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Abstract: The Weyl method for finding solutions in general relativity using symmetry by varying
an action with respect to a reduced set of field variables is known to fail in some cases. We add to the
list of failures by considering an application of the Weyl method to a magnetically charged spherically
symmetric source, obtaining an incorrect geometry. This is surprising, because the same method,
applied to electrically charged central bodies correctly produces the Reissner-Nordström spacetime.
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1. Introduction

We often use symmetry to simplify the field equations of general relativity (GR) and help solve
them. There is a particular approach, the Weyl method [1], that benefits from an early application of
assumed symmetry and can lead to striking simplification. The method has been used to successfully
generate the spherically symmetric vacuum spacetime of general relativity, its first application. It has
also been applied to modified theories like GR with cosmological constant, Einstein-Gauss-Bonnet
gravity [2] and conformal gravity, all of which are developed and/or reviewed in Reference [3].
For axial symmetry, the 2 + 1 dimensional “Kerr” solution for gravity with (negative) cosmological
constant (BTZ) is obtained in Reference [3], with 3 + 1 dimensional Kerr obtained using a targeted
form of the technique in Reference [4].

But we must be careful, the method does not always work, as was detailed in Reference [5].
In this note, we review the method, providing some of its successful examples and discuss its failure
in specific cases. We show that while the method is successful in finding the spacetime associated with
an electrically charged spherical mass, it fails when the electric charge is replaced by magnetic charge
(i.e., a magnetic monopole).

2. The Weyl Method

The Weyl method refers to the approach, invented and advertised by Weyl in Reference [1],
of using information, in particular symmetry information, prior to varying an action in order
to reduce the number, and simplify the form, of the field equations. Spherical symmetry in the
Einstein-Hilbert action provides a good first example. Starting from the spherically symmetric line
element, with two unknown function of r, the radial coordinate,

ds2 = −A(r)dt2 + B(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

, (1)

we can form the Lagrangian for the action (primes indicate r-derivatives),
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L =
√
−gR =

sin θ

2 (A(r)B(r))3/2

[
r2B(r)A′(r)2 + 4A(r)2

(
−B(r) + B(r)2 + rB′(r)

)
+ rA(r)

(
rA′(r)B′(r)− 2B(r)

(
2A′(r) + rA′′(r)

))]
,

(2)

and then we can use the Euler-Lagrange equations for A(r) and B(r),

0 =
∂L

∂A(r)
− d

dr

(
∂L

∂A′(r)

)
+

d2

dr2

(
∂L

∂A′′(r)

)
=

sin θ√
A(r)B(r)3

[
B(r) (−1 + B(r)) + rB′(r)

]
0 =

∂L
∂B(r)

− d
dr

(
∂L

∂B′(r)

)
=

sin θ√
A(r)B(r)3

[
A(r) (−1 + B(r))− rA′(r)

] (3)

to find A(r) and B(r). Solving the top equation for B(r), we get

B(r) =
1

1− α
r

(4)

for constant α. Then using this in the second equation, we can solve for A(r),

A(r) = 1− α

r
. (5)

We have recovered the Schwarzschild solution, with constant α awaiting its usual physical
interpretation, α = 2M, with G → 1, c→ 1.

The beauty of the Weyl approach is that the assumed form of the line element can simplify
(or complexify) the field equations for the unknown functions. For example, if we started with the
two-function (a(r), b(r) now) line element as in Reference [3],

ds2 = −a(r)b(r)2dt2 + 1/a(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

(6)

motivated by, for example, the single-function form of the determinant
√−g = b(r)r2 sin θ piece of the

action, then the Lagrangian is

L = − sin θ

[
b(r)

(
−2r +

(
r2a(r)

)′)′
+
(

2r2a(r)b′(r)
)′

+ r2a′(r)b′(r)

]
(7)

with field equations (obtainable even by dropping the total r-derivative in L),

2r sin θb′(r) = 0 2 sin θ
(
1− (ra(r))′

)
= 0 (8)

a decoupled set that’s even easier to solve than those in (3) and leads, of course, to the same
Schwarzschild spacetime.

3. Symmetric Criticality

There is a problem with the Weyl approach, one that goes back to the idea of action variation
itself. Symmetries can be applied at the level of a field equation and lead to correct simplifications.
Indeed, the symmetry of a solution is implied by the form of the field equation and (more importantly),
the boundary conditions we impose on its solutions. Simplifications of this sort belong to the PDE
problem that the field equations and boundaries define. But any information that derives from the field
equations must be treated carefully when used prior to varying an action, that is, prior to developing
the field equations, precisely what Weyl invites us to do.
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As a reductio ad absurdum example from classical mechanics, suppose we take the free particle
action in one dimension,

S[x(t)] =
∫ t f

t0

1
2

mẋ(t)2dt (9)

and vary the action to get the equation of motion, mẍ(t) = 0 from which we learn that x(t) = f t + g
for constants f and g. If we insert this solution back into the action, we get

S =
∫ t f

t0

1
2

m f 2dt (10)

which cannot itself be varied to recover a valid equation of motion governing x(t). This is the logic
that shows the potential flaw in the Weyl procedure. We have fixed all the degrees of freedom by
solving the equation of motion, leaving us with nothing to vary in the action when that solution has
been introduced.

The previous example is contrived and extreme but consider the slightly more disguised error
in the following: We note that for the Schwarzschild solution (4) and (5), B(r) = 1/A(r) (this is
what suggests the two-function form of the line element in (6)). Suppose we use that information in
developing the Lagrangian, that is, start with the line element

ds2 = −a(r)dt2 + 1/a(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

. (11)

Then the Lagrangian becomes

L = − sin θ
(
−2 + 2a(r) + 4ra′(r) + r2a′′(r)

)
= − d

dr

[
sin θ

(
−2r +

(
r2a(r)

)′)]
(12)

which, since it is a total derivative, leads to a trivial field equation (0 = 0) leaving a(r) unconstrained.
One might naïvely conclude that any function a(r) solves the field equation in the spherically
symmetric case. This is, of course, incorrect. The actual field equation, Einstein’s in vacuum, Rµν = 0,
has non-zero entries:

R00 =
a(r)

2

(
2a′(r)

r
+ a′′(r)

)
Rrr = −R00/a(r)2 Rθθ = 1− (ra(r))′ Rφφ = sin2 θRθθ , (13)

and these are solved by the usual a(r) = 1− α/r. While we can start with (11) and get the correct
result from the field equations themselves, we have used too much simplifying information to recover
that result from the Weyl method [6]. It is easy to go back and check that a solution obtained via the
Weyl method is valid by running it through Einstein’s equation. What is more difficult is to determine,
a priori, whether a particular simplifying assumption will lead to problems. The equivalence of
“varying an action, then imposing symmetry assumptions” and “imposing symmetry assumptions and
then varying an action” is an example of Palais’ “principle of symmetric criticality” [5]. He cautions
that the principle is not universal and the current case provides an example of its failure.

Another case in which the principle fails is in establishing Birkhoff’s theorem in general relativity.
Birkhoff’s theorem says that the spherically symmetric vacuum solution to Einstein’s equation
(Schwarzschild) is static, with no time dependence. If you started with an ansatz like (1) but allowed
the functions A and B to depend on time, you would find no constraint on their temporal dependence
using the Weyl approach, while Einstein’s equations explicitly require Ȧ(r, t) = 0 = Ḃ(r, t) (dots
denoting t-derivatives), a statement of Birkhoff’s theorem. The Weyl method can be redeemed in this
case using an auxiliary field as detailed in Reference [7] (with the same fix applied to Lovelock gravity
establishing Birkhoff’s theorem there in Reference [8]) but using just the spherical symmetry by itself
is not enough to establish Birkhoff’s theorem. A similar auxiliary field is used in (6), where b(r) = 1 is
an uninteresting solution to a trivial field equation, yet the function b(r) is necessary to constrain a(r)
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to its correct value by preventing the collapse of the Lagrangian to a total derivative as in (12) which
lacked the b(r) starting field.

One way of viewing the problem with proving Birkhoff’s theorem is the focus on the
two-dimensional r − t subspace of spherically symmetric spacetimes that are, at least potentially,
time dependent. The diagonal metric ansatz does not probe enough of that space to capture the
time-independent constraint. A similar problem occurs if we attempt to carry out the procedure on a
static, axially symmetric spacetime like the Weyl class of metrics. These typically start with line element

ds2 = −e2a(s,z)dt2 + e−2a(s,z)+2b(s,z)
(

ds2 + dz2
)
+ s2e−2a(s,z)dφ2 (14)

for unknown functions a(s, z) and b(s, z) exhibiting cylindrical symmetry (no φ dependence). The Weyl
method again fails to return a complete set of field equations, in this case because we have started off
with the s− z subspace in its (guaranteed) conformally flat form. Here, again, a Lagrange multiplier
procedure can be used to restore the 3 independent field equations from Einstein’s equation in vacuum
but this must be done explicitly.

4. Reissner-Nordström and Magnetic Monopoles

Weyl’s method works for extended sources as well as the simpler vacuum solutions provided
the sources can themselves be fit into a field-theoretic action in combination with the Einstein-Hilbert
action. The gravitational field variables show up in the auxiliary action in the usual way, both through
the density

√−g and any explicit metric dependence, for example, gµν in the Lagrangian for a scalar
field φ: φ,µgµνφ,ν (the method is not available for non-Hilbert stress tensors, making it difficult to use
in a cosmology context with fluid stress tensor sources). We can obtain the spherically symmetric
spacetime for a charged massive spherical central body by starting with the combined Einstein-Hilbert
and E&M action:

S =
∫ √

−g
(

R + σFµνFµν

)
d4x (15)

where σ is just a constant to set the coupling between gravity and E&M.
Now let’s use the Weyl method to find the static, spherically symmetric solutions away from the

massive source as in Reference [3]. Start with the ansatz from (6) for the gravitational piece, then the
electromagnetic portion reads

FµνFµν ≡ FµνFαβgµαgνβ = 2
(

B2 − E2b(r)2
)

(16)

which depends on the metric used to contract the field strength tensor indices. The starting action is

S =
∫ √

−g
(

R + 2σ
(

B2 − E2b(r)2
))

d4x (17)

For a spherically symmetric electric charge source, B = 0 and E = E(r)r̂. The electric field comes
from the A0(r) term in the vector potential Aµ where the lower form is the relevant one (since the field
strength tensor is naturally covariant, Fµν ≡ ∂µ Aν − ∂ν Aµ). In terms of this single non-zero term in the
four-potential, E(r) = A′0(r)/b(r)2 and the Lagrangian is

L = − sin θ

[
b(r)

(
−2r +

(
r2a(r)

)′)′
+
(

2r2a(r)b′(r)
)′

+ r2a′(r)b′(r) +
2σr2 A′0(r)

2

b(r)

]
(18)

Using the Euler-Lagrange equations that come from varying the associated action with respect to
a(r), b(r) and A0(r) independently, we get
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0 = 2r sin θb′(r)

0 = −2 sin θ

(
−1 + (ra(r))′ −

r2σA′0(r)
2

b(r)2

)

0 =
4rσ sin θ

b(r)2

(
−rb′(r)A′0(r) + b(r)

(
2A′0(r) + rA′′0 (r)

)) (19)

The first equation is trivially solved by setting b(r) = b0 a constant (that can be set to one
by coordinate rescaling). The third equation, simplified using the first, is 2A′0(r) + rA′′0 (r) =

(r2 A′0(r))
′/r = 0. Its solution is A0(r) = V0 − β/r for constant V0, the value of the potential at

spatial infinity and a constant β that is proportional to the electric charge. With these two in place and
taking V0 → 0, the middle equation reads

− (ra(r))′ +
(

1 + σ
β2

r2

)
= 0 −→ a(r) = 1− α

r
− σ

β2

r2 , (20)

where α is related to the mass of the central body as in the Schwarzschild case. The line element and
potential are

ds2 = −
(

1− α

r
− σ

β2

r2

)
dt2 +

1(
1− α

r − σ
β2

r2

)dr2 + r2
(

dθ2 + sin2 θdφ2
)

A0(r) = −
β

r
,

(21)

which is the correct Reissner-Nordström solution. Note that A0(r) is related to the electric field
magnitude, for b(r) = 1, by E(r) = A′0(r) = β/r2, the usual Coulomb field associated with a
spherically symmetric charge (the covariant zero-component of the four-potential, A0, plays the role of
−V(r) for the usual electrostatic potential V(r)).

Let’s now consider the spacetime associated with a massive spherical central body with magnetic
monopole charge (but no electric charge). All that changes is that we take E = 0 and B = B(r)r̂,
this time with B(r) = W ′(r)/b(r)2 for a magnetic monopole potential W(r) replacing A0(r) from
above. Looking at (17), it is clear that the sign associated with the magnetic field is opposite that of
the electric case and that ends up introducing a minus sign in the line element that solves the field
equations. The Lagrangian is now

L = − sin θ

[
b(r)

(
−2r +

(
r2a(r)

)′)′
+
(

2r2a(r)b′(r)
)′

+ r2a′(r)b′(r)− 2σr2W ′(r)2

b(r)3

]
(22)

In addition to the sign change, there is a factor of 1/b(r)3 attached to the potential, as opposed
to the 1/b(r) in (18). This ends up introducing an essentially irrelevant factor of 3 in the metric’s
dependence on magnetic charge.

For constant β̄ associated with the magnetic charge, the line element and potential that comes
from the Weyl method applied to (22) is:

ds2 = −
(

1− α

r
+ 3σ

β̄2

r2

)
dt2 +

1(
1− α

r + 3σ
β̄2

r2

)dr2 + r2
(

dθ2 + sin2 θdφ2
)

W(r) = − β̄

r
−→ B(r) =

β̄

r2

(23)

From this, we would conclude that the Reissner-Nordström solution for a magnetic monopole
has a fundamentally different structure than the electric monopole case, with β2 → −3β̄2 taking us
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from one metric to the other. Again it is the minus sign that is important here, that’s what changes the
structure of the spacetime (in particular, the horizon structure is different between the two).

Einstein’s field equations tell a different story—the correct one, of course [9,10]. For the electromagnetic
sourcing, we consider the full field equations,

Rµν −
1
2

gµνR = 8πTµν, (24)

and note that the elements of the electromagnetic stress tensor,

T00 =
1
2

(
E2 + B2

)
Tij =

(
1
2

δijE2 − EiEj
)
+

(
1
2

δijB2 − BiBj
) (25)

are symmetric in E ↔ B, while the Poynting vector contribution, T0i ∼ (E× B)i vanishes when
considering either field in isolation (this is true even in the extended setting in which magnetic
monopoles are incorporated in Maxwell’s equation from the start). Then the role of an electric or
magnetic monopole in gravity is the same, we have β2 → β̄2 in (21). The field equations give a different
result than the Weyl method, so this is another example where the Palais principle is violated.

The problem in this case comes from the move from the electromagnetic action, LEM ∼
√−gFµνFµν,

to the electromagnetic stress tensor (obtained by Hilbert’s procedure),

Tµν ≡
2√−g

∂LEM

∂gµν . (26)

The variational procedure that generates the stress tensor source for gravity from (15) requires
that we probe the full metric dependence of the electromagnetic action. In the Weyl method, we probe
only a subset and evidently, that subset is too small to reproduce the correct stress tensor structure.
Indeed, the electromagnetic piece of the Lagrangian,

LEM =
√
−gFµνFµν = 2r2b(r) sin θ

(
B2 − b(r)2E2

)
(27)

depends on only one of the metric’s two independent functions, a clear warning sign that we will be
looking at only a portion of the stress tensor defined by (26).

The situation is similar to the failures described in Section 3 but in those cases, only the
gravitational piece was relevant. We know that the line element ansatz (6) used here is enough
to capture the spherically symmetric vacuum solution but it is not enough to provide the correct source
term. It is conceivable that we could introduce Lagrange multipliers to restore the procedure, as with
Birkhoff’s theorem or the axially symmetric Weyl metrics. But the ease with which we obtain the
correct solution from the full field equations makes the task of finding such fixes unnecessary.

5. Conclusions

Symmetry is a powerful simplifying tool in many settings. In general relativity, the Weyl method
makes good use of symmetry observations by reducing the number of degrees of freedom in the
Einstein-Hilbert action. The method does not always work and it is important to test solutions obtained
in this way by running them through the Einstein field equations. While the Weyl method can be
used to correctly obtain the Reissner-Nordström spacetime outside of an electrically charged spherical
central body, it fails to produce the correct spacetime when the central body is magnetically charged.

For most applications, the problem with the Weyl method is similar in spirit to the extreme
example from Section 3, where the degrees of freedom in the action have been over-reduced, leaving
us with no information. That’s what happens for the spherically symmetric starting point (11) and the
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same deficiency occurs when trying to prove Birkhoff’s theorem and establish the Weyl class of metrics
starting from (14). In each of these cases, the hallmark is a lack of information, the field variables are
unconstrained in some way that they should be, according to Einstein’s equation. We are left with no
information and that lack of information tells us that the error has occurred and suggests a fix.

The monopole case discussed here is different. We are not simply missing information that we
suspect should be there. Rather, the information we have is incorrect. The symptom is different but
the deficiency is the same, a lack of ability to probe the starting action’s full field degrees of freedom.
This time, it is the “source” term, the electromagnetic action, rather than the gravitational one that is
the culprit.
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