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Abstract: Decision making under uncertainty describes situations that consider a profound lack
of knowledge, where the functional form is completely unknown, and often, the relevant input
and output variables are unknown as well. Data, being the vital input of decision making, contain
a dissimilar level of imprecision that necessitates different approaches for making a proper and
legitimate decision. In this article, we propose the concept of the intuitionistic type-2 fuzzy set (IT2FS).
Several arithmetic operations on IT2FS such as union, intersection, complement, containment, etc.,
are defined, and the related algebraic properties of IT2FS are also studied. Subsequently, we define
two new operators, namely the necessity operator and the possibility operator, to convert an IT2FS
into an ordinary T2FS, and then discuss some of their basic properties. Moreover, in this study, two
distance measures, the Hamming distance and Euclidian distance of IT2FS, are proposed, and their
applications are illustrated with an example.

Keywords: type-2 fuzzy set; intuitionistic type-2 fuzzy set; possibility and necessity operators;
distance measure

1. Introduction

Uncertainty is an intrinsic feature of information. In many scientific and industrial applications,
we make decisions in an environment with different kinds of uncertainty. Currently, most of the
decision-making processes involve retrieving and analyzing information, which is mostly incomplete,
noisy, fragmentary, or sometimes contradictory. Therefore, the models characterizing the real world
require being accompanied by the proper uncertainty representations. With the advent of soft
computing (SC) methods, several powerful tools in the field of computational intelligence were
introduced including type-1 fuzzy logic, neural networks, evolutionary algorithms, and hybrid
intelligent systems [1–3].

The application of fuzzy sets in decision making and optimization problems has been widely
studied since its inception [4]. However, in the literature, many studies have shown growing
interest in the study of decision-making problems using intuitionistic fuzzy sets/numbers [5,6]. The
intuitionistic fuzzy set (IFS) is an extension of the fuzzy set introduced by Atanassov [7,8]. IFS is a
more generalized version of the fuzzy set, which can be defined in terms of the degrees of membership
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and non-membership (the residual term is referred to as the degree of indeterminacy). Presently,
IFSs are being studied and used in different fields of science and technology for decision making
problems. For instance, Marasini et al. [9] implemented an IFS approach for the problem of students’
satisfaction with university teaching, which can take into account a source of uncertainty related to
items and another related to subjects. Subsequently, Marasini et al. [10] presented a study, where
the intuitionistic fuzzy set was used for questionnaire analysis, with a focus on the construction
of membership, non-membership, and uncertainty functions. In addition, several researchers have
developed several decision-making problems in the field of intuitionistic fuzzy sets [11–16].

A type-2 fuzzy set (T2FS) is an extension of the ordinary fuzzy set, i.e., type-1 fuzzy set (T1FS).
The fundamental superiority of the type-2 fuzzy set, over the type-1 fuzzy set, has been its ability
to capture the membership of relevant membership values, where the uncertainty is handled more
accurately. The membership value of a type-1 fuzzy set is a real number in [0, 1]. On the other
hand, the membership value of a T2FS is a type-1 fuzzy set. The concept of T2FS was introduced by
Zadeh [17–19]. The overviews of type-2 fuzzy sets were given in Mendel [20]. Since ordinary fuzzy sets
and interval-valued fuzzy sets are special cases of type-2 fuzzy sets, Takac [21] proposed that type-2
fuzzy sets are very practical in the circumstances where there are more uncertainties. Kundu et al. [22]
proposed a fixed charge transportation problem with type-2 fuzzy parameters from the viewpoint of
type reduction and the centroid. Mizumoto and Tanaka [23,24] and Dubois and Prade [25] investigated
the logical operations of T2FS. Later, many researchers did many investigations on theoretical [26–29],
as well as on various application domains [30–34] of T2FS.

Considering both intuitionistic fuzzy and type-2 fuzzy environments, Singh and Garg [35]
proposed the symmetric TIT2 fuzzy set to develop some new interval type-2 (IT2) intuitionistic fuzzy
aggregation operators, which can consider the multiple interactions between the input arguments.
Subsequently, Garg and Singh [36] proposed triangular interval type-2 intuitionistic fuzzy sets (TIT2)
and their three aggregation operators: TIT2 intuitionistic fuzzy weighted averaging, TIT2 intuitionistic
fuzzy ordered weighted averaging and TIT2 intuitionistic fuzzy hybrid averaging based on Frank
norm operation laws. However, in spite of the existing works on interval type-2 intuitionistic fuzzy
sets, in the literature, to the best of our knowledge, there does not exist any study on generalized
the intuitionistic type-2 fuzzy set. Therefore, to circumvent this gap in the literature, in this study,
we introduce the concept of the generalized intuitionistic type-2 fuzzy set (IT2FS) whose type-1
membership is the ordinary fuzzy membership, and the resulting type-2 consists of both membership
and non-membership as the intuitionistic fuzzy set. We introduce the notions of basic set operations
and focus on the algebraic properties of these sets with several illustrative examples. Further, we
define two operators on the set whose basic function is to convert an IT2FS into an ordinary T2FS
and also describe some properties of these operators. Finally, we define two distance measures, the
Hamming distance and Euclidian distance, of IT2FS, which are illustrated with a numerical example.
The main contribution of this article is highlighted as follows.

(i) The concept of a generalized intuitionistic type-2 fuzzy set is proposed.
(ii) Some set-theoretic operations including the union, intersection, and complement of IT2FS

are presented.
(iii) Several properties of IT2FS like idempotency, commutative, associative, distributive, involution and

De Morgan′s law are proposed.
(iv) Possibility and necessity operators of IT2FS are investigated.
(v) Two distance measures, the Hamming distance and Euclidian distance, are proposed in this study.
(vi) A suitable application based on a medical diagnosis system is presented, where the distance

measures of IT2FS are used.

The rest of the paper is organized as follows. The preliminary concepts of our study are
presented in Section 2. In Section 3, we propose the intuitionistic type-2 fuzzy set (IT2FS) and
give examples. The geometrical interpretation of IT2FS is shown in Section 4. Subsequently, in
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Section 5, some set-theoretic operations of IT2FS including union, intersection, and complement are
defined. In Section 6, some properties of IT2FS like idempotency, commutativity, associativity, distributive,
involution, and De Morgan′s law are verified. In Section 7, the necessity and possibility operators of
IT2FS are defined. Successively, in Section 8, two distance measures of IT2FS are defined, and an
example, illustrating the application of these distance measures in a real-life application based on a
medical diagnosis system, is presented in Section 9. Finally, the conclusion of the study is drawn in
Section 10.

2. Preliminaries

Before introducing the new concept of IT2FS, we first present some essential concepts and notations
of T2FS and IFS.

2.1. Type-2 Fuzzy Set

A type-2 fuzzy set (T2FS) is a fuzzy set whose membership degree includes uncertainty, i.e., the
membership degree is a fuzzy set and not a crisp set. A T2FS Ã is defined as (Mendel and John [37]):

Ã =
{ (
(x, u), µÃ(x, u)

)
: ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]

}}
,

where 0 ≤ µÃ(x, u) ≤ 1 is the secondary membership function and Jx is the primary membership of

x ∈ X, which is the domain of µÃ(x, u). Alternatively, Ã can be expressed as:

Ã =

∫
x∈X

(∫
u∈Jx

µÃ(x, u)/u
)
/x, Jx ⊆ [0, 1],

where
∫ ∫

denotes union over all admissible x and u. For the discrete universe of discourse,
∫

is
replaced by

∑
. For each value of ∈ X, the secondary membership function µÃ(x, u) is defined as:

µÃ(x, u) =
∫

u∈Jx

µÃ(x, u)/u,

where for a particular u = u′ ∈ Jx,µÃ(x, u′) is called the secondary membership grade of (x,u′).

Example 1. Let the set “young” be represented by a T2FS Ã. The “youthness” is the primary membership
function of Ã and the “degree of youthness” is the secondary membership function. Let X = {8, 10, 14} be an
age set with the primary membership of the points of X respectively J8 = {0.8, 0.9, 1.0}, J10 = {0.6, 0.7, 0.8},
and J14 = {0.4, 0.5, 0.6}. The secondary membership function of the point 8 is:

µ̃Ã(8, u) = (0.9/0.8) + (0.7/0.9) + (0.6/1.0),

i.e., µ̃Ã(8, 0.8) = 0.9 is the secondary membership grade of 8 with the primary membership grade 0.8.
Similarly,

µ̃Ã(10, u) = (0.8/0.6) + (0.7/0.7) + (0.6/0.8) and µ̃Ã(14, u) = (0.9/0.4) + (0.8/0.5) + (0.5/0.6).

Accordingly, discrete T2FS Ã can be represented as:

Ã = (0.9/0.8 + 0.7/0.9 + 0.6/1.0)/8 + (0.8/0.6 + 0.7/0.7 + 0.6/0.8)/10
+ (0.9/0.4 + 0.8/0.5 + 0.5/0.6)/14.
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2.2. Intuitionistic Fuzzy Set

The classical fuzzy set is a set with a membership function, but an intuitionistic fuzzy set
(IFS) is a set that has a membership function, as well as a non-membership function. According to
Atanassov [7,8], an intuitionistic fuzzy set A in X is defined as an object of the following form.

A =
{
x, µA(x), γA(x) : x ∈ X, µA(x) ∈ [0, 1], γA(x) ∈ [0, 1]

}
,

where the functions,
µA : X→ [0, 1]

and:
νA : X→ [0, 1]

define the degree of membership and the degree of non-membership respectively such that:

0 ≤ µA(x) + νA(x) ≤ 1 for all x ∈ X.

For the discrete universe of discourse, an IFS can be represented as:∑
x∈X

(µA(x), νA(x))/x.

According to this concept, every discrete ordinary fuzzy set may be written as:∑
x∈X

(µA(x), 1− µA(x))/x,

where µA is the membership function of the fuzzy set A. For continuous IFS, the
∑

is replaced by
∫

.

Example 2. Let the set young be represented by the intuitionistic fuzzy set A. The degree of youthness and the
degree of adultness are the membership and non-membership function, respectively. Let X = {12, 15, 17} and
the membership grade of the point 12 be µA(12) = {0.7, 0.8, 0.9}, and the non-membership grade of the point
12 is νA(12) = {0.1, 0.2, 0.0}.

Similarly, let µA(15) = {0.6, 0.7, 0.8,}, νA(15) = {0.4, 0.2, 0.1}, µA(17) = {0.4, 0.5, 0.6}, νA(17) =
{0.5, 0.3, 0.2}.

Therefore, the discrete intuitionistic fuzzy variable A is represented as:

A = ((0.7, 0.1) + (0.8, 0.2) + (0.9, 0.0))/12 + ((0.6, 0.4) + (0.7, 0.2) + (0.8, 0.1))/15
+ ((0.4, 0.5) + (0.5, 0.3) + (0.6, 0.2))/17.

3. Intuitionistic Type-2 Fuzzy Set

In this section, we introduce the concept of the intuitionistic type-2 fuzzy set, where the type-1
membership is the ordinary fuzzy membership with the secondary membership and non-membership
functions. An IT2FS Ã on X is defined as an object of the following form:

Ã =
{
〈x, u,µÃ(x, u), νÃ(x, u)〉 : x ∈ X, u ∈ Jx ⊆ [0, 1]

}
,

where the functions:
µÃ : X × Jx → [0, 1]

and:
νÃ : X × Jx → [0, 1]
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are defined as the degree of membership and degree of non-membership functions of the element
u ∈ Jx and:

0 ≤ µÃ(x, u) + νÃ(x, u) ≤ 1 for every x ∈ X, u ∈ Jx

For a discrete universe of discourse, an IT2FS can be represented as:

Ã =
∑
x∈X

∑
u∈Jx

( µÃ(x, u), νÃ(x, u)

/u)/x, Jx ⊆ [0, 1];

whereas, for the continuous case,
∑

is replaced by
∫

, i.e., for the continuous universe, the representation
is:

Ã =

∫
x∈X

(∫
u∈Jx

µÃ(x, u), νÃ(x, u)
)
/u)/x, Jx ⊆ [0, 1].

Subsequently, we explain the concept of IT2FS by an example.

Example 3. Let the set young be represented by an IT2FS Ã. The youthness is the primary membership
function of Ã. Then, the degree of youthness and the degree of adultness are the secondary membership and
non-membership functions, respectively. Let X = {8, 10, 14} be the set, and the primary membership of the
points of X is J8 = {0.8, 0.9, 1.0}, J10 = {0.6, 0.7, 0.8}, and J14 = {0.4, 0.5, 0.6}, respectively. Then, the discrete
IT2FS Ã is given by

Ã = ((0.9, 0.0)/0.8 + (0.7, 0.1)/0.9 + (0.6, 0.3)/1.0)/8 + ((0.8, 0.1)/0.6 + (0.7, 0.2)/0.7 +

(0.6, 0.4)/0.8)/10 + ((0.9, 0.1)/0.4 + (0.8, 0.2)/0.5 + (0.5, 0.4)/0.6)/14.

4. Geometrical Interpretation of the Intuitionistic Type-2 Fuzzy Set

Let X be the given universe and Ã be an IT2FS defined on X. Let us construct a mapping
fÃ from X to F (a tetrahedron as shown in Figure 1 passing through the points O (0,0,0), A(1,0,0),
B(0,1,0), C(0,0,1)) such that for x ∈ X, there exists:

y = fÃ(x) ∈ F

with the coordinate 〈u,µÃ, νÃ〉 for which u ∈ Jx ⊆ [0, 1] and 0 ≤ µÃ + νÃ ≤ 1.
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5. Operations on IT2FS

In this section, similar to several existing set-theoretic operations on fuzzy sets, we also present
basic operations such as union, intersection, and complement on the proposed IT2FS.

In this context, let us consider two IT2FS Ã and B̃ on X as defined below.

Ã =

∫
x∈X

(∫
u∈Ju

x

(
µÃ(x, u), νÃ(x, u)

)
/u

)
/x and B̃ =

∫
x∈X

(∫
v∈Jv

x

(
µB̃(x, v), νB̃(x, v)

)
/v

)
/x,

where Ju
x (⊆ [0, 1]) are the domains of the secondary membership function, respectively. Then, the

union of Ã and B̃ is defined as:

Ã∪ B̃ =

∫
x∈X

(∫
w∈Jw

x

(µÃ∪B̃(x,w), νÃ∪B̃(x,w))
w

)
x

, Ju
x ∪ Jv

x = Jw
x ⊆ [0, 1],

where:

µÃ∪B̃(x) = Φ
(∫

u∈Ju
x

µÃ(x, u), /u,
∫

Jv
x

µB̃(x, v), /v
)
.

By using the extension principle, we obtain,

µÃ∪B̃(x, w) =

∫
u∈Ju

x

∫
v∈Jv

x

(
µÃ(x, u)∧ µB̃(x, v)

)
/Φ(u, v),

where Φ(u, v) is the t-conorm of u and v, i.e.,

µÃ∪B̃(x, w) =

∫
u∈Ju

x

∫
v∈Jv

x

(
µÃ(x, u)∧ µB̃(x, v)

)
/(u∨ v).

Similarly,

νÃ∪B̃(x, w) =

∫
u∈Ju

x

∫
v∈Jv

x

(
νÃ(x, u)∨ νB̃(x, v)

)
/(u∨ v).

The intersection of Ã and B̃ is defined as:

Ã∩ B̃ =

∫
x∈X

(∫
w∈Jw

x

(
µÃ∩B̃(x, w), νÃ∩B̃(x, w)

)
/w

)
/x, Ju

x ∪ Jv
x = Jw

x ⊆ [0, 1],

where:

µÃ∩B̃(x, w) =

∫
u∈Ju

x

∫
v∈Jv

x

(
µÃ(x, u)∧ µB̃(x, v)

)
/(u∧ v)

and:

νÃ∪B̃(x, w) =

∫
u∈Ju

x

∫
v∈Jv

x

(
νÃ(x, u)∨ νB̃(x, v)

)
/(u∧ v).

The complement of Ã is defined as:

Ãc =

∫
x∈X

(∫
u∈Ju

x

(
µÃ(x), νÃ(x)

)
/(1− u)

)
/x

and:

Ã =

∫
x∈X

(∫
u∈Ju

x

(
νÃ(x, u), µÃ(x, u)

)
/u

)
/x.
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In addition, there are some more operations on IT2FSs that are defined below.

Ã ⊂ B̃ i f f (∀x ∈ X)
(
u ≤ v, µÃ(x, u) ≤ µB̃(x, v) and νÃ(x, u) ≥ νB̃(x, v)

)
and:

Ã = B̃ i f f (∀x ∈ X)
(
u = v, µÃ(x, u) = µB̃(x, v) and νÃ(x, u) = νB̃(x, v)

)
Ã =

∑
x∈X

 ∑
u∈Jx

(
νÃ(x, u),µÃ(x, u)

)
/u

/x.

For the continuous case,
∑

is replaced by
∫

.
We present the following example to illustrate the properties of IT2FS as mentioned below.

Example 4. Let Ã and B̃ be two IT2FSs representing the set young. The youthness is the primary membership
function of Ã and B̃. Let the degree of youthness and degree of adultness be the secondary membership and
non-membership functions of Ã and B̃, respectively. We consider both Ã and B̃ to be defined on X = {8, 10, 14},
which are eventually represented as:

Ã = ((0.9, 0.0)/0.8+(0.7, 0.1)/0.9 + (0.6, 0.3)/1.0)/8 + ((0.8, 0.1)/0.6 + (0.7, 0.2)/0.7

+(0.6, 0.4)/0.8)/10 + ((0.9, 0.1)/0.4 + (0.8, 0.2)/0.5 + (0.5, 0.4)/0.6)/14

and:
B̃ = ((0.8, 0.1)/0.7+(0.6, 0.3)/0.8 + (0.5, 0.5)/0.9)/8 + ((0.9, 0.1)/0.4

+(0.7, 0.2)/0.5 + (0.5, 0.3)/0.6)/10 + ((0.8, 0.2)/0.5

+(0.7, 0.2)/0.6 + (0.6, 0.3)/0.7)/14.

Now, for a particular element 8the secondary membership and non-membership function of Ã and B̃ are:

((0.9, 0.0)/0.8 + (0.7, 0.1)/0.9 + (0.6, 0.3)/1.0)/8

and:
((0.8, 0.1)/0.7 + (0.6, 0.3)/0.8 + (0.5, 0.5)/0.9)/8

respectively.
Then for x = 8, the union operation of Ã and B̃ is

(
µÃ∪B̃(8), νÃ∪B̃(8)

)
:

= ((0.9, 0.0)/0.8 +(0.7, 0.1)/0.9 + (0.6, 0.3)/1.0)/8
∨

((0.8, 0.1)/0.7 + (0.6, 0.3)/0.8
+(0.5, 0.5)/0.9)/8

= ((0.9, 0.0)/0.8 +(0.7, 0.1)/0.9 + (0.6, 0.3)/1.0)/8
∨

((0.8, 0.1)/0.7 + (0.6, 0.3)/0.8
+(0.5, 0.5)/0.9)/8

= (((0.9∧ 0.8), ( 0.0∨ 0.1))/(0.8∨ 0.7) + ((0.7∧ 0.8), (0.1∨ 0.1))/(0.9∨ 0.7) + ((0.6
∧ 0.8), (0.3∨ 0.1) )/(1.0∨ 0.7) + ((0.9∧ 0.6), (0.0∨ 0.3))/(0.8∨ 0.8)

+ ((0.7∧ 0.6), (0.1∨ 0.3) )/(0.9∨ 0.8) + ((0.6∧ 0.6), (0.3∨ 0.3) )/(1.0
∨0.8) + ((0.9∧ 0.5), (0.0∨ 0.5) )/(0.8∨ 0.9) + ((0.7∧ 0.5), (0.1
∨0.5) )/(0.9∨ 0.9) + ((0.6∧ 0.5), (0.3∨ 0.5) )/(0.1∨ 0.9))/8

= ((0.8, 0.1)/0.8 +(0.7, 0.1)/0.9 + (0.6, 0.3)/1.0 + ( 0.6, 0.3)/0.8 + (0.6, 0.3)/0.9
+(0.6, 0.3)/1.0 + (0.5, 0.5)/0.9 + (0.5, 0.5)/0.9 + (0.5, 0.5)/1.0)/8

= ((max{0.8, 0.6} , min{0.1, 0.3})/0.8 + (max{0.7, 0.6, 0.5, 0.5}, min{0.1, 0.3, 0.5, 0.5})/0.9
+(max{0.6, 0.6, 0.5}, min{0.3, 0.3, 0.5}/1.0 )/8

= ((0.8, 0.1)/0.8 +(0.7, 0.1)/0.9 + (0.6, 0.3)/1.0)/8.
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Similarly, the intersection is given by
(
µÃ∩B̃(8), νÃ∩B̃(8)

)
:

= ((0.9, 0.0)/0.8 +(0.7, 0.1)/0.9 + (0.6, 0.3)/1.0)/8∧ ((0.8, 0.1)/0.7 + (0.6, 0.3)/0.8
+(0.5, 0.5)/0.9)/8

= (((0.9∧ 0.8), (0.0∨ 0.1))/(0.8∧ 0.7) + ((0.7∧ 0.8), (0.1∨ 0.1))/(0.9∧ 0.7) + ((0.6
∧ 0.8), (0.3∨ 0.1) )/(1.0∧ 0.7) + ((0.9∧ 0.6), (0.0∨ 0.3) )/(0.8∧ 0.8)
+ ((0.7∧ 0.6), (0.1∨ 0.3) )/(0.9∧ 0.8) + ((0.6∧ 0.6), (0.3∨ 0.3) )/(1.0
∧0.8) + ((0.9∧ 0.5), (0.0∨ 0.5) )/(0.8∧ 0.9) + ((0.7∧ 0.5), (0.1
∨0.5) )/(0.9∧ 0.9) + ((0.6∧ 0.5), (0.3∨ 0.5) )/(0.1∧ 0.9))/8.

= ((0.8, 0.1)/0.7 +(0.7, 0.1)/0.7 + (0.6, 0.3)/0.7 + ( 0.6, 0.3)/0.8 + (0.6, 0.3)/0.8
+(0.6, 0.3)/0.8 + (0.5, 0.5)/0.8 + (0.5, 0.5)/0.9 + (0.5, 0.5)/0.9)/8

= ((max{0.8, 0.7, 0.6} , min{0.1, 0.1, 0.3})/0.7
+(max{0.6, 0.6, 0.6, 0.5}, min{0.3, 0.3, 0.3, 0.5})/0.8

+(max{0.5, 0.5}, min{0.5, 0.5}/0.9)/8
= ((0.8, 0.1)/0.7 +(0.6, 0.3)/0.8 + (0.5, 0.5)/0.9)/8

Ãc = ((0.9, 0.0)/ 0.2 + (0.7, 0.1)/0.1 + (0.3, 0.6)/0.0)/8 + ((0.8, 0.1)/0.4 + (0.7, 0.2)/0.3
+(0.6, 0.4)/0.2)/10 + ((0.9, 0.1)/0.6 + (0.8, 0.2)/0.5 + (0.5, 0.4)/0.4)/14

and:

Ã = ((0.0, 0.9)/0.8+(0.1, 0.7)/0.9 + (0.3, 0.6)/1.0)/8 + ((0.1, 0.8)/0.6 + (0.2, 0.7)/0.7

+(0.4, 0.6)/0.8)/10 + ((0.1, 0.9)/0.4 + (0.2, 0.8)/0.5 + (0.4, 0.5)/0.6)/14.

6. Properties of IT2FS

Considering various set-theoretic properties like idempotency, commutativity, associativity,
distributive law, involution, and De Morgan′s law, which exist for a fuzzy set and an intuitionistic
fuzzy set. In this section, analogously, we also define similar properties for IT2FS along with necessary
and relevant examples. Subsequently, we consider three IT2FSs Ã, B̃, and C̃, and we define these
operations as presented below.

(i) Ã ∪ Ã = Ã (Idempotency)

(ii) Ã∪ B̃ = B̃ ∪ Ã, Ã ∩ B̃ = B̃∩ Ã (Commutativity)

(iii) (Ã∪ B̃)∪ C̃ = Ã ∪ (B̃∪ C̃), (Ã∩ B̃)∩ C̃ = Ã ∩ (B̃∩ C̃) (Associativity)

(iv) Ã ∪ (B̃∩ C̃) = (Ã∪ B̃)∩ (Ã∪ C̃), Ã ∩ (B̃∪ C̃) = (Ã∩ B̃)∪ (Ã∩ C̃) (Distributive law)

(v) (Ãc)
c
= Ã (Involution)

(vi) (Ã∪ B̃)
C
= Ãc

∩ B̃c, (Ã∪ B̃)
C
= Ãc

∪ B̃c (De Morgan′ s law)

The proofs of (i)–(iii) and (v) are obvious. We illustrate these results later by examples.
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Proof of (vi).

(Ã∪ B̃)
C

=
{
〈x, (u∨ v), µÃ(x, u)∧ µB̃(x, v), νÃ(x, u)∧ νB̃(x, v)〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]

}c

=
{
〈x, (1− u∨ v), µÃ(x, u)∧ µB̃(x, v), νÃ(x, u)∧ νB̃(x, v)〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]

}
= 〈

{
x, (1− u∨ 1− v), µÃ(x, u)∧ µB̃(x, v), νÃ(x, u)∧ νB̃(x, v)〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]

}
= 〈

{
x, (1− u), µÃ(x, u), νÃ(x, u)〉/x ∈ X, u ∈ Jx ⊆ [0, 1]

}
∩

{
〈x, (1− v), µB̃(x, v), νB̃(x, v)〉/x ∈ X, v ∈ Jx ⊆ [0, 1]

}
= Ãc

∩ B̃c.

Furthermore:

(Ã∪ B̃)
C

=
{
〈x, (u∧ v), µÃ(x, u)∧ µB̃(x, v), νÃ(x, u)∨ νB̃(x, v)〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]

}c

=
{
〈x, (1− u∧ v), µÃ(x, u)∧ µB̃(x, v), νÃ(x, u)∨ νB̃(x, v)〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]

}
=

{
〈x, (1− u∨ 1− v), µÃ(x, u)∧ µB̃(x, v), νÃ(x, u)∨ νB̃(x, v)〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]

}
=

{
〈x, (1− u), µÃ(x, u), νÃ(x, u)〉/x ∈ X, u ∈ Jx ⊆ [0, 1]

}
∪

{
〈x, (1− v), µB̃(x, v), νB̃(x, v)〉/x ∈ X, v ∈ Jx ⊆ [0, 1]

}
= Ãc

∪ B̃c.

�

Example 5. Let Ã, B̃, C̃ be the three IT2FS on X = {6, 5, 4} defined as:

Ã = (1.0, 0.0)/0.9/6 + (0.1, 0.7)/0.3/5 + (0.4, 0.5)/0.6/4

B̃ = (0.8, 1.0)/0.4/6 + (0.1, 0.8)/0.5/5 + (0.5, 0.5)/0.9/4

and:
C̃ = (0.1, 0.8)/0.0/6 + (1.0, 0.0)/0.9/5 + (0.4, 0.4)/0.7/4.

For simplicity, we have taken Jx as a singleton set for each x ∈ X.
Then:

Ã∪ Ã = (1.0, 0.0)/0.9/6 + (0.1, 0.7)/0.3/5 + (0.4, 0.5)/0.6/4 = Ã.

Therefore, the idempotent property holds.

Ã∪ B̃ = (0.8, 1.0)/0.9/6 + (0.1, 0.8)/0.5/5 + (0.4, 0.5)/0.9/4

and:
B̃∪ Ã = (0.8, 1.0)/0.9/6 + (0.1, 0.8)/0.5/5 + (0.4, 0.5)/0.9/4.

Correspondingly,

Ã∩ B̃ = (0.8, 1.0)/0.4/6 + (0.1, 0.8)/0.3/5 + (0.4, 0.5)/0.6/4

and:
B̃∩ Ã = (0.8, 1.0)/0.4/6 + (0.1, 0.8)/0.3/5 + (0.4, 0.5)/0.6/4.

Therefore, the commutative property holds.

(Ã∪ B̃)∪ C̃ = (0.1, 0.8)/0.9/6 + (0.1, 0.8)/0.9/5 + (0.4, 0.5)/0.9/4
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and:
Ã ∪ (B̃∪ C̃) = (0.1, 0.8)/0.9/6 + (0.1, 0.8)/0.9/5 + (0.4, 0.5)/0.9/4.

Likewise,

(Ã∩ B̃)∩ C̃ = (0.1, 0.8)/0.0/6 + (0.1, 0.8)/0.3/5 + (0.4, 0.5)/0.6/4

and:
Ã ∩ (B̃∩ C̃) = (0.1, 0.8)/0.0/6 + (0.1, 0.8)/0.3/5 + (0.4, 0.5)/0.6/4.

Therefore, the associative property holds.

Ã ∪ (B̃∩ C̃) = (0.1, 0.8)/0.9/6 + (0.1, 0.8)/0.5/5 + (0.4, 0.5)/0.7/4

and:
(Ã∪ B̃)∩ (Ã∪ C̃) = (0.1, 0.8)/0.9/6 + (0.1, 0.8)/0.5/5 + (0.4, 0.5)/0.7/4.

Moreover,

Ã ∩ (B̃∪ C̃) = (0.1, 0.8)/0.4/6 + (0.1, 0.8)/0.3/5 + (0.4, 0.5)/0.6/4

and:
(Ã∩ B̃)∪ (Ã∩ C̃) = (0.1, 0.8)/0.4/6 + (0.1, 0.8)/0.3/5 + (0.4, 0.5)/0.6/4.

Therefore, the distributive property holds.

(Ãc)
c
= (1.0, 0.0)/0.9/6 + (0.1, 0.7)/0.3/5 + (0.4, 0.5)/0.6/4 = Ã.

Therefore, the involution property holds.

(Ã∩ B̃)
c
= (0.8, 1.0)/0.6/6 + (0.1, 0.8)/0.7/5 + (0.4, 0.5)/0.4/4

and:
ÃC
∪ B̃C = (0.8, 1.0)/0.6/6 + (0.1, 0.8)/0.7/5 + (0.4, 0.5)/0.4/4.

Furthermore,

(Ã∪ B̃)
c
= (0.8, 1.0)/0.1/6 + (0.1, 0.8)/0.5/5 + (0.4, 0.5)/0.1/4

and:
ÃC
∩ B̃C = (0.8, 1.0)/0.1/6 + (0.1, 0.8)/0.5/5 + (0.4, 0.5)/0.1/4.

Therefore, De Morgan’s law holds.

7. Necessity and Possibility Operators on IT2FS

Keeping in view the existence of several measure functions of the fuzzy set and its variants, in
this section, we propose the possibility and necessity of IT2FS. There are some cases in which we need
a gross result. From an IT2FS, if we want a gross result in terms of ordinary T2FS, then we need two
operators that can transform an IT2FS into an ordinary T2FS. Let Ã be an IT2FS over X with primary
membership function u, secondary membership function µÃ(x, u), and secondary non-membership
function νÃ(x, u). Then, the two operators are defined as follows.

(i) Necessity operator:

∆ Ã =
{
〈x, u,µÃ(x, u), 1− µÃ(x, u)〉 : x ∈ X, u ∈ Jx ⊆ [0, 1]

}
.
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(ii) Possibility operator:

∇Ã =
{
〈x, u, 1− νÃ(x, u), νÃ(x, u)〉 : x ∈ X , u ∈ Jx ⊆ [0, 1]

}
.

The operators can also be represented as:

∆ Ã =

∫
x∈X

(∫
u∈Jx

µÃ(x, u), 1− µÃ(x, u)
)
/u)/x

and:

∇Ã =

∫
x∈X

(∫
u∈Jx

µÃ(x, u), νÃ(x, u)
)
/u)/x.

For the discrete case,
∑

is replaced by
∫

. Obviously, if Ã is an ordinary T2FS, then ∆ Ã = Ã = ∇Ã.
Let us now explain this idea by an example.

Example 6. Consider Example 3 in Section 3.

Ã = ((0.9, 0.0)/0.8+(0.7, 0.1)/0.9 + (0.6, 0.3)/1.0)/8 + ((0.8, 0.1)/0.6 + (0.7, 0.2)/0.7

+(0.6, 0.4)/0.8)/10 + (0.9, 0.1)/0.4 + (0.8, 0.2)/0.5 + (0.5, 0.5)/0.6)/14.

Now, for this set Ã:

∆ Ã = ((0.9, 0.1)/ 0.8 + (0.7, 0.3)/0.9 + (0.6, 0.4)/1.0)/8 + ((0.8, 0.2)/0.6 + (0.7, 0.3)/0.7
+(0.6, 0.4)/0.8)/10 + ((0.9, 0.1)/0.4 + (0.8, 0.2)/0.5 + (0.5, 0.5)/0.6)/14.

and:

∇Ã = ((1.0, 0.0)/ 0.8 + (0.9, 0.1)/0.9 + (0.7, 0.3)/1.0)/8 + ((0.9, 0.1)/0.6 + (0.8, 0.2)/0.7
+(0.6, 0.4)/0.8)/10 + ((0.9, 0.1)/0.4 + (0.8, 0.2)/0.5 + (0.6, 0.4)/0.6)/14.

Proposition

Here, we compile some relevant properties of the necessity and possibility operators of IT2FS. For
every IT2FS Ã, we have:

(i) ∆Ã = ∇Ã

(ii) ∇Ã = ∆ Ã

(iii) ∆ ∆Ã = ∆ Ã

(iv) ∆ ∇Ã = ∇Ã

(v) ∇∆Ã = ∆ Ã

(vi) ∇∇Ã = ∇Ã

(vii) ∆Ã ⊂ Ã ⊂ ∇Ã

Proof.

(i)
∆Ã = ∆〈{x, u, νÃ(x, u),µÃ(x, u)〉/x : x ∈ X, u ∈ Jx ⊆ [0, 1]} =

{〈x, u, νÃ(x, u), 1− νÃ(x, u)〉/x : x ∈ X, u ∈ Jx ⊆ [0, 1]} = {〈x, u, 1− νÃ(x, u), νÃ(x, u)〉/x : x ∈ X, u ∈
Jx ⊆ [0, 1]} = ∇Ã.
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(ii)
∇Ã = ∇{〈x, u, νÃ(x, u),µÃ(x, u)〉/x : x ∈ X, u ∈ Jx ⊆ [0, 1]} =

{〈x, u, 1− µÃ(x, u),µÃ(x, u)〉/x : x ∈ X, u ∈ Jx ⊆ [0, 1]} = {〈x, u,µÃ(x, u), 1− µÃ(x, u)〉/x : x ∈
X, u ∈ Jx ⊆ [0, 1]} = ∆Ã.

(iii)
∆∆Ã = ∆{〈x, u,µÃ(x, u), 1− µÃ(x, u)〉/x : x ∈ X, u ∈ Jx ⊆ [0, 1]} = {〈x, u,µÃ(x, u), 1− µÃ(x, u)〉/

x : x ∈ X, u ∈ Jx ⊆ [0, 1]} = ∆Ã.

(iv)
∆∇Ã = ∆{〈x, u, 1− νÃ(x, u), νÃ(x, u)〉/x : x ∈ X, u ∈ Jx ⊆ [0, 1]} = {〈x, u, 1− νÃ(x, u), 1− (1−

νÃ(x, u))〉/x : x ∈ X, u ∈ Jx ⊆ [0, 1]} = {〈x, u, 1− νÃ(x, u), νÃ(x, u)〉/x : x ∈ X, u ∈ Jx ⊆ [0, 1]} = ∇Ã.

(v)
∇∆Ã = ∇{〈x, u,µÃ(x, u), 1− µÃ(x, u)〉/x : x ∈ X, u ∈ Jx ⊆ [0, 1]} = {〈x, u, 1− (1− µÃ(x, u), (1−

µÃ(x, u))〉/x : x ∈ X, u ∈ Jx ⊆ [0, 1]} = {〈x, u,µÃ(x, u), 1− µÃ(x, u)〉/x : x ∈ X, u ∈ Jx ⊆ [0, 1]} = ∆Ã.

(vi)
∇∇Ã = ∇{〈x, u, 1− νÃ(x, u), νÃ(x, u)〉/x : x ∈ X, u ∈ Jx ⊆ [0, 1]} = {〈x, u, 1− νÃ(x, u), νÃ(x, u))〉/

x : x ∈ X, u ∈ Jx ⊆ [0, 1]} = ∇Ã.

(vii) ∆Ã = {〈x, u,µÃ(x, u), 1− µÃ(x, u)〉/x : x ∈ X, u ∈ Jx ⊆ [0, 1]}.

Now, 1− µÃ (x, u) ≥ νÃ (x, u)
[
since 0 ≤ µÃ(x, u) + νÃ(x, u) ≤ 1

]
.

Therefore,

{〈x, u,µÃ (x, u), 1 −µÃ (x, u)〉/x : x ∈ X, u ∈ Jx ⊆ [0, 1]}
⊂ {〈x, u,µÃ (x, u), νÃ (x, u)〉/x : x ∈ X, u ∈ Jx ⊆ [0, 1]}.

Hence, Ã ⊂ ∇Ã.
Consequently, both imply ∆ Ã ⊂ Ã ⊂ ∇Ã

�

Theorem 1. For any two IT2FSs Ã and B̃, we have:

(i) ∆(Ã∩ B̃) = ∆Ã∩ ∆B̃

(ii) ∆(Ã∪ B̃) = ∆Ã ∪ ∆B̃

(iii) ∇(Ã∩ B̃) = ∇Ã ∩∇B̃

(iv) ∇(Ã∪ B̃) = ∇Ã ∪∇B̃

Proof.

(i)

∆(Ã∩ B̃) = ∆{〈x, u∧ v, µÃ(x, u)∧ µB̃(x, v), νÃ(x, u)∨ νB̃(x, v)〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]} =
{〈x, (u∧ v), µÃ(x, u)∧ µB̃(x, v), 1− ((µÃ (x, u)

∨
µB̃(x, v))〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]} = {〈x, (u∧

v), µÃ(x, u)∧ µB̃(x, v), (1− µÃ (x, u))∨ (1− µB̃(x, v))〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]} =
{〈x, u, µÃ(x, u), (1− µÃ (x, u))〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]} ∩ {〈x, v, µB̃(x, v), (1− µB̃(x, v))〉/x ∈

X, u, v ∈ Jx ⊆ [0, 1]} = ∆Ã ∩ ∆B̃

(ii)

∆(Ã∪ B̃) = ∆{〈x, u
∨

v, µÃ(x, u)∧ µB̃(x, v), νÃ(x, u)∨ νB̃(x, v)〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]} =
{〈x, (u

∨
v), µÃ(x, u)∧ µB̃(x, v), 1− ((µÃ (x, u)

∨
µB̃(x, v))〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]} =

{〈x, (u
∨

v), µÃ(x, u)∧ µB̃(x, v), (1− µÃ (x, u))∨ (1− µB̃(x, v)) 〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]} =
{〈x, u, µÃ(x, u), (1− µÃ (x, u))〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]} ∩ {〈x, v, µB̃(x, v), (1− µB̃(x, v))〉/x ∈

X, u, v ∈ Jx ⊆ [0, 1]} = ∆Ã∪ ∆B̃

.

(iii)

∇(Ã∩ B̃) = ∇{〈x, u∧ v, µÃ(x, u)∧ µB̃(x, v), νÃ(x, u)∨ νB̃ (x, v)〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]} =
{〈x, u∧ v, 1− (vÃ(x, u)

∨
µB̃(x, v)), (νÃ(x, u)

∨
νB̃ (x, v)〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]} = {x, u∧ v, (1−

νÃ (x, u)∧ 1− νB̃(x, v)), νÃ(x, u)∨ νB̃(x, v)〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]} = {x, u, 1−
νÃ(x, u), νÃ(x, u)〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]} ∩ {x, u, 1− νB̃(x, u), νB̃(x, u)〉/x ∈ X, u, v ∈ Jx ⊆

[0, 1]} = ∇Ã∩∇B̃.
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(iv)

∇(Ã∪ B̃) = ∇{〈x, u
∨

v, µÃ(x, u)∧ µB̃(x, v), νÃ(x, u)∨ νB̃(x, v)〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]} =
{〈x, u

∨
v, (1− νÃ (x, u))

∨
νB̃(x, v), (νÃ(x, u)

∨
νB̃(x, v)/x ∈ X, u, v ∈ Jx ⊆ [0, 1]} = {x, u

∨
v, (1−

νÃ (x, u))∧ (1− νB̃(x, v)), νÃ(x, u)∨ νB̃(x, v)〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]} = {x, u, 1−

νÃ(x, u), νÃ(x, u)〉/x ∈ X, u, v ∈ Jx ⊆ [0, 1]}
⋃
{
〈x,u, 1−νB̃(x,u), νB̃(x,u)〉

x ∈ X, u, v ∈ Jx ⊆ [0, 1]} = ∇Ã
⋃
∇B̃.

By virtue of the above results, we can define the following relations. �

Definition 1. For any two IT2FSs Ã and B̃, we define the following relations.[
Ã ⊂∆ B̃iff (∀x ∈ X)u ≤ v, µÃ(x, u) ≤ µB̃(x, v)

][
Ã ⊂∇ B̃iff (∀x ∈ X)(u ≤ v),νÃ(x, u) ≥ νB̃(x, v)

]
Further, a relationship between two operators is established in the following theorem.

Theorem 2. For any two IT2FSs Ã and B̃, we have:

(i) Ã ⊂∆ B̃ i f f ∆Ã ⊂ ∆B̃

(ii) Ã ⊂∇ B̃ i f f ∇Ã ⊂ ∇B̃

(iii) Ã ⊂∆ B̃ and Ã ⊂∆ B̃ i f f Ã ⊂ B̃

Proof.

(i) If Ã ⊂∆ B̃, then (∀x ∈ X)
(
u ≤ v, µÃ(x, u) ≤ µB̃(x, v)

)
. Therefore,

1− µÃ(x, u) ≥ 1− µB̃(x, v).

Hence, [
(∀x ∈ X)(u ≤ v, µÃ(x, u) ≤ µB̃(x, v), 1− µÃ(x, u) ≥ 1− µB̃(x, v)

]
.

Therefore,
∆Ã ⊂ ∆B̃.

On the other hand, if ∆Ã ⊂ ∆B̃, then:[
(∀x ∈ X)(u ≤ v, µÃ(x, u) ≤ µB̃(x, v), 1− µÃ(x, u) ≥ 1− µB̃(x, v)

]
.

This implies Ã ⊂∆ B̃.
(ii) If Ã ⊂∇ B̃, then (∀x ∈ X)

(
u ≤ v, νÃ(x, u) ≤ νB̃(x, v)

)
. Therefore,

1− νÃ(x, u) ≤ 1− νB̃(x, v).

Hence, [
(∀x ∈ X)(u ≤ v, 1− νÃ(x, u) ≤ 1− νB̃(x, v), νÃ(x, u) ≥ µB̃(x, v)

]
.

Therefore,
∇Ã ⊂ ∇B̃.

On the other hand, if:
∇Ã ⊂ ∇B̃.

then: [
(∀x ∈ X)(u ≤ v, 1− νÃ(x, u) ≤ 1− νB̃(x, v), νÃ(x, u) ≥ νB̃(x, v)

]
.
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This gives Ã ⊂∇ B̃.
(iii) If Ã ⊂∆ B̃ and Ã ⊂∇ B̃, then:

(∀x ∈ X)
(
u ≤ v, µÃ(x, u) ≤ µB̃(x, v)

)
.

and:
(∀x ∈ X)(u ≤ v, νÃ (x, u) ≥ νB̃(x, v).

Hence: [
(∀x ∈ X)(u ≤ v, µÃ(x, u) ≤ µB̃(x, v), νÃ(x, u) ≥ νB̃(x, v)

]
.

Therefore,
Ã ⊂ B̃.

On the other hand, if:
Ã ⊂ B̃

then: [
(∀x ∈ X)(u ≤ v, µÃ(x, u) ≤ µB̃(x, v), νÃ(x, u) ≥ νB̃(x, v)

]
,

i.e.,
(∀x ∈ X)

(
u ≤ v, µÃ(x, u) ≤ µB̃(x, v)

)
,

and:
(∀x ∈ X)

(
(u ≤ v, νÃ(x, u) ≤ νB̃(x, v)

)
.

Hence, Ã ⊂∆ B̃ and Ã ⊂∇ B̃. �

8. Distance Measures of IT2FS

Similar to the distance measures of various variants of fuzzy sets including T2FS and IFS, here, in
this section, we present two distance measures of the proposed IT2FS. Let Ã and B̃ be two IT2FS. Then,
we can define the following distances as below.

(i) Hamming distance:

dH
(
Ã, B̃

)
=

∑
x∈X

∑
u,v∈Jx

L(x,u,u′; Ã,B̃)∑
j=1

(∣∣∣∣µ j

Ã
(x, u) − µ j

B̃
(x, u′)

∣∣∣∣+ ∣∣∣∣ν j

Ã
(x, u) − ν j

B̃
(x, u′)

∣∣∣∣).
(ii) Euclidean distance:

dE
(
Ã, B̃

)
=

∑
x∈X

∑
u,v∈Jx

L(x,u,u′; Ã,B̃)∑
j=1

∣∣∣∣µ j

Ã
(x, u) − µ j

B̃
(x, u′)

∣∣∣∣2 +
∣∣∣∣ν j

Ã
(x, u) − ν j

B̃
(x, u′)

∣∣∣∣2


1
2

,

where u and u′ are the primary membership functions of Ã and B̃, respectively. µÃ and νÃ
are the corresponding secondary membership and non-membership functions of Ã; whereas,
µB̃ and νB̃ are the corresponding secondary membership and non-membership functions of B̃.
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L(x, u, u′; Ã, B̃) is the length of the sequences of the secondary membership and non-membership
functions of:

Ã =
(
x, u,

(
µ1

Ã
(x, u),µ2

Ã
(x, u), . . . , µp

Ã
(x, u)

)
,
(
ν1

Ã
(x, u), ν2

Ã
(x, u), . . . , νp

Ã
(x, u)

))
and:

B̃ =
(
x, u′,

(
µ1

B̃
(x, u′),µ2

B̃
(x, u′), . . . , µp

B̃
(x, u′)

)
,
(
ν1

B̃
(x, u′), ν2

B̃
(x, u′), . . . , νp

B̃
(x, u′)

))
respectively. For the sake of simplicity, in this study, the length of the sequences of the secondary
membership and non-membership functions of Ã and B̃ are considered equal. Let us now explain
this idea with an example.

Example 7. Let X be a non-empty universe. Let Ã and B̃ be two IT2FSs over X, which are given as:

Ã = (0.7, 0.2)/0.8/x + (0.6, 0.1)/0.6/y + (0.5, 0.3)/0.9/z
B̃ = (0.6, 0.4)/0.6/x + (0.5, 0.3)/0.3/y + (0.4, 0.2)/0.4/z

dH(Ã, B̃) = |0.7 −0.6|+|0.2− 0.4|+ |0.6− 0.5|+ |0.1− 0.3|+ |0.5− 0.4|+ |0.3− 0.2|
= 0.80

and:
dE(Ã, B̃) = [|0.7 −0.6|2 + |0.2− 0.4|2 + |0.6− 0.5|2 + |0.1− 0.3|2 + |0.5− 0.4|2

+|0.3− 0.2|2]
1
2 = 0.35.

9. An Example

Most human reasoning involves the use of variables that are characteristically imprecise and
usually represented under the paradigm of fuzzy set theory. The fuzzy set theory becomes the basis of
the concept related to a linguistic variable, whose values are words instead of numbers. However,
in some scenarios like decision making problems (e.g., medical diagnosis, marketing, sales, etc.),
representation of a linguistic variable with respect to a membership function only is not satisfactory,
where there is always a chance of the existence of a non-null complement. In this context, IT2FS
can be more rational for representing both the secondary membership and non-membership grades
of a primary membership grade of an element to a set. Here, we present an example of a medical
diagnosis system.

Let P = P1, P2, P3, P4 be a set of patients, and let D = {Viral Fever, Dengue, Typhoid, Throat disease}
be a set of diseases and S = {Temperature, Cough, Throat pain, Headache, Chest pain} be a set of symptoms.
Let us consider the disease symptoms and their corresponding intensity be represented as the primary
membership function and secondary membership functions. Accordingly, in Table 1, we represent
each symptom for a disease with its primary membership function and its intensity with the secondary
membership and non-membership functions. Similarly, Table 2 represents the symptoms of patients.
These symptoms and the disease of the patients are linguistic terms that involve uncertainty. As an
example, in a day, the Temperature of the patient can be mild, moderate, or high throughout the
day, at various time intervals. Based on these recorded values of the Temperature, the assessment of
different doctors might change, as well. For instance, if the Temperature of a patient is recorded as
105.5 Fahrenheit (F), 103.2 F, and 100.7 F, respectively in the morning, afternoon, and night, then one
doctor might analyze that the patient is having Viral Fever, while the other doctor might suggest the
patient is having Dengue or may prefer to record the Temperature of the patient for some subsequent
days before coming into any conclusion. In this context, it becomes quite inevitable that a particular
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symptom of a patient can fluctuate in a day, and essentially for that patient, the opinion (analysis)
of the experts (doctors) also varies. Consequently, if we consider Temperature as IT2FS, then the
f everishness of the patient can be the primary membership of Temperature. The degree o f f everishness
and degree o f healthiness are considered as the secondary membership function and non-membership
function, respectively. Therefore, to incorporate the uncertainties of the symptoms and the diseases
rationally, the parameters, symptom, and disease of a patient are represented as IT2FS. Tables 3 and 4
report the Hamming distance and the Euclidian distance for each patient from a corresponding disease.
Here, in these tables, the smallest distances are highlighted as bold.

Table 1. Symptoms vs. diseases.

Viral Fever Dengue Typhoid Throat Disease

Temperature (0.68, 0.08)/0.56 (0.64, 0.15)/0.49 (0.62, 0.02)/0.57 (0.61, 0.08)/0.55
Cough (0.63, 0.11)/0.73 (0.66, 0.18)/0.60 (0.45, 0.03)/0.41 (0.63, 0.05)/0.64

Throat Pain (0.48, 0.07)/0.77 (0.59, 0.07)/0.44 (0.52, 0.03)/0.46 (0.47, 0.09)/0.74
Headache (0.77, 0.10)/0.49 (0.52, 0.09)/0.66 (0.65, 0.02)/0.62 (0.48, 0.12)/0.45
Chest pain (0.46, 0.08)/0.42 (0.69, 0.16)/0.42 (0.60, 0.13)/0.72 (0.71, 0.08)/0.66

Table 2. Patients vs. symptoms.

Temperature Cough Throat Pain Headache Chestpain

P1 (0.44, 0.10)/0.58 (0.28, 0.07)/0.34 (0.58, 0.07)/0.55 (0.48, 0.14)/0.67 (0.43, 0.03)/0.89
P2 (0.57, 0.02)/0.27 (0.64, 0.05)/0.84 (0.47, 0.06)/0.34 (0.67, 0.23)/0.46 (0.51, 0.04)/0.73
P3 (0.52, 0.03)/0.94 (0.51, 0.10)/0.83 (0.63, 0.19)/0.61 (0.53, 0.23)/0.79 (0.43, 0.13)/0.50
P4 (0.45, 0.17)/0.48 (0.63, 0.13)/0.42 (0.62, 0.21)/0.93 (0.54, 0.20)/0.91 (0.53, 0.23)/0.56

Table 3. Hamming distance between patients and diseases.

Viral Fever Dengue Typhoid Throat Disease

P1 1.1600 1.2300 1.1300 1.0400
P2 0.5800 1.0700 0.7500 0.6800
P3 1.0600 1.0700 1.0100 1.0600
P4 1.1700 0.8200 1.3400 1.0700

Table 4. Euclidian distance between patients and diseases.

Viral Fever Dengue Typhoid Throat Disease

P1 0.5303 0.5364 0.3959 0.4960
P2 0.2249 0.3775 0.3211 0.3098
P3 0.3967 0.4024 0.3791 0.3982
P4 0.4369 0.3216 0.4423 0.3767

According to the principle of the minimum distance point, the lowest distance measures in Tables 3
and 4 infer the proper diagnosis of the disease of a patient. From Table 3, we observe that patients P1,
P2, P3, and P4 suffer from Throat disease, Viral Fever, Dengue, and Typhoid, respectively. However, from
Table 4, it can be inferred that P1 and P3 are diagnosed with Typhoid, whereas, P2 is suffering from
Viral Fever, and P4 is determined to have Dengue.

10. Conclusions

In this paper, we proposed a new concept of the generalized intuitionistic type-2 fuzzy set, which
hybridizes the concept of the intuitionistic fuzzy set and generalized type-2 fuzzy set. Subsequently,
we defined various set-theoretic operations and operational laws of IT2FS. Besides, we proposed
the necessity and possibility operators of IT2FS. Furthermore, two distance measures, namely the
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Hamming distance and the Euclidian distance, for IT2FS were also investigated, and their applications
were demonstrated with an example related to a medical diagnosis system. In the future, the concept
of generalized IT2FS can be used to develop a decision support system on various domains, including
a medical diagnosis system and intelligent transportation system. Moreover, various aggregation
operators can also be developed for generalized IT2FS. In addition, a detailed study on the topological
properties of generalized IT2FS and its extension to the intuitionistic type-2 multi-fuzzy set and
intuitionistic type-2 fuzzy soft set, respectively, can be considered as the future research interest.
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