio = M3D(RGB): M3D(Flow). Test1–5 represents the results of the first to fifth cross-validation tests.

Distribution Ratio Test1 Test2 Test3 Test4 Test5 Average

3:7 97% 94.5% 95.5% 97.5% 96.5% 96.2%
4:6 97% 95.5% 96% 98% 97% 96.7%
5:5 98% 96.5% 96% 98.5% 97.5% 97.3%
6:4 96.5% 94% 95.5% 97% 96.5% 95.9%
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As shown in Table 5, when the distribution ratio is 5:5, the Two-Stream network of this paper
achieves the best recognition rate. The recognition accuracy on the dataset constructed in this paper
reached 97.3%.

5.4. Comparison of Various Methods

Table 6 shows the video action recognition results of different models trained on the dataset
established in this paper. It can be seen that: (1) From the perspective of the network structure, the
algorithm combines different size feature maps, which is not available in other networks. The fusion
of a multi-scale feature map compensates for the risk of the video information loss; (2) From the
experimental results, compared with the traditional single-channel input network such as C3D [14], the
accuracy of the two-stream M3D is improved by 13.3%. The main reason for this is that the multi-scale
feature fusion strategy can more effectively extract spatio-temporal information. Compared with the
LSTM+CNN [14], the accuracy of the Two-Stream M3D is improved by 17%. The main reason is
that the LSTM (Long Short-Term Memory) on features from the last layers of ConvNets can model a
high-level variation, but may not be able to capture fine low-level motion. Because CNN loses many
fine-grained underlying features during down-sampling, these underlying features may be critical for
a proper motion recognition. That is to say, the feature map outputted by CNN loses the information of
smaller targets. If this feature map is input into LSTM for a timing analysis, the recognition result will
be greatly affected. Compared with the two-stream network, the Two-Stream M3D proposed in this
paper effectively improves the recognition accuracy, which is 1.6% and 5.1% higher than Two-Stream
I3D and Two-Stream MF-Net, respectively. Figure 9 shows that the proposed model achieves a good
trade-off between computational complexity and accuracy.

Table 6. Action recognition accuracy on the dataset constructed in this paper. Test1–5 represents the
results of the first to fifth cross-validation tests. In the input, R means the input is RGB, R+OF means
the input is RGB and Optical Flow. The Two-Stream M3D outperforms C3D by 13.3%, LSTM+CNN by
17%, Two-Stream I3D by 1.6%, and Two-Stream MF-Net by 5.1%.

Method Inputs Params Test1 Test2 Test3 Test4 Test5 Average

LSTM+CNN R 9M 82.5% 81% 77% 82% 79% 80.3%
C3D R 79M 83% 84% 82.5% 85% 85.5% 84%

Two-Stream I3D R+OF 23.4M 96% 94% 95% 97% 96.5% 95.7%
Two-Stream MF-Net R+OF 16.9M 92.5% 92% 91.5% 94% 91% 92.2%

Two-Stream M3D R+OF 20.9M 98% 96.5% 96% 98.5% 97.5% 97.3%
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6. Conclusions

This paper was aimed at the problem of battlefield target aggregation behavior recognition based
on intelligence videos: (1) This paper proposes the M3D model, which effectively reduces the impact
of network down-sampling on the network recognition accuracy by combining different scale feature
maps. The algorithm can effectively deal with the problem that the target of aggregation behavior is
small and that the duration is uncertain; (2) Thanks to the multi-fiber module, our algorithm achieves
a good trade-off between computational complexity and accuracy. On the established aggregation
behavior dataset, the algorithm of this paper is experimentally verified and compared with several
advanced algorithms. The results of multiple experiments show that the proposed algorithm can
effectively improve the accuracy of the aggregation behavior recognition.

We have not yet verified the algorithm in a complex environment. Under realistic conditions,
complex environmental factors will increase the difficulty of recognition of the algorithm. When the
cloud is occluded or the visibility is low, the recognition fails because the target cannot be observed.
For the ocean target, when the sea surface has a severe diffuse reflection, the optical flow images
extracted by the traditional optical flow method will have a large noise, which is not conducive to the
algorithm’s recognition of the behavior. In future work, in view of the feature extraction advantages
of traditional algorithms in complex environments, we will start with a combination of traditional
methods and deep learning to explore a more robust recognition algorithm.
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