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Abstract: It is well known that there are some unfavorable shortcomings in the ordinary operational
rules (OORs) of intuitionistic fuzzy number (IFN), and there exists a close and forceful connection
between the intuitionistic fuzzy set (IFS) and Dempster-Shafer Theory (DST). We can utilize this
relationship to present a transparent and fruitful semantic framework for IFS in terms of DST. In the
framework of DST, an IFN can be converted into a basic probability assignment (BPA) and operations
on IFNs can be represented as operations on a belief interval (BI), which can break away from the
revealed shortcomings of the OORs of the IFN. Although there are many operators to aggregate the
IFN, the operator to aggregate the BPA is rare. The Maclaurin symmetric mean (MSM) operator has
the advantage of considering interrelationships among any number of attributes. The power average
(PA) operator can reduce the influences of extreme evaluation values. In addition, for measuring
the difference between IFNs, we replace the Hamming distance and Euclidean distance with the
Jousselme distance (JD). In this paper, we develop an intuitionistic fuzzy power MSM (IFPMSMDST)
operator and an intuitionistic fuzzy weighted power MSM (IFPWMSMDST) operator in the framework
of the DST and provide their favorable properties. Then, we propose a novel method based on the
proposed operators to solve multi-attribute decision-making (MADM) problems without intermediate
defuzzification when their attributes and weights are both IFNs. Finally, some examples are utilized
to demonstrate that the proposed methods outperform the previous ones.

Keywords: MADM; intuitionistic fuzzy number; Dempster-Shafer theory; power average operator;
Maclaurin symmetric mean operator; Jousselme distance

1. Introduction

As the complexity of decision-making (DM) problems increases, it is generally complicated to
express attribute values of alternatives by real numbers. Zadeh [1] initially introduced the fuzzy set
(FS) theory, which is a successful tool in processing inaccurate and ambiguous information. However,
it is obviously inadequate for processing the information with non-membership. As a generalized
form of FS, the intuitionistic fuzzy set (IFS) developed by Atanassov [2] has a membership degree
(MD), a non-membership degree (NMD), and a hesitancy degree (HD), which is free of the limitations
of FS. Recently, studies on the DM methods based on the IFS have attracted substantial attention
in various areas, such as supplier selection [3], “one belt, one road” investment selection [4], brand
management [5], mine emergency DM [6], hospital performance evaluation [7], etc. Lately, a large
number of contributions have focused on DM techniques based on IFSs, which are from three domains:
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(1) The theory of foundations, for instance, operational rules (ORs) [8–10], distance and similarity
measures [11], likelihood [12], consensus degree [13], accurate function [14], etc.

(2) The extended multi-attribute decision-making (MADM) techniques for IFS, such as TOPSIS [15],
ELECTRE [16], VIKOR [17], TODIM [18], Entropy [19], and other techniques, such as choquet
integral [20], multi-objective linear programming [21], etc.

(3) The MADM techniques based on the aggregation operators (OAs) of IFSs, such as arithmetic
AOs [22], geometric AOs [23], the power average (PA) operator [24,25], Bonferroni mean
(BM) operator [26–28], Heronian mean (HM) operator [29], Maclaurin symmetric mean (MSM)
operator [30,31], etc.

Generally, the MADM techniques based on OAs are superior to than the traditional MADM
techniques because they can obtain the comprehensive values of alternatives by aggregating all attribute
values and then rank the alternatives. Thus, it is significant and valuable to research the OAs and then
deal with the MADM problems.

The PA operator, initially investigated by Yager [24], can reduce the influences of the extreme
evaluation values to a great extent by given different weights. When extreme evaluation values
appear, the PA operator can supply them a smaller weight by allowing attribute values to support
and complement each other, so that the influences of extreme evaluation values are reduced greatly.
This favorable characteristic is extremely useful in real MADM problems, so the PA operator has
attracted considerable attention from researchers. The PA operator has also been successfully extended
to IFS. Xu [32] developed an intuitionistic fuzzy weighted PA (IFWPA) operator and intuitionistic
fuzzy weighted geometric PA (IFWGPA) operator. He et al. [33] investigated a generalized interaction
IFPA (GIIFPA) operator and weighted GIIFPA (WGIIFPA) operator. Jiang and Wei [11] presented an
intuitionistic fuzzy evidential power average (IFEPA) operator in the framework of the Dempster-Shafer
theory (DST).

In some MADM problems, for obtaining convincing aggregate results, we should be concerned
about the interrelationships between attributes. In this case, the BM operator [26] and HM operator [29]
were developed to solve these MADM problems. Then, Xu and Yager [27] further extended the BM
operator to IFS and presented an intuitionistic fuzzy BM (IFBM) operator and weighted IFBM (WIFBM)
operator. He and He [28] proposed the extended intuitionistic fuzzy interaction BM (EIFIBM) operator
and weighted EIFIBM (WEIFIBM) operator. Liu and Chen [29] presented the intuitionistic fuzzy
Archimedean HM (IFAHM) operator and weighted IFAHM (WIFAHM) operator. However, the BM
operator and HM operator just take into account the interrelationships between attributes. In most
MADM problems, we should fully incorporate the interrelationships among attributes. Obviously,
the MSM operator can help us to solve these problems. The great advantage of the MSM operator
is that it can neatly capture interrelationships among attributes by assigning a different value to the
parameter κ. Recently, many researchers have payed considerable attention to extending the MSM
operator to IFS. Qin and Liu [31] first investigated the intuitionistic fuzzy MSM (IFMSM) operator and
the weighted IFMSM (WIFMSM) operator. Liu and Liu [8] developed an intuitionistic fuzzy interaction
MSM (IFIMSM) operator and the weighted IFIMSM (WIFIMSM) operator.

Undoubtedly, we usually encounter some extraordinary MADM problems where the attributes
are interrelated with each other, and some extreme evaluation values are provided. However, the
OAs for the interrelationships among attributes, and reducing the influence of extreme evaluation
values, are rare, so it is essential to combine the MSM operator with the PA operator in processing
IFNs. However, with respect to the OAs for IFNs, we should not only consider the function, but also
pay close attention to the ORs of the IFNs.

From [9,10], we know that the ordinary ORs (OORs) of IFNs possibly produce the unreasonable
and counterintuitive aggregate results in the process of solving MADM problems because of some
unfavorable properties (see Section 2.1; we have discerned and presented some credible critical
numerical examples). For instance, let β = 〈u, v〉, β1 = 〈u1, v1〉 and β2 = 〈u2, v2〉 be three IFNs, when
β1 < β2, we cannot always generate (β1 ⊕ β3) < (β2 ⊕ β3), (β1 ⊗ β3) < (β2 ⊗ β3) and δβ1 < δβ2 (δ > 0).
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In addition, it is noteworthy that the existing OAs of IFNs with attribute weights represented by
IFNs have not be defined, and this is also a greater disadvantage of IFS. Because in many real DM
problems, it is troublesome for decision-makers to provide the exact significance of attributes by using
real number, we can apply the weights denoted by IFNs to decrease the loss of information.

DST, which was initially introduced by Dempster [34] and then developed and expanded by
Shafer [35], is a favorable tool for processing inaccurate or ambiguous information. DST gives BPA,
which can express the occurrence rate of attributes in basic events. While DST is introduced, the belief
function (BF) and plausibility function (PF) are likewise defined, and this constitutes the BI of the
focal element (FE). The BI expresses the belief and uncertainty of the FE. In [9,10], we have seen that
there is a strong and close connection between IFS and DST. This strong and close connection makes it
certainly possible to immediately apply the aggregation rules (ARs) of DST to aggregate the attribute
information of the alternatives represented by IFNs in a real MADM process. In the framework of
DST, an IFN can be converted into a BPA, and operations on IFNs can be denoted as operations on the
belief interval (BI), which can overcome the revealed drawbacks of the OORs of IFNs and get more
convincing results. Although there are many operators to aggregate IFNs, the operators to aggregate
the BPA is rare.

Based on the above discussions, the main purposes of this paper are as follows:

(1) For overcoming the revealed drawbacks of OORs of IFN and getting more convincing aggregate
results, we convert an IFN into a BI and replace operations on IFNs with operations on BI;

(2) For utilizing ORs of BI to develop some PMSM operator for IFNs in the framework of DST, we
convert an IFN into a BPA and replace Hamming distance and Euclidean distance with Jousselme
distance (JD);

(3) For further reducing the loss of information, we use the presented operators to solve MADM
problems without intermediate defuzzification when attributes and their weights are all IFNs.

Therefore, we will firstly propose the intuitionistic fuzzy power MSM (IFPMSMDST) operator and
intuitionistic fuzzy weighted power MSM (IFPWMSMDST) operator in the framework of DST; then,
based on the IFPMSMDST operator and IFPWMSBMDST operator, we develop a new MADM method.
By comparing with the previous methods based on a intuitionistic fuzzy evidential power aggregation
(IFEPA) operator [11], a weighted intuitionistic fuzzy MSM (WIFMSM) operator [28], and an extended
weighted intuitionistic fuzzy interaction Bonferroni mean (EWIFIBM) operator [31], the advantages of
the proposed methods are discussed.

The rest of this paper is organized as follows: In Section 2, we review concepts of the IFS and
provide a critical analysis of OORs of the IFS, then give an interpretation of the IFS in the framework
of DST. In Section 3, we propose IFPMSMDST operator and IFPWMSMDST operator based the PA
operator and MSM operator. In Section 4, we develop a novel method with IFNs based on IFPMSMDST

operator and IFPWMSMDST operator in the framework of DST. In Section 5, we utilize some numerical
examples to demonstrate the reasonability and flexibility of presented operators. In Section 6, we
discuss the conclusions.

2. Preliminaries

2.1. IFSs

Definition 1 [2]. Let A = {αi|i = 1, 2, · · · , t} be a fixed set, and then the IFS B on A can be defined as follows:
B =

{〈
α, uβ(α), vβ(α)

〉}
, where uβ(α) : A→ [0, 1] and vβ(α) : A→ [0, 1] are the MD and NMD of α ∈ A to

B, respectively, and 0 ≤ uβ(α) + vβ(α) ≤ 1. Moreover, πβ(α) = 1− uβ(α) − vβ(α) denotes the HD of α to B.

Usually, we use β =
〈
uβ, vβ

〉
to represent an IFN.
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Definition 2 [22,23]. Let β1 = 〈u1, v1〉 and β2 = 〈u2, v2〉 be two IFNs, then

(1) β1 ⊕ β2 = 〈u1 + u2 − u1u2, v1v2〉 (1)

(2) β1 ⊗ β2 = 〈u1u2, v1 + v2 − v1v2〉 (2)

(3) δβ1 =
〈
1− (1− u1)

δ, v1
δ
〉
, δ > 0 (3)

(4) β1
δ =

〈
u1
δ, 1− (1− v1)

δ
〉
, δ > 0 (4)

From the above operational Rules (1)–(4), we can get intuitionistic fuzzy weighted arithmetic
mean (IFWAM) and the intuitionistic fuzzy weighted geometric mean (IFWGM). Let βi = 〈ui, vi〉 be a

group of IFNs and ωi be the weight of βi,
t∑
i
ωi = 1. Then

IFWAM(β1, β2, · · · , βt) = ⊕
t
i=1ωiβi =

〈
1−

t∏
i=1

(1− ui)
ωi ,

t∏
i=1

vi
ωi

〉
(5)

IFWGM(β1, β2, · · · , βt) = ⊕
t
i=1βi

ωi =

〈 t∏
i=1

ui
ωi , 1−

t∏
i=1

(1− vi)
ωi

〉
. (6)

For IFN β = 〈u, v〉, the score function (SF) and accuracy function (AF) are defined by following
form:

SF(β) = u− v (7)

AF(β) = u + v. (8)

Further, for IFNs β1 = 〈u1, v1〉 and β2 = 〈u2, v2〉, we can give the order relation between β1 and β2

as follows:

(1) If SF(β1) < SF(β2), then β1 < β2;
(2) If SF(β1) = SF(β2), then

(i) AF(h1) < AF(h2), then β1 < β2;
(ii) AF(β1) = AF(β2), then β1 = β2.

Let β = 〈u, v〉, β1 = 〈u1, v1〉 and β2 = 〈u2, v2〉 be three IFNs; then, it is straightforward to prove
that Equations (1)–(4) have following properties:

(1) β1 ⊕ β2 = β2 ⊕ β1; (9)

(2) β1 ⊗ β2 = β2 ⊗ β1; (10)

(3) δ(β1 ⊕ β2) = δβ2 ⊕ δβ1, δ > 0; (11)

(4)(δ+ ξ)β = δβ+ ξβ, ξ, δ > 0; (12)

(5) (β1 ⊗ β2)
δ = β1

δ
⊗ β2

δ, δ > 0; (13)

(6) βξ ⊗ βδ = βδ+ξ δ, ξ > 0 (14)

In [9,10], we have shown that Equations (1)–(8) possibly generate unreasonable and counterintuitive
computation results due to some unfavorable properties in the practice DM environment.

(1) The Equation (1) is not a constant operation—that is to say, β1 < β2 cannot always generate
(β1 ⊕ β3) < (β2 ⊕ β3).
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Example 1. Let β1 = 〈0.65, 0.35〉, β2 = 〈0.55, 0.15〉, β3 = 〈0.25, 0.25〉, then SF(β1) = 0.3, SF(β2) = 0.4,
we can get β1 < β2. On the other hand, β1 ⊕ β3 = 〈0.8375, 0.0875〉, β2 ⊕ β3 = 〈0.6625, 0.0375〉, SF(β1 ⊕ β3) =

0.75, SF(β2 ⊕ β3) = 0.6624, so we get (h1 ⊕ h3) > (h2 ⊕ h3).

(2) Equation (2) is not a constant operation, i.e., β1 < β2 cannot always generate (β1 ⊗ β3) < (β2 ⊗ β3).

Example 2. Let β1 = 〈0.15, 0.45〉, h2 = 〈0.35, 0.55〉, β3 = 〈0.3, 0.3〉, then SF(β1) = −0.3, SF(β2) = −0.2, we
can get β1 < β2. On the other hand, β1 ⊗ β3 = 〈0.045, 0.615〉, β2 ⊗ β3 = 〈0.105, 0.685〉, SF(β1 ⊗ β3) = −0.57,
SF(β2 ⊗ β3) = −0.58, so we get (β1 ⊗ β3) > (β2 ⊗ β3).

(3) Equation (3) is not persistent under multiplication. In other words, β1 < β2 cannot always generate
δβ1 < δβ2 (δ > 0).

Example 3. Let β1 = 〈0.45, 0.35〉, β2 = 〈0.35, 0.25〉, δ = 0.2, then SF(β1) = 0.1, SF(β2) = 0.1, AF(β1) =

0.7, AF(β2) = 0.5 we can get β1 > β2. On the other hand, δβ1 = 〈0.1127, 0.8106〉, δβ2 = 〈0.0825, 0.7579〉,
SF(ηh1) = −0.6979, SF(ηh2) = −0.6754, so we get δβ1 < δβ2.

(4) IFWAM is not always monotone with respect to the SF and AF. In other words, β1 < β2 cannot
invariably generate IFWAM(β1, β3) < IFWAM(β2, β3).

Example 4. Let β1 = 〈0.5, 0.4〉, β2 = 〈0.3, 0.2〉, β3 = 〈0, 1〉, ω1 = ω2 = 0.5, then SF(β1) = 0.1, SF(β2) =

0.1, AF(β1) = 0.9, AF(β2) = 0.5 we can get β1 > β2. On the other hand, IFWAM(β1, β3) = 〈0.29, 0.64〉,
IFWAM(β2, β3) = 〈0.16, 0.45〉, SF(IFWAM(β1, β3)) = −0.35, SF(IFWAM(β2, β3)) = −0.29, so we get
IFWAM(β1, β3) < IFWAM(β2, β3).

(5) IFWGM is not always monotone with respect to the SF and AF. In other words, β1 > β2 cannot
invariably generate IFWGM(h1, h3) > IFWGM(h2, h3).

Example 5. Let β1 = 〈0.39, 0.49〉, β2 = 〈0.35, 0.45〉, β3 = 〈0.2, 0.7〉, then SF(β1) = −0.1, SF(β2) = −0.1,
AF(β1) = 0.88, AF(β2) = 0.80, so we can get β1 > β2. On the other hand, when ω1 = 0.4,ω3 = 0.6,
IFWGM(β1, β3) = 〈0.2613, 0.6291〉, when ω2 = 0.4, ω3 = 0.6 IFWAM(β2, β3) = 〈0.2502, 0.6177〉, and
then SF(IFWAM(β1, β3)) = −0.3678, SF(IFWAM(β2, β3)) = −0.3675, so we get IFWAM(β1, β3) <
IFWAM(β2, β3).

In some studies [9,10], we have found out that there is a very close connection between DST and
IFS. With the help of this connection, we can provide transparent and fruitful semantics for IFN in
terms of DST. Therefore, to reinforce the performance of operations on IFNs, we rewrite the definition
and operations of IFS in the framework of DST, which break away from the above-listed limitations.

2.2. IFS in the Framework of Dempster-Shafer Theory

Let us assume Φ to be the set of κ mutually exclusive and exhaustive objects, which corresponds
to κ hypotheses or propositions. Φ is called the frame of discernment and defined as follows:
Φ =

{
1, 2, 3, · · · ,γ

}
. Γ(Φ) is known as the power set of Φ containing all the possible subsets of Φ and

defined as follows: Γ(Φ) =
{
φ, 1, 2, 3, · · · ,γ, (1, 2), (1, 3), · · · , (γ− 1,γ), (1, 2, 3), · · · , Φ

}
. By definition,

Γ(Φ) consists of 2κ elements representing the event “the object is in X”.
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A BPA is a mapping from Γ(Φ) to [0,1] defined as follows: ϑ : Γ(Φ) → [0, 1] and satisfies∑
X⊆Γ(Φ) ϑ(X) = 1 and ϑ(φ) = 0.

Note that Γ(Φ) includes φ and the condition ϑ(φ) = 0 is required, but the subsets of Φ for which
the mapping does not assume a 0 value are defined focal elements in classical DST. ϑ(X) denotes the
degree of evidence support for the proposition of the object belongs to X. In a word, ϑ(X) is a measure
of the belief attributed exactly to X, and to none of the subsets of X.

Definition 3 [35,36]. Given a BPA ϑ on Φ, the belief function Bel can be defined as:

Bel(X) =
∑
Υ⊆X

ϑ(Υ) (15)

where ϑ(X) > 0.

Definition 4 [35,36]. Given a BPA ϑ on Φ, the plausibility function Pl can be defined as:

Pl(X) =
∑

Υ∩X,φ

ϑ(Υ) = 1− Bel
(
Υ
)

(16)

where Υ is the complementary set of X.

Therefore, the belief interval (BI) can be represented by interval [Bel(X), Pl(X)]. This may be
explained as the interval enclosing the “true probability” of X.

In order to measure the similarity between two sets, we present a detailed description of JD
between two bodies of evidence as follows:

Definition 5 [35,36]. Let Φ be a frame of discernment including κmutually exclusive and exhaustive hypothesis,

and let ΛΓ(Φ) be the space produced by all the subsets of Φ. A BPA is a vector
→

ϑ of ΛΓ(Φ) with coordinates
ϑ(Xi) such that:

2κ∑
i=1

ϑ(Xi) = 1

where ϑ(Xi) ≥ 0, Xi ∈ Γ(Φ).

In the above definition, ϑ(Xi) = 0 is not necessarily required.

Definition 6 [36]. Let ϑ1 and ϑ2 be two BPAs on the same frame of discernment Φ, including κ mutually
exclusive and exhaustive hypotheses. The JD between ϑ1 and ϑ2 can be defined as follows:

dBPA(ϑ1,ϑ2) =

√
1
2

(
→

ϑ1 −
→

ϑ2

)T
D
_

(
→

ϑ1 −
→

ϑ2

)
(17)

where
→

ϑ1 and
→

ϑ2 are the BPAs according to Definition 5 and D
_

is a 2κ ∗ 2κ matrix whose elements are

D(X, Υ) =
|X∩ Υ|
|X∪ Υ|

, X, Υ ∈ Γ(Φ) (18)

From Definition 6, another description of dBPA is as follows:

dBPA(ϑ1,ϑ2) =

√
1
2

(
‖

→

ϑ1‖
2
+ ‖
→

ϑ2‖
2
− 2

〈
→

ϑ1,
→

ϑ2

〉)
(19)
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where
〈
→
s 1,
→
s 2

〉
is the scalar product defined by

〈
→

ϑ1,
→

ϑ2

〉
=

2κ∑
i=1

2κ∑
j=1

ϑ1(Xi)ϑ2
(
X j

) ∣∣∣Xi ∩X j
∣∣∣∣∣∣Xi ∪X j
∣∣∣ (20)

with Xi, X j ∈ Γ(Φ) for i, j = 1, 2, · · · , 2κ. ‖
→

ϑ‖
2

is the square norm of
→

ϑ:

‖

→

ϑ‖
2
=

〈
→

ϑ,
→

ϑ
〉
. (21)

We know that the uβ(γ), vβ(γ) and πβ(γ) of IFN β can represent a BPA of DST, respectively [9,10],
so we can completely denote the IFS in the framework of DST based on above information of DST.
In practice, when solving the DM problem with the information of IFNs, we implicitly confront three
hypotheses as follows: γ ∈ β, γ < β and γ ∈ β or γ < β (the case of hesitation). Therefore, these three
hypotheses can be expressed as True (γ ∈ β), False (γ < β), and (True or False) (the case of hesitation).
In such a case, uβ(γ) signifies the probability or evidence of γ ∈ β, i.e., ϑ(True) = uβ(γ). By analogy,
ϑ(False) = vβ(γ), ϑ(True or False) = πβ(γ). Because of uβ(γ) + vβ(γ) + πβ(γ) = 1 we can draw a
conclusion that uβ(γ),vβ(γ) and πβ(γ) denote a correct BPA, i.e.,

Belh(y) = ϑ(True) = uβ(γ) (22)

Plh(y) = ϑ(True) + ϑ(True or False) = uβ(γ) + πβ(γ) = 1− vβ(γ). (23)

Therefore, we rewrite the definition of IFS in the framework of DST.

Definition 7. Let Υ =
{
γi

∣∣∣i = 1, 2, · · · , t
}

be a fixed set; then, A IFS B on Υ in the framework of DST can

be defined as follows: B̃ =
{〈
γi, BIβ(γi)

〉∣∣∣∣γi ∈ Υ
}
, where BIβ(γi) =

[
Belβ(γi), Plβ(γi)

]
=

[
uβ(γi), 1− vβ(γi)

]
is a BI, uβ(γi) : Υ → [0, 1] and vβ(γi) : Υ → [0, 1] are the MD and NMD of γ ∈ Υ to B, respectively, and
0 ≤ uβ(γi) + vβ(γi) ≤ 1.

For convenience, we represent an IFN in the framework of DST by β̃ = BIβ =
[
Belβ, Plβ

]
=[

uβ, 1− vβ
]
.

In order to enhance the performance of operations on IFNs, Dymova and Sevastjanov [9,10]
redefined the operational rules on IFN in the framework of DST.

Definition 8. Let β̃1 = [Bel1, Pl1] = [u1, 1− v1] and β̃2 = [Bel2, Pl2] = [u2, 1− v2] be two IFNs in the
framework of DST; then

(1) β̃1 ⊕ β̃2 =

[
Bel1 + Bel2

2
,

Pl1 + Pl2
2

]
=

[u1 + u2

2
, 1−

v1 + v2

2

]
(24)

(2) β̃1 ⊗ β̃2 = [Bel1Bel2, Pl1Pl2] = [u1u2, (1− v1)(1− v2)] (25)

(3) δβ̃1 = [δBel1, δPl1] = [δu1, δ(1− v1)], η > 0 (26)

(4) β̃1
δ =

[
Bel1δ, Pl1δ

]
=

[
u1
δ, (1− v1)

δ
]
, η > 0 (27)

(5) β̃1
β̃2 = [Bel1, Pl1]

[Bel2,Pl2] =
[
Bel1Pl2 , Pl1Bel2

]
=

[
u1

1−v2 , (1− v1)
u2

]
(28)

(6)
β̃1

β̃2
=

[Bel1, Pl1]
[Bel2, Pl2]

=

[
Bel1
Pl2

,
Pl1
Bel2

]
=

[ u1

1− v2
,

1− v1

u2

]
(29)
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From above operational Rules (24)–(27), we can get the IFWAMDST and IFWGMDST operators in

the framework of DST. Let β̃i = [ui, 1− vi] be BI and wi be the weight of β̃i,
t∑
i
ωi = 1. Then

IFWAMDST(β̃1, β̃2, · · · , β̃t) =


1

t

t∑
i=1

ωiBeli,
1
t

t∑
i=1

ωiPli


 =

1
t

t∑
i=1

ωiui,
1
t

t∑
i=1

ωi(1− vi)

 (30)

IFWGMDST(β̃1, β̃2, · · · , β̃t) =

 t∏
i=1

Beliωi ,
t∏

i=1

Pliωi

 =
 t∏

i=1

ui
ωi ,

t∏
i=1

(1− vi)
ωi

 (31)

For BI β̃ = [u, 1− v], the SF and AF in the framework of DST are defined by following form:

SFDST
(
β̃
)
= (Bel + Pl)/2 = (1 + u− v)/2 (32)

AFDST
(
β̃
)
= Pl− Bel = 1− u− v (33)

Further, the order relation between h̃1 and h̃2 is denoted as follows:

(1) If SFDST
(
β̃1

)
< SFDST

(
β̃2

)
, then β̃1 < β̃2;

(2) If SFDST
(
β̃1

)
= SFDST

(
β̃2

)
, then

(i) AFDST
(
β̃1

)
> AFDST

(
β̃2

)
, then β̃1 < β̃2

(ii) AFDST
(
β̃1

)
= AFDST

(
β̃2

)
, then β̃1 = β̃2

It is easy to discover that there is a very close connection between Rules (7) and (8) and Rules (32)
and (33). However, it is not suitable that we use Rules (7) and (8) to compare BIs and use Rules (32)
and (33) to compare IFNs.

Let β̃ = [u, 1− v], β̃1 = [u1, 1− v1] and β̃2 = [u2, 1− v2] be three Bis. In this way, it is easy to prove
that (24)–(29) have the following properties:

(1) β̃1 ⊕ β̃2 = β̃2 ⊕ β̃1; (34)

(2) β̃1 ⊗ β̃2 = β̃2 ⊗ β̃1; (35)

(3) δ(β̃1 ⊕ β̃2) = δβ̃2 ⊕ δβ̃1, δ > 0; (36)

(4) (ξ+ δ)β̃ = ξβ̃+ δβ̃, ξ, δ > 0; (37)

(5) (β̃1 ⊗ β̃2)
δ
= β̃1

δ
⊗ β̃2

δ, δ > 0; (38)

(6) β̃ξ ⊗ β̃δ = β̃ξ+δ ξ, δ > 0. (39)

The above new operational rules of IFNs in the framework of DST can overcome the drawbacks
and shortcomings of the OORs of IFNs.

Theorem 1. Equation (24) is a constant operation.

Proof. Let β̃ = [u, 1− v], β̃1 = [u1, 1− v1] and β̃2 = [u2, 1− v2] be the corresponding BIs of IFNs
β = 〈u, v〉, β1 = 〈u1, v1〉 and β2 = 〈u2, v2〉. Suppose β̃1 > β̃2 and u1 − v1 > u2 − v2. We know that
β̃1 + β̃ =

[u1+u
2 , 1− v1+v

2

]
and β̃2 + β̃ =

[u2+u
2 , 1− v2+v

2

]
, so u1 − v1 + u− v > u2 − v2 + u− v. Then we

can get β̃1 ⊕ β̃ > β̃2 ⊕ β̃.
Suppose β̃1 > β̃2, u1 − v1 = u2 − v2 and u1 + v1 > u2 + v2; then u1 − v1 + u − v = u2 − v2 + u − v

and u1 + v1 + u + v > u2 + v2 + u + v. Therefore, we can get SFDST(β̃1 + β̃) > SFDST(β̃2 + β̃) and
β̃1 ⊕ β̃ > β̃2 ⊕ β̃. �
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Theorem 2. Equation (25) is a constant operation.

Proof. Theorem 2 is similar to Theorem 1; the proof is omitted here. �

Theorem 3. Equation (26) is persistent under multiplication.

Proof. Theorem 3 is similar to Theorem 1; the proof is omitted here. �

Theorem 4. The IFWAMDST has monotonicity.

Proof. (1) Let β̃ = [u, 1− v], β̃1 = [u1, 1− v1] and β̃2 = [u2, 1− v2] be the corresponding BIs of IFNs
β = 〈u, v〉, β1 = 〈u1, v1〉 and β2 = 〈u2, v2〉. Suppose β̃1 > β̃2 and u1 − v1 > u2 − v2. Suppose ω1, ω2 are
the weights, ω1 +ω2 = 1. Then

IFWAMDST
(
β̃1, β̃

)
=

1
2
[ω1u1 +ω2u,ω1(1− v1) +ω2(1− v)]

IFWAMDST
(
β̃2, β̃

)
=

1
2
[ω2u1 +ω2u,ω1(1− v2) +ω2(1− v)].

Since ω1(u1 − v1) + ω2(u− v) > ω1(u2 − v2) + ω2(u− v), then SFDST
(
IFWAMDST

(
β̃1, β̃

))
>

SFDST
(
IFWAMDST

(
β̃2, β̃

))
and IFWAMDST

(
β̃1, β̃

)
> IFWAMDST

(
β̃2, β̃

)
.

Suppose β̃1 > β̃2, u1 − v1 = u2 − v2 and u1 + v1 > u2 + v2; then, ω1(u1 − v1) + ω2(u− v) =

ω1(u2 − v2) + ω2(u− v) and ω1(u1 + v1) + ω2(u + v) > ω1(u2 + v2) + ω2(u + v). Therefore,
SFDST

(
IFWAMDST

(
β̃1, β̃

))
> SFDST

(
IFWAMDST

(
β̃2, β̃

))
and IFWAMDST

(
β̃1, β̃

)
> IFWAMDST

(
β̃2, β̃

)
.

(2) Let β̃ = [u, 1− v], β̃i = [ui, 1− vi](i = 1, 2, · · · , t), and β̃′i = [ui
′, 1− vi

′](i = 1, 2, · · · , t) be the
corresponding BIs of IFNs β = 〈u, v〉, βi = 〈ui, vi〉(i = 1, 2, · · · , t) and βi

′ = 〈ui
′, vi
′
〉(i = 1, 2, · · · , t).

Suppose β̃i > β̃i
′ and ui − vi > ui

′
− vi

′. Suppose ωi(i = 1, 2, · · · , t) are the weights of βi and βi
′, ω is the

weight of β, and
(

t∑
i=1

ωi

)
+ω = 1. Then,

IFWAMDST
(
β̃1, β̃2, · · · , β̃t, β̃

)
=

1
t + 1


 t∑

i=1

ωiui

+ωu,

 t∑
i=1

ωi(1− vi)

+ω(1− v)


IFWAMDST

(
β̃1
′, β̃2

′, · · · , β̃m
′, β̃

)
=

1
t + 1


 t∑

i=1

ωiui
′

+ωu,

 t∑
i=1

ωi(1− vi
′)

+ω(1− v)

.
Since

(
t∑

i=1
ωiui

)
+ ωu +

(
t∑

i=1
ωi(1− vi)

)
+ ω(1− v) >

(
t∑

i=1
ωiui

′

)
+ ωu,

(
t∑

i=1
ωi(1− vi

′)

)
+

ω(1− v), then SFDST
(
IFWAMDST

(
β̃1, β̃

))
> SFDST

(
IFWAMDST

(
β̃2, β̃

))
and IFWAMDST

(
β̃1, β̃

)
>

IFWAMDST
(
β̃2, β̃

)
.

Suppose β̃i > β̃i
′, ui − vi = ui

′
− vi

′ and ui + vi > ui
′ + vi

′; then,
(

t∑
i=1

ωiui

)
+

ωu +

(
t∑

i=1
ωi(1− vi)

)
+ ω(1− v) =

(
t∑

i=1
ωiui

′

)
+ ωu,

(
t∑

i=1
ωi(1− vi

′)

)
+ ω(1− v) and(

t∑
i=1

ωiui

)
+ωu +

(
t∑

i=1
ωi(1− vi)

)
+ω(1− v) =

(
t∑

i=1
ωiui

′

)
+ωu,

(
t∑

i=1
ωi(1− vi

′)

)
+ω(1− v)(

t∑
i=1

ωi(ui + vi)

)
+ω(u + v) >

(
t∑

i=1
ωi(ui

′ + vi
′)

)
+ω(u + v)

.

Therefore, SFDST
(
IFWAMDST

(
β̃1, β̃

))
> SFDST

(
IFWAMDST

(
β̃2, β̃

))
and IFWAMDST

(
β̃1, β̃

)
>

IFWAMDST
(
β̃2, β̃

)
. �
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Theorem 5. The IFWGMDST has monotonicity.

Proof. Theorem 5 is similar to Theorem 4; the proof is omitted here. �

2.3. PA Operator

Yager [24] initially developed the PA operator, which permits the attribute values to assist and
balance each other in the aggregation process.

Definition 9 [28,29]. Let χη(η = 1, 2, · · · t) be a set of evaluated values. The PA operator can be defined as
follows:

PA(χ1,χ2, · · · ,χt) =

t∑
η=1

(
1 + T

(
χη

))
χη

t∑
η=1

(
1 + T

(
χη

)) (40)

where T
(
χη

)
=

t∑
τ=1,η,τ

Sup
(
χη,χτ

)
, Sup

(
χη,χτ

)
= 1− d

(
χη,χτ

)
and Sup

(
χη,χτ

)
denotes the grade of support

for χη from χτ, which has the following properties:
(1) Sup

(
χη,χτ

)
∈ [0, 1]; (2) Sup

(
χη,χτ

)
= Sup

(
χη,χτ

)
; (3) Sup

(
χη,χτ

)
> Sup(χk,χl), if d

(
χη,χτ

)
<

d(χk,χl), where η, τ, k, l ∈ {1, 2, · · · , t}.

2.4. MSM Operator

Qin and Liu [31] first proposed the MSM operator, which can capture the interrelationships among
any number of multi-input attribute arguments by changing parameter values.

Definition 10 [31]. Let χη(η = 1, 2, · · · , t) be a set of positive numbers; then, the MSM operator of
χη(η = 1, 2, · · · , t) can be defined as follows:

MSM(κ)(χ1,χ2, · · · ,χt) =


∑

1≤η1<···<ηκ≤t

κ∏
j=1

xη j

Cκt


1/κ

(41)

where Cκt = t!
κ!(t−κ)! is the binomial coefficient, and (η1, η2, · · · , ηκ) traverses all the κ− tuple combination of

(1, 2, · · · , t), where 1 ≤ κ ≤ t.

Evidently, the MSM operator has some desirable properties [31]:

(1) MSM(κ)(0, 0, · · · , 0) = 0, MSM(κ)(χ,χ, · · · ,χ) = χ;

(2) MSM(κ)(χ1,χ2, · · · ,χt) ≤MSM(κ)(χ1
′,χ2

′, · · · ,χt
′), if χη ≤ χη′ for all η;

(3) min
η

{
χη

}
≤MSM(κ)(χ1,χ2, · · · ,χt) ≤ max

η

{
χη

}
.

3. The IFPMSMDST Operators

In this part, we initially propose the intuitionistic fuzzy (IF) power average (IFPADST) operator,
the IF power weighted average (IFPWADST) operator, and the IF MSM (IFMSMDST) operator in the
framework of the DST. Subsequently, we combine the MSM operator with the PA operator and extend
them to IFNs to present the IF power MSM (IFPMSMDST) operator and IF power weighted MSM
(IFPWMSMDST) operator.
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3.1. PA Operator for IFNs in the Framework of DST

Definition 11. Let B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
be the corresponding BI set of IFS B ={

βη
∣∣∣βη = 〈

uη, vη
〉
, η = 1, 2, · · · , t

}
. The IFPADST operator of β̃1, β̃2, · · · , and β̃t can be defined as follows:

IFPADST
(
β̃1, β̃2, · · · , β̃t

)
=

t∑
η=1

(
1 + T

(
β̃η

))
β̃η

t∑
η=1

(
1 + T

(
β̃η

)) (42)

where T
(
β̃η

)
=

t∑
τ=1, j,η

Sup
(
β̃η, β̃τ

)
, (43)

and Sup
(
β̃η, β̃τ

)
denotes the support degree for β̃η from β̃τ, which satisfied the properties of Definition 9, where

1 < η < t, 1 < τ < t and η , τ.

For simplifying Equation (42), we indicate

θη =
1 + T

(
β̃η

)
t∑

η=1

(
1 + T

(
β̃η

)) (44)

where (θ1,θ2, · · · ,θt) is the power-weighted vector of the β̃1, β̃2, · · · , and β̃t. Evidentially, θη ≥ 0 and
t∑

η=1
θη = 1; then, Equation (43) can be simplified as follows:

IFPADST
(
β̃1, β̃2, · · · , β̃t

)
=

t∑
η=1

θηβ̃η. (45)

Theorem 6. Let B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
be the corresponding BI set of IFS B ={

βη
∣∣∣βη = 〈

uη, vη
〉
, η = 1, 2, · · · , t

}
. The aggregated result based on the IFPADST operator is also a BI and

IFPADST
(
β̃1, β̃2, · · · , β̃t

)
=

1
t

t∑
η=1

θηuη,
1
t

t∑
η=1

θη
(
1− vη

). (46)

Proof. By the operational rules of IFNs in the framework of DST, we get θηβ̃η = θη
[
uη, 1− vη

]
=[

θηuη,θη
(
1− vη

)]
, where 1 < η < t. Then, we get

IFPADST
(
β̃1, β̃2, · · · , β̃t

)
=

1
t

t∑
η=1

θηuη,
1
t

t∑
η=1

θη
(
1− vη

).
�
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Definition 12. Let B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
be the corresponding BI set of IFS B ={

βη
∣∣∣βη = 〈

uη, vη
〉
, η = 1, 2, · · · , t

}
. The aggregated result based on the IFPWADST operator is also a BI and

IFPWADST
(
β̃1, β̃2, · · · , β̃t

)
=

t∑
η=1

ωη
(
1 + T

(
β̃η

))
β̃η

t∑
η=1

ωη
(
1 + T

(
β̃η

)) (47)

T
(
β̃η

)
=

t∑
τ=1, j,η

Sup
(
β̃η, β̃τ

)
(48)

where Sup
(
β̃η, β̃τ

)
denotes the support degree for β̃η from β̃τ, which satisfied the properties of Definition 9, where

1 < η < t, 1 < τ < t and η , τ.

For simplifying Equation (41), we indicate

θη =
ωη

(
1 + T

(
β̃η

))
t∑

η=1
ωη

(
1 + T

(
β̃η

)) (49)

where ωη(η = 1, 2, · · · , t) is the weight of β̃η(η = 1, 2, · · · , t). Evidentially, ωη > 0 and
t∑

η=1
ωη = 1, so

Equation (46) can be simplified as follows:

IFPWADST
(
β̃1, β̃2, · · · , β̃t

)
=

t∑
η=1

θηβ̃η (50)

Theorem 7. Let B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
be the corresponding BI set of IFS B ={

βη
∣∣∣βη = 〈

uη, vη
〉
, η = 1, 2, · · · , t

}
. The aggregated result based on the IFPADST operator is also a BI and

IFPWADST
(
β̃1, β̃2, · · · , β̃t

)
=

1
t

t∑
η=1

θηuη,
1
t

t∑
η=1

θη
(
1− vη

). (51)

The proof of Theorem 7 is similar to that of Theorem 6.

3.2. MSM Operator for IFNs in the Framework of DST

Definition 13. Let B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
be the corresponding BI set of IFS B ={

βη
∣∣∣βη = 〈

uη, vη
〉
, η = 1, 2, · · · , t

}
. The IFMSMDST operator of β̃1, β̃2, · · · , and β̃t can be defined as follows:

IFMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
=


∑

1≤η1<···<ηκ≤t

κ∏
j=1

β̃η j

Cκt


1/κ

. (52)
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Theorem 8. Let B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
be the corresponding BI set of IFS B ={

βη
∣∣∣βη = 〈

uη, vη
〉
, η = 1, 2, · · · , t

}
. The aggregated result based on the IFMSMDST operator is also a BI

and

IFMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
=




∑
1≤η1<···<ηκ≤t

κ∏
j=1

uη j(
Cκt

)2


1/κ

,


∑

1≤η1<···<ηκ≤t

κ∏
j=1

(
1− vη j

)
(
Cκt

)2


1/κ. (53)

Proof. By the operational rules of IFNs in the framework of DST, we get
κ∏

j=1
β̃η j =

κ∏
j=1

[
uη, 1− vη

]
=

 κ∏
j=1

uη j ,
κ∏

j=1

(
1− vη j

) and
∑

1≤η1<···<ηκ≤t

 κ∏
j=1

uη j ,
κ∏

j=1

(
1− vη j

) = 1
Cκt

∑
1≤η1<···<ηκ≤t

κ∏
j=1

uη j ,
1

Cκt

∑
1≤η1<···<ηκ≤t

κ∏
j=1

(
1− vη j

), so IFMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
=


∑

1≤η1<···<ηκ≤t

κ∏
j=1

uη j

(Cκt )
2


1/κ

,


∑

1≤η1<···<ηκ≤t

κ∏
j=1

(
1−vη j

)
(Cκt )

2


1/κ. �

3.3. Power MSM Operator for IFNs in the Framework of DST

Definition 14. Let B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
be the corresponding BI set of IFS B ={

βη
∣∣∣βη = 〈

uη, vη
〉
, η = 1, 2, · · · , t

}
. The IFPMSMDST operator of β̃1, β̃2, · · · , and β̃t can be defined as follows:

IFPMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
=



∑
1≤η1<···<ηκ≤t

κ∏
j=1

t
(
1+T

(
β̃η j

))
t∑

η=1
(1+T(β̃η))

β̃η j

Cκt



1/κ

(54)

where T
(
β̃η

)
=

t∑
τ=1,τ,η

Sup
(
β̃η, β̃τ

)
, (55)

and Sup
(
β̃η, β̃τ

)
denotes the support degree for β̃η from β̃τ, which satisfied the properties of Definition 9, where

1 < η < t, 1 < τ < t and η , τ.

For simplifying Equation (53), we indicate

θη =
1 + T

(
β̃η

)
t∑

η=1

(
1 + T

(
β̃η

)) (56)
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where (θ1,θ2, · · · ,θt) is the power-weighted vector of the β̃1, β̃2, · · · , and β̃t. Evidentially, θη ≥ 0 and
t∑

η=1
θη = 1, and then Equation (42) can be simplified as follows:

IFPMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
=


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j β̃η j

Cκt


1/κ

. (57)

Theorem 9. Let B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
be the corresponding BI set of IFS B ={

βη
∣∣∣βη = 〈

uη, vη
〉
, η = 1, 2, · · · , t

}
. The aggregated result based on the IFPMSMDST operator is also a

BI and

IFPMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
=




∑
1≤η1<···<ηκ≤t

κ∏
j=1

tθη juη j(
Cκt

)2


1/κ

,


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j

(
1− vη j

)
(
Cκt

)2


1/κ. (58)

Proof. By the operational rules of IFNs in the framework of DST, we get tθη j β̃η j =

tθη j

[
uη j , 1− vη j

]
=

[
tθη juη j , tθη j

(
1− vη j

)]
and

κ∏
j=1

tθη j β̃η j =
κ∏

j=1

[
tθη juη j , tθη j

(
1− vη j

)]
= κ∏

j=1
tθη juη j ,

κ∏
j=1

tθη j

(
1− vη j

), and then we can get
∑

1≤η1<···<ηκ≤t

 κ∏
j=1

tθη juη j ,
κ∏

j=1
tθη j

(
1− vη j

) = tκ
Cκt

∑
1≤η1<···<ηκ≤t

κ∏
j=1

θη juη j ,
tκ
Cκt

∑
1≤η1<···<ηκ≤t

κ∏
j=1

θη j

(
1− vη j

) and IFPMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
=


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j uη j

(Cκt )
2


1/κ

,


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j

(
1−vη j

)
(Cκt )

2


1/κ. �

Next, some desirable properties of the IFPMSMDST operator are proposed.

Theorem 10 (commutativity). Let B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
be the corresponding BI

set of IFS B =
{
βη

∣∣∣βη = 〈
uη, vη

〉
, η = 1, 2, · · · , t

}
. If B̃′ =

{
β̃′η

∣∣∣β̃′η = [
u′η, 1− v′η

]
, η = 1, 2, · · · , t

}
is any

permutation of B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
, then

IFPMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
= IFPMSMDST

(κ)
(
β̃′1, β̃′2, · · · , β̃′t

)
. (59)
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Proof. Since B̃′ =
{
β̃′η

∣∣∣β̃′η = [
u′η, 1− v′η

]
, η = 1, 2, · · · , t

}
denotes an any permutation of B̃ ={

β̃η
∣∣∣β̃η = [

uη, 1− vη
]
, η = 1, 2, · · · , t

}
, based on the Theorem 9, we can get

IFPMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
=




∑
1≤η1<···<ηκ≤t

κ∏
j=1

tθη j uη j

(Cκt )
2


1/κ

,


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j

(
1−vη j

)
(Cκt )

2


1/κ

=




∑
1≤η1<···<ηκ≤t

κ∏
j=1

tθ′η j u
′
η j

(Cκt )
2


1/κ

,


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθ′η j

(
1−v′η j

)
(Cκt )

2


1/κ

= IFMSMDST
(κ)

(
β̃′1, β̃′2, · · · , β̃′t

)
�

Theorem 11 (Boundedness). Let B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
be the corresponding BI

set of IFS B =
{
βη

∣∣∣βη = 〈
uη, vη

〉
, η = 1, 2, · · · , t

}
. Suppose β̃+η =

[
t

max
η=1

uη,
t

max
η=1

(
1− vη

)]
and β̃−η =[

t
min
η=1

uη,
t

min
η=1

(
1− vη

)]
. Then,

β̃−η ≤ IFPMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
≤ β̃+η . (60)

Proof. Since θη =
1+T(β̃η)

t∑
η=1

(1+T(β̃η))
and

t∑
η=1

θη = 1, based on Equation (57) and the

boundedness of the MSM operator, we can get


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j uη j

(Cκt )
2


1/κ

≤


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j
t

max
η=1

uη j

(Cκt )
2


1/κ

and


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j

(
1−vη j

)
(Cκt )

2


1/κ

≤


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j
t

max
η=1

(
1−vη j

)
(Cκt )

2


1/κ

. From Equation (33),

SF
(
IFPMSMDST

(κ)
(
β̃1, β̃2, · · · , β̃t

))
= 1

2




∑
1≤η1<···<ηκ≤t

κ∏
j=1

tθη j uη j

(Cκt )
2


1/κ

+


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j

(
1−vη j

)
(Cκt )

2


1/κ

≤
1
2




∑
1≤η1<···<ηκ≤t

κ∏
j=1

tθη j
t

max
η=1

uη

(Cκt )
2


1/κ

+


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j
t

max
η=1

(1−vη)

(Cκt )
2


1/κ = SF

(
β̃+η

) .

That is

IFPMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
=




∑
1≤η1<···<ηκ≤t

κ∏
j=1

tθη j uη j

(Cκt )
2


1/κ

,


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j

(
1−vη j

)
(Cκt )

2


1/κ

≤




∑
1≤η1<···<ηκ≤t

κ∏
j=1

tθη j
t

max
η=1

uη

(Cκt )
2


1/κ

,


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j
t

max
η=1

(1−vη)

(Cκt )
2


1/κ = β̃+η
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Similarly, we can get β̃−η ≤ IFPMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
. Therefore, we have

β̃−η ≤ IFPMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
≤ β̃+η .

�

We should see that the IFPMSMDST operators do not have an idempotent property. However, if

we make a slight modification (multiply by
(
Cκt

) 1
κ ), the modified IFPMSMDST (MIFPMSMDST) operator

will be an idempotent operator, as follows:

MIFPMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
=




∑
1≤η1<···<ηκ≤t

κ∏
j=1

tθη juη j

Cκt


1/κ

,


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j

(
1− vη j

)
Cκt


1/κ.

(61)
A similar expression was first obtained by Xu and Yager in [37]. It is evidential that we can obtain

the same ordering result of the alternatives by using the IFPMSMDST operator and the MIFPMSMDST

operator in a real DM. In addition, the IFPMSMDST operator does not satisfy monotonicity because the
dBPA will also make a difference if the attribute values are changed.

Next, some special cases of the IFPMSMDST operator are investigated by considering some diverse
values of κ.

(1) When κ = 1, the IFPMSMDST operator become the IFPADST operator, that is

IFPMSMDST
(1)

(
β̃1, β̃2, · · · , β̃t

)
=


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j uη j

(C1
t )

2 ,

∑
1≤η1<···<ηκ≤t

κ∏
j=1

tθη j

(
1−vη j

)
(Cκt )

2


=

 1
t

t∑
η=1

θηuη, 1
t

t∑
η=1

θη
(
1− vη

) = IFPADST
(
β̃1, β̃2, · · · , β̃t

)
(2) When κ = 2, that is

IFPMSMDST
(2)

(
β̃1, β̃2, · · · , β̃t

)
=




∑
1≤η1<···<ηκ≤t

2∏
j=1

tθη j uη j

(C2
t )

2


1/2

,


∑

1≤η1<···<ηκ≤t

2∏
j=1

tθη j

(
1−vη j

)
(C2

t )
2


1/2

=




∑
1≤η1<···<ηκ≤t

t2θη1 uη1θη2 uη2

(C2
t )

2


1/2

,


∑

1≤η1<···<ηκ≤t
t2θη1(1−vη1)θη1(1−vη1)

(C2
t )

2


1/2

=

 t
C2

t

 ∑
1≤η1<···<ηκ≤t

θη1θη2 uη1uη2

1/2

, t
C2

t

 ∑
1≤η1<···<ηκ≤t

θη1θη1

(
1− vη1

)(
1− vη1

)1/2
(3) When κ = n, that is

IFPMSMDST
(t)

(
β̃1, β̃2, · · · , β̃t

)
=

t


∑
1≤η1<···<ηt≤t

t∏
j=1

θη j uη j

(Ct
t)

2


1/t

, t


∑

1≤η1<···<ηt≤t

t∏
j=1

θη j

(
1−vη j

)
(Ct

t)
2


1/t

=

t
 t∏

j=1
θη juη j

1/t

, t

 t∏
j=1

θη j

(
1− vη j

)1/t
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According to Equation (53), we discover that the IFPMSMDST operator has a definite fault,
i.e., it does not take the importance of the attributes into account. However, in many practice DM
environments, the weights of attributes play a crucial role in the aggregate process. Therefore, we next
present the weighted IFPMSMDST (IFPWMSMDST) operator.

Definition 15. Let B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
be the corresponding BI set of IFS B ={

βη
∣∣∣βη = 〈

uη, vη
〉
, η = 1, 2, · · · , t

}
. The IFPWMSMDST operator of β̃1, β̃2, · · · , and β̃t can be defined as follows:

IFPWMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
=



∑
1≤η1<···<ηκ≤t

κ∏
j=1

tωη j

(
1+T

(
β̃η j

))
t∑

η=1
ωη(1+T(β̃η))

β̃η j

Cκt



1/κ

(62)

where T
(
β̃η

)
=

t∑
τ=1,τ,η

Sup
(
β̃η, β̃τ

)
, (63)

and Sup
(
β̃η, β̃τ

)
denotes the support degree for β̃η from β̃τ, which satisfies the properties of Definition 9, where

1 < η < t, 1 < τ < t and η , τ.

For simplifying Equation (61), we indicate

θη =
ωη

(
1 + T

(
β̃η

))
t∑

η=1
ωη

(
1 + T

(
β̃η

)) (64)

where (θ1,θ2, · · · ,θt) is the power-weighted vector of the β̃1, β̃2, · · · , and β̃t. Evidentially, θη ≥ 0 and
t∑

η=1
θη = 1; then, Equation (62) can be simplified as follows:

IFPWMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
=


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j β̃η j

Cκt


1/κ

. (65)

Theorem 12. Let B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
be the corresponding BI set of IFS B ={

βη
∣∣∣βη = 〈

uη, vη
〉
, η = 1, 2, · · · , t

}
. The aggregated result based on the IFPWMSMDST operator is also a

BI and

IFPWMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
=




∑
1≤η1<···<ηκ≤t

κ∏
j=1

tθη juη j(
Cκt

)2


1/κ

,


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j

(
1− vη j

)
(
Cκt

)2


1/κ.

(66)

Proof. The proof is similar to Theorem 9. Therefore, it is omitted here. �

Likewise, the IFPWMSMDST operator has also some desirable properties, shown as follows:
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Theorem 13 (commutativity). Let B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
be the corresponding BI

set of IFS B =
{
βη

∣∣∣βη = 〈
uη, vη

〉
, η = 1, 2, · · · , t

}
. If B̃′ =

{
β̃′η

∣∣∣β̃′η = [
u′η, 1− v′η

]
, η = 1, 2, · · · , t

}
is any

permutation of B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
, then

IFPWMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
= IFPWMSMDST

(κ)
(
β̃′1, β̃′2, · · · , β̃′t

)
. (67)

Theorem 14 (Boundedness). Let B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
be the corresponding BI

set of IFS B =
{
βη

∣∣∣βη = 〈
uη, vη

〉
, η = 1, 2, · · · , t

}
. Suppose β̃+η =

[
t

max
η=1

uη,
t

max
η=1

(
1− vη

)]
and β̃−η =[

t
min
η=1

uη,
t

min
η=1

(
1− vη

)]
. Then,

β̃−η ≤ IFPWMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
≤ β̃+η . (68)

We can also see that the IFPWMSMDST operators do not have an idempotent property. However,

if we make a slight modification (multiply by
(
Cκt

) 1
κ ), the modified IFPWMSMDST (MIFPMSMDST)

operator will be an idempotent operator, as follows:

MIFPWMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
=




∑
1≤η1<···<ηκ≤t

κ∏
j=1

tθη juη j

Cκt


1/κ

,


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j

(
1− vη j

)
Cκt


1/κ.

(69)
The advantages of operational rules of IFNs in the framework of DST is that we can solve MADM

problems without intermediate defuzzification when input arguments and their weights are both IFNs,
which are not defined in ordinary operators of IFNs. Therefore, we firstly define the IFWPMSMDST

operator where the attribute weights are IFN as follows.

Definition 16. Let B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
be the corresponding BI set of IFS B ={

βη
∣∣∣βη = 〈

uη, vη
〉
, η = 1, 2, · · · , t

}
. ω̂i = 〈ûi, v̂i〉 is the weight of βi in the form of IFN, ω̂i = [ûi, 1− v̂i]

is the corresponding BI of ω̂i.
=
ω =

(=
ω1,

=
ω2, · · · ,

=
ωm

)
is a normalized interval weight vector if and only if

satisfies two conditions [38]: (1) There exists at least a normalized weight vector a = (a1, a2, · · · , am) ∈ A, and

A =

{
a = (a1, a2, · · · , at)

∣∣∣ûi ≤ ai ≤ (1− v̂i), i = 1, 2, · · · , t,
t∑

i=1
ai = 1

}
is a set of normalized weight vectors;

(2) ûi and 1− v̂i, (i = 1, 2, · · · , m) are all attainable in A. The IFWPMSMDST operator of β̃1, β̃2, · · · , and β̃t

can be defined as follows:

IFPWMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
=



∑
1≤η1<···<ηκ≤t

κ∏
j=1

tωη j

(
1+T

(
β̃η j

))
t∑

η=1
ωη(1+T(β̃η))

β̃η j

Cκt



1/κ

(70)

where T
(
β̃η

)
=

t∑
τ=1,τ,η

Sup
(
β̃η, β̃τ

)
, (71)
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and Sup
(
β̃η, β̃τ

)
denotes the support degree for β̃η from β̃τ, which satisfied the properties of Definition 9, where

1 < η < t, 1 < τ < t and η , τ.

For simplifying Equation (63), we indicate

=
θη =

ωη
(
1 + T

(
β̃η

))
t∑

η=1
ωη

(
1 + T

(
β̃η

)) (72)

where (θ1,θ2, · · · ,θt) is the power-weighted vector of the β̃1, β̃2, · · · , and β̃t. Evidentially, θη ≥ 0 and
t∑

η=1
θη = 1. Then, Equation (70) can be simplified as follows:

IFPWMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
=


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j β̃η j

Cκt


1/κ

. (73)

Theorem 15. Let B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
be the corresponding BI set of IFS B ={

βη
∣∣∣βη = 〈

uη, vη
〉
, η = 1, 2, · · · , t

}
. ω̂i = 〈ûi, v̂i〉 is the weight of βi in the form of IFN, ω̂i = [ûi, 1− v̂i] is the

corresponding BI of ω̂i.
=
ω =

(=
ω1,

=
ω2, · · · ,

=
ωm

)
is a normalized interval weight vector. The aggregated result

based on the IFPWMSMDST operator is also a BI and

IFPWMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
=




∑
1≤η1<···<ηκ≤t

κ∏
j=1

tθη juη j(
Cκt

)2


1/κ

,


∑

1≤η1<···<ηκ≤t

κ∏
j=1

tθη j

(
1− vη j

)
(
Cκt

)2


1/κ.

(74)

Theorem 16 (commutativity). Let B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
be the corresponding BI set of

IFS B =
{
βη

∣∣∣βη = 〈
uη, vη

〉
, η = 1, 2, · · · , t

}
. ω̂i = 〈ûi, v̂i〉 is the weight of βi in the form of IFN, ω̂i = [ûi, 1− v̂i]

is the corresponding BI of ω̂i.
=
ω =

(=
ω1,

=
ω2, · · · ,

=
ωm

)
is a normalized interval weight vector. If B̃′ ={

β̃′η
∣∣∣β̃′η = [

u′η, 1− v′η
]
, η = 1, 2, · · · , t

}
is any permutation of B̃ =

{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
.

Then,
IFPWMSMDST

(κ)
(
β̃1, β̃2, · · · , β̃t

)
= IFPWMSMDST

(κ)
(
β̃′1, β̃′2, · · · , β̃′t

)
. (75)

Theorem 17 (Boundedness). Let B̃ =
{
β̃η

∣∣∣β̃η = [
uη, 1− vη

]
, η = 1, 2, · · · , t

}
be the corresponding BI set

of IFS B =
{
βη

∣∣∣βη = 〈
uη, vη

〉
, η = 1, 2, · · · , t

}
. ω̂i = 〈ûi, v̂i〉 is the weight of βi in the form of IFN, ω̂i =

[ûi, 1− v̂i] is the corresponding BI of ω̂i.
=
ω =

(=
ω1,

=
ω2, · · · ,

=
ωm

)
is a normalized interval weight vector. If

β̃+η =

[
t

max
η=1

uη,
t

max
η=1

(
1− vη

)]
and β̃−η =

[
t

min
η=1

uη,
t

min
η=1

(
1− vη

)]
, then

β̃−η ≤ IFPWMSMDST
(κ)

(
β̃1, β̃2, · · · , β̃t

)
≤ β̃+η . (76)
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4. A Novel MADM Method with IFNs in the Framework of DST

In this section, a new MADM method based on the proposed IFPWMSMDST operator and
IFPWMSMDST operator is developed to solve the MADM problems with IFNs in the framework of DST.

Considering a MADM problem, there are m alternatives, denoted by E = {e1, e2, · · · , em} and n
attributes, denoted by C = {c1, c2, · · · , cn}. If the attribute weights are crisp numbers, then the weight

vector is denoted by ω = (ω1,ω2, · · · ,ωn), satisfying ωi > 0 and
n∑

i=1
ωi = 1(i = 1, 2, · · · , n), or if the

attribute weights are IFNs, ω = (ω1,ω2, · · · ,ωn) with ωi = [ui, 1− vi] for i = 1, 2, · · · , n is an interval
weight vector. Let R =

(
ri j

)
m×n

be a decision matrix, where ri j is an evaluation value, which takes the
form of a crisp number or IFN, given by decision makers for the alternative ei ∈ E with respect to the
attribute ci ∈ C. The purpose of this problem is to select the optimal alternatives.

The method for this MADM problem is shown in detail as follows:
Step 1. Normalize the decision matrix R =

(
ri j

)
m×n

. Only the cost criterion c j, ri j is normalized by

using the converted formula (Note: The value converted using ri j =
〈
vi j, ui j

〉
is still denoted by ri j).

Step 2. Convert IFN ri j to BI β̃i j.
Step 3. Calculate Sup

(
β̃i j, β̃iε

)
(i = 1, 2, · · ·m; j, ε = 1, 2, · · · , n; j , ε), that is,

Sup
(
β̃i j, β̃iε

)
= 1− dBPA

(
β̃i j, β̃iε

)
(i = 1, 2, · · ·m; j, ε = 1, 2, · · · , n; j , ε),

where dBPA
(
β̃i j, β̃iε

)
is JD between β̃i j and β̃iε in the framework of the DST.

Step 4. Calculate T
(
β̃i j

)
of β̃i j by the other β̃iε, that is,

T
(
β̃iε

)
=

m∑
ε=1, j,ε

Sup
(
β̃i j, β̃iε

)
(i = 1, 2, · · ·m; j, ε = 1, 2, · · · , n; j , ε) .

Step 5. Calculate θi or
=
θi. If ω = (ω1,ω2, · · · ,ωn) with ωi = [ui, 1− vi] for i = 1, 2, · · · , n, satisfies

n∑
i=1

ui + max
j

(
1− v j − u j

)
≤ 1 and

n∑
i=1

(1− vi) −max
j

(
1− v j − u j

)
≥ 1, then ω is normalized. If

ω = (ω1,ω2, · · · ,ωn) is not a normalized interval weight vector (NIWV), then convert into a normalized
weight vector (see [38]), that is,

ui
′ = min

ω ∈ [u j, (1− v j)], j = 1, 2, · · · , n
n∑

j=1
ω j = 1

ωi = max

ui, 1−
n∑

j=1, j,i

(
1− v j

), i = 1, 2, · · · , n (77)

(1− vi)
′ = max

ω ∈ [u j, (1− v j)], j = 1, 2, · · · , n
n∑

j=1
ω j = 1

ωi = max

1− vi, 1−
n∑

j=1, j,i

u j

, i = 1, 2, · · · , n (78)

and then,
=
θi j =

ωi
(
1 + T

(
β̃i j

))
n∑

k=1
ωk

(
1 + T

(
β̃ik

)) or θi j =
ωi

(
1 + T

(
β̃i j

))
n∑

k=1
ωk

(
1 + T

(
β̃ik

)) .

Step 6. Apply the proposed IFPWMSMDST operator or IFPWMSMDST operator to acquire the
comprehensive value β̃i (i = 1, 2, · · ·m) of each alternative.

Step 7. Calculate the SFDST
(
β̃i
)
, AFDST

(
β̃i
)

by Equation (32) and Equation (33), respectively.
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Step 8. Rank the alternatives and obtain the best alternative.

5. Practical Application

In this section, we apply an illustrated example of the share-bike evaluation to demonstrate the
process of the novel method.

Example 6. By increasing the value of customer experience, a share-bike operation company plans to
put new share-bikes into market. Now, there are four different share-bikes (E = {e1, e2, e3, e4}) from four
different share-bike manufacturers, but the share-bike operation company does not know which one is best.
Therefore, they invite a tester to evaluate the four different share-bikes. Suppose four attributes are considered,
containing safety (c1), comfortability (c2), convenience (c3) and aesthetic (c4). The weight vector ω of the
attribute is ω = (0.4, 0.3, 0.2, 0.1)T. The assessment value ri j of criterion c j( j = 1, 2, 3, 4) with the alternative
ei(i = 1, 2, 3, 4) takes the form of the IFN, and the collected and processed decision matrix is constructed, as
shown in Table 1.

Table 1. The decision matrix represented by intuitionistic fuzzy number (IFNs).

c1 c2 c3 c4

e1 〈0.6, 0.1〉 〈0.7, 0.3〉 〈0.7, 0.1〉 〈0.4, 0.3〉

e2 〈0.7, 0.2〉 〈0.6, 0.1〉 〈0.5, 0.4〉 〈0.5, 0.3〉

e3 〈0.3, 0.3〉 〈0.6, 0.2〉 〈0.7, 0.2〉 〈0.6, 0.1〉

e4 〈0.6, 0.3〉 〈0.5, 0.2〉 〈0.4, 0.4〉 〈0.5, 0.3〉

5.1. Rank the Alternatives by the New Method Based on IFWPMSMDST Operator

In this section, we present the detailed calculation process of the novel method based on the
IFWPMSMDST operator.

Step 1: Normalize the IFN matrix R =
(
ri j

)
m×n

.
Because the four attributes are beneficial, it is not essential to perform normalization.
Step 2: Convert IFN ri j to BI β̃i j and BPAs.
The converted results of the IFNs are shown in Table 2.

Table 2. The belief intervals (Bis) from the IFNs.

c1 c2 c3 c4

b1 [0.6, 0.9] [0.7, 0.7] [0.7, 0.9] [0.4, 0.7]

b2 [0.7, 0.8] [0.6, 0.9] [0.5, 0.6] [0.5, 0.7]

b3 [0.3, 0.7] [0.6, 0.8] [0.7, 0.8] [0.6, 0.9]

b4 [0.6, 0.7] [0.5, 0.8] [0.4, 0.6] [0.5, 0.7]

The BPAs for ri j(i, j = 1, 2, 3, 4) are shown in Table 3.
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Table 3. The basic probability assignments (BPas) for ri j(i, j = 1, 2, 3, 4).

s(T) s(F) s(T or F) s(T) s(F) s(T or F)

f11 0.6 0.1 0.3 f31 0.3 0.3 0.4

f12 0.7 0.3 0 f32 0.6 0.2 0.2

f13 0.7 0.1 0.2 f33 0.7 0.2 0.1

f14 0.4 0.3 0.3 f34 0.6 0.1 0.3

s(T) s(F) s(T or F) s(T) s(F) s(T or F)

f21 0.7 0.2 0.1 f41 0.6 0.3 0.1

f22 0.6 0.1 0.3 f42 0.5 0.2 0.3

f23 0.5 0.4 0.1 f43 0.4 0.4 0.2

f24 0.5 0.3 0.2 f44 0.5 0.3 0.2

Step 3: Calculating Sup
(
β̃i j, β̃iε

)
(i = 1, 2, · · · 4; j, ε = 1, 2, · · · , 4; j , ε), we have

Sup
(
β̃1 j, β̃1r

)
= Sup

(
β̃1r, β̃1 j

)
=


1.0000 0.9186 0.9065 0.7439
0.9186 1.0000 0.7976 0.7095
0.9065 0.7976 1.0000 0.6485
0.7439 0.7095 0.6485 1.0000

,

Sup
(
β̃2 j, β̃2r

)
= Sup

(
β̃2r, β̃2 j

)
=


1.0000 0.7959 0.7127 0.6905
0.7959 1.0000 0.7087 0.8463
0.7127 0.7087 1.0000 0.8069
0.6905 0.8463 0.8069 1.0000

,

Sup
(
β̃3 j, β̃3r

)
= Sup

(
β̃3r, β̃3 j

)
=


1.0000 0.8063 0.7962 0.8659
0.8063 1.0000 0.6980 0.7743
0.7962 0.6980 1.0000 0.8964
0.8659 0.7743 0.8964 1.0000

,

Sup
(
β̃4 j, β̃4r

)
= Sup

(
β̃4r, β̃4 j

)
=


1.0000 0.8863 0.7085 0.9065
0.8863 1.0000 0.6996 0.8549
0.7085 0.6996 1.0000 0.6900
0.9065 0.8549 0.6900 1.0000

.
Step 4: Calculate the T

(
β̃i j

)
of β̃i j by the other β̃ik, that is,

T
(̃
hi j

)
=


2.4977 2.5630 2.3329 2.0064
2.2296 2.3027 2.1284 2.3344
2.3964 2.3753 2.6608 2.6570
2.3806 2.4469 2.2081 2.3597

.
Step 5. Calculate θi j, and we have

θi j =


0.4103 0.3157 0.1916 0.0824
0.3978 0.3082 0.1899 0.1041
0.3882 0.2886 0.2155 0.1076
0.4028 0.3105 0.1868 0.0998

.
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Step 6: Apply the proposed IFPWMSMDST operator shown in Equation (50) to get the
comprehensive value β̃i (i = 1, 2, · · · 4) of each alternative (κ = 2).

IFPWMSMDST
(
β̃1

)
= [0.1958, 0.2387], IFPWMSMDST

(
β̃2

)
= [0.1609, 0.2037],

IFPWMSMDST
(
β̃3

)
= [0.1496, 0.2102], IFPWMSMDST

(
β̃4

)
= [0.1105, 0.1864].

Step 7: Calculate the SFDST
(
β̃i
)

by Equation (31), and we have

SFDST
(
β̃1

)
= 0.2173, SFDST

(
β̃2

)
= 0.1823, SFDST

(
β̃3

)
= 0.1800, SFDST

(
β̃4

)
= 0.1485.

Step 8: Rank the alternatives and obtain the best alternative.
Because SFDST

(
β̃1

)
> SFDST

(
β̃2

)
> SFDST

(
β̃3

)
> SFDST

(
β̃4

)
, the ranking order is e1 � e2 � e3 � e4,

and the best share-bike is e1.

5.2. The Influence of the Parameter κ on Ranking Results

Further, to analyze the influence of parameter κ on the ranking results, we assign a distinct
parameter κ in the presented novel method to solve the above example, and the ranking orders are
shown in Table 4.

Table 4. Ranking orders of the alternatives for different parameter κ.

κ SFDST
(
β̃i
)

Ranking Orders

κ = 1 S̃1 = 0.1859, S̃2 = 0.1605, S̃3 = 0.1553, S̃4 = 0.1468 e1 � e2 � e4 � e3

κ = 2 S̃1 = 0.2173, S̃2 = 0.1823, S̃3 = 0.1800, S̃4 = 0.1485 e1 � e2 � e3 � e4

κ = 3 S̃1 = 0.2012, S̃2 = 0.1760, S̃3 = 0.1627, S̃4 = 0.1377 e1 � e2 � e3 � e4

κ = 4 S̃1 = 0.1986, S̃2 = 0.1605, S̃3 = 0.1613, S̃4 = 0.1285 e1 � e3 � e2 � e4

Note: S̃i is abbreviation of score value SFDST(bi).

From Table 4, we can see that the ranking orders of the four alternatives with different κ parameters
are different. However, the best share-bike does not change by a different parameter κ, which is still
e1. This is, in all probability, because of the fact that the proposed novel method allows for more
interacted attributes with an increase of the value of parameter κ. When κ = 1, the proposed novel
method does not take interrelationship among attributes into account, and the ranking order is separate
from the ones when κ = 2, κ = 3, and κ = 4. Clearly, this can illuminate the significance of taking
interrelationship among attributes into account because there is a universal interrelationship among
more than two attributes in the practice DM environment.

In addition, we also can find that the SFDST
(
β̃i
)
(i = 1, 2, · · · 4) of ei(i = 1, 2, · · · 4) decreases with an

increase of value of parameter κ. Based on this case, parameter κ can be used as the risk preference of
the tester. For example, if the tester is risk-averse, then he/she can select a smaller value for parameter
κ. Under normal circumstances, κ = [n/2] is a suitable value, where n is the number of attributes and
the symbol [·] is the round function.

5.3. The Verification of the Effectiveness

To demonstrate the plausibility and validity of the presented novel method based on the
IFPWMSMDST operator, we deal with the same share-bike problem in Section 5.1 by applying the four
existing methods, Jiang and Wei’s method [11], based on the intuitionistic fuzzy evidential power
aggregation (IFEPA) operator, He and He’s method [28], based on the extended weighted intuitionistic
fuzzy interaction Bonferroni mean (EWIFIBM) operator, Qin and Liu’s method [31], based on the
weighted intuitionistic fuzzy MSM (WIFMSM) operator, where we let κ = 2 for the presented novel
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method, and Qin and Liu’s method [28]; let λ = 1, p = 1, and q = 1 for He and He’s method [31].
The ranking orders of different methods are shown in Table 5.

Table 5. The ranking orders of different methods for Example 6.

Methods Score Values Ranking Orders

Jiang and Wei’s method [11] based
on IFEPA operator S1 = 0.4629, S2 = 0.4086, S3 = 0.3807, S4 = 0.3518 e1 � e2 � e4 � e3

He and He’s method [28] based on
EWIFIBM operator S1 = 0.2950, S2 = 0.2749, S3 = 0.2664, S4 = 0.2215 e1 � e3 � e2 � e4

Qin and Liu’s method [31] based
on WIFMSM S1 = 0.1994, S2 = 0.1806, S3 = 0.1594, S4 = 0.1447 e1 � e2 � e3 � e4

The proposed method based on
IFPWMSMDST operator S̃1 = 0.2173, S̃2 = 0.1823, S̃3 = 0.1800, S̃4 = 0.1485 e1 � e3 � e2 � e4

Note: Si is an abbreviation of score value SF(bi), S̃i is an abbreviation of score value SFDST(bi).

From Table 5, we get a desirable outcome, that is, the ranking order based on proposed novel
method is same as existing three methods [11,28,31]. Therefore, the proposed novel method is effective.

5.4. The Advantages Compared with the Existing Methods

In Section 5.3, the effectiveness of the proposed novel method is verified. However, owing
to the same ranking orders, it is not possible to highlight visually the advantages of the proposed
novel method and limitations of the existing some method in [11,28,31]. Accordingly, we apply the
proposed novel method and the existing three methods in [11,28,31] to deal with new numerical
practice examples.

5.4.1. Considering the Interrelationship among Attributes

Example 7. In order to maintain the long-term stability of their high-quality talent, a company wants to lease
a dorm to them. Now, there are four alternatives (E = {e1, e2, e3, e4}) from four different residential districts.
Suppose four attributes are considered, consisting of cost (c1), comfortability (c2), convenience (c3), and living
spaces (c4). The weight vector ω of the attribute is ω = (0.4, 0.1, 0.2, 0.3)T. The assessment value ri j of criterion
c j( j = 1, 2, 3, 4) with alternative ei(i = 1, 2, 3, 4) takes the form of IFN, and the collected and processed decision
matrix is constructed, as shown in Table 6. The ranking orders are shown in Table 7.

Table 6. The decision matrix represented by IFNs.

c1 c2 c3 c4

e1 〈0.4, 0.3〉 〈0.5, 0.2〉 〈0.8, 0.1〉 〈0.6, 0.1〉

e2 〈0.6, 0.3〉 〈0.5, 0.2〉 〈0.6, 0.3〉 〈0.6, 0.2〉

e3 〈0.4, 0.3〉 〈0.5, 0.3〉 〈0.8, 0.1〉 〈0.5, 0.2〉

e4 〈0.6, 0.3〉 〈0.6, 0.1〉 〈0.4, 0.2〉 〈0.6, 0.2〉

From Table 6, it is easy to see that when κ = 1 the ranking order based on the presented method is
the same as the one based on Jiang and Wei’s method [11], i.e., e3 � e2 � e1 � e4. To put it other way,
when κ = 1, the presented method does not take into consideration the interrelationship of attributes.
In this instance, the presented method is similar to Jiang and Wei’s method [11], which simply offers a
weighted average function. It is obvious that these ranking orders may not be reasonable, because, in
this example, there is a dependable interrelationship between cost, comfort, and living spaces. In a real
DM environment, we should consider this interaction among attributes. At the same time, it is also
easy to find that when κ = 2 and κ = 3, the ranking orders based on presented method is the same
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as the one based on Qin and Liu’s method [31] and He and He’s method [28], i.e., e3 � e2 � e4 � e1.
Obviously, when κ = 2 and κ = 3, the presented method considers this interaction among attributes,
which is similar to Qin and Liu’s method [31] and He and He’s method [28]. Undoubtedly, these
ranking orders are more reasonable.

Table 7. The ranking orders of the different methods for Example 7.

Methods Score Values Ranking Orders

Jiang and Wei’s method [11] based
on IFEPA operator S1 = 0.2180, S2 = 0.2219, S3 = 0.2309, S4 = 0.1994 e3 � e2 � e1 � e4

Qin and Liu’s method [31] based
on WIFMSM (κ = 2) S1 = 0.1769, S2 = 0.1905, S3 = 0.1976, S4 = 0.1870 e3 � e2 � e4 � e1

He and He’s method [28] based on
EWIFIBM operator (λ = 1, p = 1

and q = 1)
S1 = 0.3017, S2 = 0.3428, S3 = 0.3592, S4 = 0.3307 e3 � e2 � e4 � e1

The proposed method based on
IFPWMSMDST operator (κ = 1) S̃1 = 0.2180, S̃2 = 0.2286, S̃3 = 0.2375, S̃4 = 0.2005 e3 � e2 � e1 � e4

The proposed method based on
IFPWMSMDST operator (κ = 2) S̃1 = 0.1802, S̃2 = 0.1973, S̃3 = 0.2095, S̃4 = 0.1965 e3 � e2 � e4 � e1

The proposed method based on
IFPWMSMDST operator (κ = 3) S̃1 = 0.1758, S̃2 = 0.1906, S̃3 = 0.1984, S̃4 = 0.1863 e3 � e2 � e4 � e1

Note: Si is an abbreviation of score value SF(bi), S̃i is an abbreviation of score value SFDST(bi).

5.4.2. Reducing the Influence of Extreme Evaluation Values

Example 8. In many cases, due to the preferences of decision makers, extreme evaluation values of attributes
may be provided, i.e., values that are too high or too low. Thus, it is possible to get some unreasonable ranking
orders. To illustrate this case, based on Example 7, we change the value of r11 to 〈0.99, 0.01〉 and change the
value of r44 to 〈0.01, 0.01〉. Then, we obtain a new decision matrix, which is shown in Table 8. The ranking
orders are shown in Table 9.

Table 8. The changed decision matrix represented by IFNs based on Example 7.

c1 c2 c3 c4

e1 〈0.99, 0.01〉 〈0.5, 0.2〉 〈0.8, 0.1〉 〈0.6, 0.1〉

e2 〈0.6, 0.3〉 〈0.5, 0.2〉 〈0.6, 0.3〉 〈0.6, 0.2〉

e3 〈0.4, 0.3〉 〈0.5, 0.3〉 〈0.8, 0.1〉 〈0.5, 0.2〉

e4 〈0.6, 0.3〉 〈0.6, 0.1〉 〈0.4, 0.2〉 〈0.01, 0.01〉

From Table 9, it is easy to see that too high an evaluation value 〈0.99, 0.01〉 and too low an evaluation
value 〈0.01, 0.01〉 have pivotal effects on the ranking orders based on Qin and Liu’s method [31] and He
and He’s method [28]. Their ranking orders are changed from e3 � e2 � e4 � e1 to e1 � e3 � e2 � e4, and
the best alternative is also changed from e3 to e1. Evidentially, the ranking order may be unreasonable.
In other words, in real DM problems, decision-makers may become a manipulator by giving some
extreme and biased evaluation values. Nevertheless, the ranking orders based on Jiang and Wei’s
method [11] and the presented method are still reasonable. Although some ranking orders have
changed, their best alternative is still the same as the one acquired in Example 7, i.e., e3 and the
influence of extreme evaluation values is not very strong.

Obviously, the reason for the favorable ranking orders is that the PA operator can significantly
reduce the influence of extreme evaluation values by inputting different weights. When decision-makers
give extreme evaluation values, the PA operator can give these attributes a relatively smaller weight by
the support degrees (SDs) between attributes. Under such circumstances, the influence of extreme
evaluation values on ranking orders fades.
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Table 9. The ranking orders of the different methods for Example 8.

Methods Score Values Ranking Orders

Jiang and Wei’s method [11] based
on IFEPA operator S1 = 0.2216, S2 = 0.2219, S3 = 0.2309, S4 = 0.1549 e3 � e2 � e1 � e4

Qin and Liu’s method [31] based
on WIFMSM (κ = 2) S1 = 0.2185, S2 = 0.1905, S3 = 0.1976, S4 = 0.1439 e1 � e3 � e2 � e4

He and He’s method [28] based on
EWIFIBM operator (λ = 1, p = 1

and q = 1)
S1 = 0.3682, S2 = 0.3428, S3 = 0.3592, S4 = 0.2805 e1 � e3 � e2 � e4

The proposed method based on
IFPWMSMDST operator (κ = 1) S̃1 = 0.2281, S̃2 = 0.2286, S̃3 = 0.2375, S̃4 = 0.1759 e3 � e2 � e1 � e4

The proposed method based on
IFPWMSMDST operator (κ = 2) S̃1 = 0.1965, S̃2 = 0.1973, S̃3 = 0.2095, S̃4 = 0.1630 e3 � e2 � e4 � e1

The proposed method based on
IFPWMSMDST operator (κ = 3) S̃1 = 0.1896, S̃2 = 0.1906, S̃3 = 0.1984, S̃4 = 0.1649 e3 � e2 � e4 � e1

Note: Si is an abbreviation of score value SF(bi), S̃i is an abbreviation of score value SFDST(bi).

5.4.3. The Attribute Weights can be Denoted by IFNs

Example 9. From Section 2, we know that the ordinary operation laws of IFS may lead to unreasonable
ranking orders because of the unfavorable properties and because the AOs presented by IFNs are not developed.
Undoubtedly, these are critical defects in the ordinary operation laws of the IFS. However, the operation
laws of the IFS in the framework of the DST proposed in this paper can overcome these critical problems by
solving the MADM problems without intermediate defuzzification when the attributes and their weights are
IFNs. To illustrate the advantage of this proposed method based on the IFPWMSMDST operator, and based
on Example 7, we initially change ω = (0.4, 0.1, 0.2, 0.3)T to ŵ = (〈0.3, 0.3〉, 〈0.2, 0.6〉, 〈0.1, 0.4〉, 〈0.3, 0.5〉)T.
The corresponding interval weights of ŵ are ŵ = ([0.3, 0.7], [0.2, 0.4], [0.1, 0.6], [0.3, 0.5]). From Step 5 in
Section 4, we know that ŵ is NIWV. The ranking orders are listed in Table 10.

Table 10. The ranking orders of different methods for Example 9.

Methods Score Values Ranking Orders

Jiang and Wei’s method [11] based
on IFEPA operator Cannot be counted Cannot be ranked

He and He’s method [28] based on
EWIFIBM operator Cannot be counted Cannot be ranked

Qin and Liu’s method [31] based
on WIFMSM Cannot be counted Cannot be ranked

The proposed method based on
IFPWMSMDST operator S̃1 = 0.1904, S̃2 = 0.2296, S̃3 = 0.2408, S̃4 = 0.2075 e3 � e2 � e4 � e1

Note: S̃i is an abbreviation of score value SFDST(bi).

From Table 10, we can see that only the proposed method based on the IFPWMSMDST operator
can give a ranking order, i.e., e3 � e2 � e4 � e1. Consequently, the operation laws of the IFS in the
framework of DST proposed in this paper can augment the function of AOs.

On the strength of the above three examples, the limitations of the existing methods [11,28,31] are
analyzed and summarized as follows:

(1) With regard to method [11], on the one hand, this method does not take into account the
interrelationships of attributes. In Example 7, we point out that in some real circumstances, it is
meaningful to consider the interrelationships of attributes, but this method can only deal with
MADM problems in which attributes are independent of each other. On the other hand, because
there are not variable parameters, this method cannot manifest the decision-makers’ subject
preference, so it does not apply to some experts with risk attitudes.
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(2) With regard to method [28], for one thing, this method cannot reduce the influence of extreme
evaluation values. For another, it only considers the interrelationships between attributes, but it
cannot capture the interrelationships among attributes.

(3) With regard to method [31], although this method can take into account the interrelationships
among attributes, it similarly cannot overcome the drawbacks from the influence of extreme
evaluation values.

Most crucially, compared with the presented method based on the IFPWMSMDST operator, the
most obvious limitations of methods [11,28,31] is that they cannot be calculated when attribute weights
are IFNs and may obtain some unfavorable ranking orders because of operation laws.

In the following, we make a comparison of the characteristics of the presented method based on the
IFPWMSMDST operator with existing methods [11,28,31]. This comparison is shown in Table 11. We can
see that the presented method based on the IFPWMSMDST operator is free from the drawbacks of the
three existing methods [11,28,31] and is more extensive and flexible in dealing with MADM problems.

Table 11. The comparison results of the characteristics for the different methods.

Method

Whether it
Eliminates the

Effects of Biased
Values

Whether it
Considers the

Interrelationships
among Attributes

Whether Attribute
Weights Can Be

Denoted by IFNs

Whether it Overcomes
the Drawbacks of the
Ordinary Operation

Laws of the IFS

Jiang and Wei’s
method [11] based
on IFEPA operator

Yes No No No

He and He’s
method [28] based

on EWIFIBM
operator

No No No No

Qin and Liu’s
method [31] based

on WIFMSM
No Yes No No

The proposed
method based on

IFPWMSMDST
operator

Yes Yes Yes Yes

6. Conclusions

There exists a close and forceful relationship between the IFS and the DST. In the framework of
the DST, an IFN can be converted into a BPA, and mathematical operations on IFNs are represented
as operations on Bis, which can overcome the drawbacks of the OORs of IFNs. In this case, we can
utilize JD to measure the differences between IFNs. We all know that decision-makers may provide
extreme evaluation values in practice MADM problems, and we should consider the interrelationships
among attributes in many cases. Therefore, based on the characteristics of the MSM operator and PA
operator, we developed two novel aggregate operators in the framework of the DST, i.e., an IFPMSMDST

operator and an IFPWMSMDST operator. In addition, we discussed the properties of above two
new aggregate operators. Then, we proposed a novel MADM method based on the IFPWMSMDST

operator, which can overcome drawbacks of some existing methods [11,28,31], where they cannot be
calculated when attribute weights are IFNs and may obtain some unfavorable ranking orders because
of operation laws. Finally, some examples were utilized to demonstrate that the presented methods
outperform the previous ones [11,28,31]. In the future, we will apply the IFPWMSMDST operator to
solve multi-attribute group decision-making problems in the framework of the DST. We will also
power the MSM operator to aggregate other fuzzy information, such as interval intuitionistic fuzzy
sets, hesitant fuzzy sets, and so on. Further, we will use the presented method to deal with some
practice MADM problems, such as green supplier selection, disease diagnosis, and so on.



Symmetry 2019, 11, 807 28 of 29

Author Contributions: H.G.: Conceptualization, Methodology, Writing—original draft. H.Z.: Data curation,
Validation. P.L.: Conceptualization, Writing—review & editing, Funding acquisition.

Funding: This paper is supported by the National Natural Science Foundation of China (Nos. 71771140 and
71471172), the humanities and social sciences of Shandong Province and the Science Research Foundation of Heze
University (No. XY16SK02).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
2. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
3. Buyukozkan, G.; Gocer, F. Application of a new combined intuitionistic fuzzy MADM approach based on

axiomatic design methodology for the supplier selection problem. Appl. Soft Comput. 2017, 52, 1222–1238.
[CrossRef]

4. Hao, Z.; Xu, Z.; Zhao, H.; Zhang, R. Novel intuitionistic fuzzy decision-making models in the framework of
decision field theory. Inf. Fusion 2017, 33, 57–70. [CrossRef]

5. Liao, H.; Mi, X.; Xu, Z.; Xu, J.; Herrera, F. Intuitionistic Fuzzy Analytic Network Process. IEEE Trans. Fuzzy
Syst. 2018, 26, 2578–2590. [CrossRef]

6. Hao, Z.; Xu, Z.; Zhao, H.; Fujita, H. A Dynamic Weight Determination Approach Based on the Intuitionistic
Fuzzy Bayesian Network and Its Application to Emergency Decision Making. IEEE Trans. Fuzzy Syst. 2018,
26, 1893–1907. [CrossRef]

7. Otay, I.; Oztaysi, B.; Onar, S.C.; Kahraman, C. Multi-expert performance evaluation of healthcare institutions
using an integrated intuitionistic fuzzy AHP&DEA methodology. Knowl.-Based Syst. 2017, 133, 90–106.

8. Liu, P.; Liu, W. Intuitionistic fuzzy interaction Maclaurin symmetric means and their application to
multiple-attribute decision-making. Technol. Econ. Dev. Econ. 2018, 24, 1533–1559. [CrossRef]

9. Dymova, L.; Sevastjanov, P. An interpretation of intuitionistic fuzzy sets in terms of evidence theory: Decision
making aspect. Knowl. Based Syst. 2010, 23, 772–782. [CrossRef]

10. Dymova, L.; Sevastjanov, P. The operations on intuitionistic fuzzy values in the framework of Dempster–Shafer
theory. Knowl. Based Syst. 2012, 35, 132–143. [CrossRef]

11. Jiang, W.; Wei, B. Intuitionistic fuzzy evidential power aggregation operator and its application in multiple
attribute decision-making. Int. J. Syst. Sci. 2017, 4, 1–13.

12. Wan, S.; Wang, F.; Dong, J. Additive consistent interval-valued Atanassov intuitionistic fuzzy preference
relation and likelihood comparison algorithm based group decision making. Eur. J. Oper. Res. 2017, 263,
571–582. [CrossRef]

13. Gong, Z.; Zhang, N.; Chiclana, F. The optimization ordering model for intuitionistic fuzzy preference relations
with utility functions. Knowl.-Based Syst. 2018. [CrossRef]

14. Garg, H. Novel intuitionistic fuzzy decision making method based on an improved operation laws and its
application. Eng. Appl. Artif. Intell. 2017, 60, 164–174. [CrossRef]

15. Shen, F.; Ma, X.; Li, Z.; Xu, Z.; Cai, D. An extended intuitionistic fuzzy topsis method based on a new distance
measure with an application to credit risk evaluation. Inf. Sci. 2018, 428, 105–119. [CrossRef]

16. Qu, G.; Qu, W.; Wang, J.; Zhou, H.; Liu, Z. Factorial-Quality Scalar and an Extension of ELECTRE in
Intuitionistic Fuzzy Sets. Int. J. Inf. Technol. Dec. Mak. 2018, 17, 183–207. [CrossRef]

17. Sennaroglu, B.; Celebi, G.V. A military airport location selection by AHP integrated PROMETHEE and
VIKOR methods. Transp. Res. Part D Transp. Environ. 2018, 59, 160–173. [CrossRef]

18. Atanoassov, K.T.; Vassilev, P. On the Intuitionistic Fuzzy Sets of n-th Type. Adv. Data Anal. Comput. Intell.
Methods 2018, 738, 265–274.

19. Ansari, M.D.; Mishra, A.R. New Divergence and Entropy Measures for Intuitionistic Fuzzy Sets on Edge
Detection. Int. J. Fuzzy Syst. 2018, 20, 474–487. [CrossRef]
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