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Abstract: A Friedmann–Robertson–Walker Universe was studied with a dark energy component
represented by a quintessence field. The Lagrangian for this system, hereafter called the
Friedmann–Robertson–Walker–quintessence (FRWq) system, was presented. It was shown that
the classical Lagrangian reproduces the usual two (second order) dynamical equations for the radius
of the Universe and for the quintessence scalar field, as well as a (first order) constraint equation. Our
approach naturally unified gravity and dark energy, as it was obtained that the Lagrangian and the
equations of motion are those of a relativistic particle moving on a two-dimensional, conformally
flat spacetime. The conformal metric factor was related to the dark energy scalar field potential.
We proceeded to quantize the system in three different schemes. First, we assumed the Universe
was a spinless particle (as it is common in literature), obtaining a quantum theory for a Universe
described by the Klein–Gordon equation. Second, we pushed the quantization scheme further,
assuming the Universe as a Dirac particle, and therefore constructing its corresponding Dirac and
Majorana theories. With the different theories, we calculated the expected values for the scale factor
of the Universe. They depend on the type of quantization scheme used. The differences between the
Dirac and Majorana schemes are highlighted here. The implications of the different quantization
procedures are discussed. Finally, the possible consequences for a multiverse theory of the Dirac and
Majorana quantized Universe are briefly considered.

Keywords: quantum cosmology; quintessence; Dirac and Majorana quantization

1. Introduction

Quintessence is the name of one model put forward in order to explain the increment of the
rate of expansion of the Universe. The model modifies the equations of General Relativity by
adding a Lagrangian density for a massless scalar (quintessence) field rolling down a potential
minimally-coupled to the usual Einstein–Hilbert Lagrangian density [1,2]. The equations of motion for
the Friedmann–Robertson–Walker–quintessence (FRWq) system are obtained from Einstein’s equations
modified by the addition of the quintessence field. They consist of a set of two ordinary dynamical
second order differential equations which govern the evolution of the dynamical variables (the radius
of the universe and the scalar quintessence field) and one ordinary first order differential equation
which constraints the initial values and velocities of the dynamical variables. This system has been
studied extensively both in classical [1–3], as well as in quantum [4,5], cosmologies. Its importance is
justified as this model is used to give an explanation on dark energy.
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Several of the articles which deal with the subject, write down a Lagrangian formulation for
the FRWq system. Nevertheless, to the best of our knowledge, all of the work published up to now
is based on a classical Lagrangian, which gives rise to the two dynamical equations but does not
yield the contraint equation [6]. In this work, we proposed a model for a FRWq system that could
be studied as a relativistic pointlike particle. This would allow us to quantize the system, creating
different quantum cosmological models. The first step in this model consisted of constructing a new
Lagrangian without the previously mentioned problem. The Lagrangian presented in this article gives
rise to two dynamical equations and one constraint equation [6]. We show that the FRWq system may
be completely described in terms of a Lagrangian similar to that of a relativistic pointlike particle
moving on a two-dimensional, conformally flat gravitational field. This is presented in Sections 2
and 3. The two-dimensional conformal factor is a function of the radius of the universe and of
the scalar quintessence field, which naturally plays the role of coordinates in this two-dimensional
mini-superspace. Hence, the relativistic particle description of the FRWq system is only possible with
the merging of spacetime and quintessence.

The previous concepts and identifications between the classical cosmological spacetime and the
quintessence field will lead us to a straightforward construction of a quantum theory in Section 4.
Notice that this is only possible because of the unification achieved through the relativistic particle
description. Quantizing the model as a spinless particle will give rise to a Klein–Gordon theory, which
is a generalization of the Wheeler–DeWitt equation. Moreover, following Breit’s prescription [7], we
can quantize the model in a way analogous to that of a spin particle, producing Dirac and Majorana
theories for the cosmological model. Both models are in agreement with the principle of manifest
covariance, as the found quantum cosmology theories can be written in terms of four-tensor forms.
Finally, in Section 5, different aspects of our models are discussed. The validity of the Dirac quantization
scheme is highlighted in that section, thereby showing how the same theory can be obtained using
different approaches. Also, a connection of this theory with Multiverses is discussed.

2. Lagrangian for FRWq System

In general, it is possible to write a Lagrangian density L for the evolution of the spacetime metric
gµν(xα) in interaction with a massless scalar field φ(xβ), which may be identified with the quintessence
field. The general Lagrangian is:

L =
√
−g
(

R− 2Λ
2G + Lφ

)
, (1)

where g stands for the determinant of the metric gµν, G = 8πG/c4 (with G as the gravitational constant
and c the speed of light), Λ is the cosmological constant, and Lφ is the Lagrangian density for the
massless scalar field:

Lφ = ε

(
1
2

gµνφ,µ φ,ν−V(φ)
)

. (2)

Here V(φ) is an unspecified potential dependent on the scalar field φ. Also, ε is a parameter that
determines the nature of the scalar field: ε = 1 produces the Lagrangian density for usual scalar fields,
while ε = −1 defines the gravitational Lagrangian modified with the quintessence field [4].

As it is well known, the Lagrangian density L defined by Equation (1) is singular. The action S:

S =
∫
L d4x , (3)

gives rise (upon variation with respect to the metric tensor gµν) to gauge invariant (generally covariant)
and constrained Einstein field equations coupled to matter, i.e.,

Gµν + Λgµν = G Tµν , (4)

where Gµν is the Einstein tensor, and Tµν is the energy–momentum tensor of matter:
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Tµν = gµνLφ − 2
δLφ

δgµν . (5)

Variation of the action S with respect to φ yields the Klein–Gordon equation for the massless
scalar field:

�φ +
dV(φ)

dφ
= 0 , (6)

where � is the d’Alembert operator in curved spacetimes.
In order to study a cosmological model with quintessence, let us take the line element for

an isotropic and homogeneous FRW spacetime, with the metric defined by [8]:

ds2 = −dt2 + a(t)2
[

dρ2

1− kρ2 + ρ2(dθ2 + sin2 θdφ2)

]
, (7)

where a(t) is the scale factor of the studied cosmology, and ρ, θ and φ are spherical coordinates.
The number k is the curvature constant, and it can take the values k = −1, 0, 1 measuring the negative,
zero, or positive curvature of the Universe.

When Einstein equations coupled to matter are written in terms of the line element (7), and under
the assumption that the scalar field φ depends on time only, we get two second order dynamical and
one first order constraint. Setting G = 1, the dynamical equations read:

2
ä
a
+

(
ȧ
a

)2
+

k
a2 − ε

(
1
2

φ̇2 −V(φ)

)
= 0, (8)

and:

φ̈ + 3
ȧ
a

φ̇ +
dV(φ)

dφ
= 0 , (9)

where we have introduced the new potential V(φ) = V(φ)− εΛ. The constraint equation is:

3
(

ȧ
a

)2
+ 3

k
a2 + ε

(
1
2

φ̇2 + V(φ)

)
= 0 . (10)

Another useful equation can be obtained manipulating Equations (8) and (10) to get:

ä
a
=

ε

3

(
φ̇2 −V

)
. (11)

For ε = −1, the set (8)–(11) becomes the FRWq system. This set of equations has been already
studied and solved for quintessence by Capozziello and Roshan [3] for different scenarios and
configurations of matter.

In this article, we explore the analogy of this system with a relativistic particle [6], which implies,
as we will show, a geometric unification of gravity and quintessence fields. With this purpose in mind,
we examine a Lagrangian L that gives rise to the dynamical Equations (8) and (9). This Lagrangian is:

L = 3aȧ2 − 3ka + εa3
(

1
2

φ̇2 −V(φ)

)
. (12)

We emphasize that the Lagrangian (12) does not give rise to the constraint Equation (10). This
constraint is equivalent to imposing the vanishing of the Hamiltonian H associated to L, i.e.,

H ≡ ∂L
∂ȧ

ȧ +
∂L
∂φ̇

φ̇− L = 0 . (13)

It is a remarkable fact that the change of variables:
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r =
2
√

6
3

a3/2 , θ =
3

2
√

6
φ , (14)

re-writte the Lagrangian L in a “kinetic energy minus potential energy (T−V)” form for the quintessence
case (without considering that both T and V have the “wrong signs” in the θ associated terms)

L→ L̄ =
1
2
(ṙ2 + εr2θ̇2)− V̄(r, θ) , (15)

where V̄(r, θ) is a general potential:

V̄(r, θ) = 3
(

3
8

) 1
3

k r2/3 + ε
3
8

r2V(θ) . (16)

Note that the Lagrangian L̄ defined in Equation (15), describing the evolution of a FRWq Universe
in the presence of geometry—represented either by r or by a—and dark energy—represented by
ε = −1, and either θ or φ—shows that the Universe evolves as a relativistic particle moving on
a two-dimensional surface under the influence of the potential (16). Nevertheless, the Lagrangian (15)
does not produce the constraint Equation (10). To construct a Lagrangian which gives rise to all three
equations—Equations (8)–(10), it is enough to use the Jacobi–Maupertuis and Fermat principles. Those
produce identical equations of motion in classical mechanics and geometrical (ray) optics, but the
Fermat principle also produces a constraint equation [6,9]. We stress that exactly the same results are
obtained for the case of a relativistic particle moving on a two-dimensional conformally flat spacetime.

3. Quintessence and Fermat-Like Lagrangian

From now on, we just focus in the case of ε = −1, which describes the dark energy (quintessence)
scenario [4]. The description of the FRWq system in terms of a Fermat-type Lagrangian is established by
defining the relation between the potential V̄(r, θ) and the (“refraction index”) conformal factor n(r, θ):

V̄(r, θ) ≡ −1
2
[n(r, θ)]2 , (17)

and the constraint:

H̄ ≡ ∂L̄
∂ṙ

ṙ +
∂L̄
∂θ̇

θ̇ − L̄ = 0 . (18)

The Fermat–like Lagrangian LF which gives rise to all three equations—Equations (8)–(10)—is:

LF = n(r, θ)

√(
dr
dλ

)2
− r2

(
dθ

dλ

)2
, (19)

where λ is, in principle, an arbitrary parameter, and n(r, θ) =
√
−2V̄(r, θ), with V̄(r, θ) defined

in Equation (16) as:

V̄(r, θ) = 3
(

3
8

) 1
3

k r2/3 − 3
8

r2V(θ) , (20)

with V(θ) = V(θ) + Λ. Thus, the Lagrangian (19) may be appropriately rewritten as:

LF =

√√√√−2V̄(r, θ)

[(
dr
dλ

)2
− r2

(
dθ

dλ

)2
]

. (21)

To reproduce the relativistic equations of motion, λ is defined by Lüneburg’s parameter
choice [9,10]:
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√(
dr
dλ

)2
− r2

(
dθ

dλ

)2
= n(r, θ) . (22)

It is straightforward to prove that, varying the Lagrangian (21) with respect to r and θ, one gets
Equations (8) and (9)—when rewritten in terms of r and θ—, while the constraint (10) arises because
the Hamiltonian associated to a Lagrangian, which is a homogeneous function of degree one in the
velocities, vanishes identically, much in the same way it happens in the Lagrangian description of the
dynamics of a relativistic particle. This statement may equivalently be related to the eikonal equation
in geometrical optics.

4. Quantization

As the FRWq dynamics may be described completely in terms of a Lagrangian similar to that
of a relativistic particle, we can proceed further in our scheme to quantize this model described
by FRWq Lagrangian. The quantization of cosmological Universes has been a prosperous field for
decades. This field, called quantum cosmology, attempts to construct a quantum theory for the
entire Universe. However, there is not a unique form to achieve this. Several possibilities have been
carried out (for a comprehensive review, we refer the reader to Reference [5]). The most famous
procedure corresponds to do a canonical quantization of the classical dynamical equations for the
FRW Universe. This is done by replacing the momentum by a derivative operator on the scale factor
variable. The final equation is known as the Wheeler–DeWitt equation [11,12]. This equation will
depend on the main features we want to study of the Universe. Thus, quantum cosmologies have
been studied for Universes with a dynamical vacuum in de Sitter cosmologies [13], in anti-de Sitter
spacetimes [14], in radiation-dominated Universe [15], in Universes with cosmological constant [16,17],
in f (R) gravity [18,19], in conformal theory [20], and with a massive scalar field [21], among plenty of
other works.

Below we will proceed quantizing in three different ways. First, we will use canonical
quantization of the classical Lagrangian (21) modeling the Universe as a relativistic particle—producing
a Klein–Gordon equation. This is the standard quantization for a relativistic point particle. Secondly,
we quantize the FRWq Universe as a relativistic Dirac particle—Dirac or Majorana theories—given
a proper physical justification for this procedure.

First, let us rewrite the Lagrangian (21) as:

LF =
√

V̄(ξ, θ) e2ξ
(
θ̇2 − ξ̇2

)
, (23)

where we have introduced the new variable ξ = ln r, and V̄ ≡ V̄(ξ, θ) = V̄(r, θ) with θ̇ = dθ/dλ, ξ̇ =

dξ/dλ. The previous Lagrangian coincides with the one for a relativistic particle on a two-dimensional,
conformally flat spacetime. The corresponding conformal flat metric is:

g00 = Ω2 , g00 =
1

Ω2 , g11 = −Ω2 , g11 = − 1
Ω2 , (24)

where:
Ω ≡

√
V̄eξ , (25)

such that the Lagrangian (23) is written as:

LF =

√
gµν

dxµ

dλ

dxν

dλ
, (26)

with x0 = θ and x1 = ξ.
In order to avoid problems with the procedure of canonical quantization of the FRWq system, we

restrict ourselves to the cases where V̄ > 0, and consider static manifolds only [22], where there exists
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a family of spacelike surfaces which are always orthogonal to a timelike Killing vector. This implies
that ∂θ gµν = 0, or:

∂V̄
∂θ

= 0 , (27)

which means that the original potential V(θ) is a constant. Thereby, for the current quantization
process, V(θ) is essentially equal to a cosmological constant. We have just restricted ourselves to the
cases in which the FRWq Lagrangian is θ independent. The associated Noether conservation law forces
that θ̇ cannot change sign (see Equation (9) for a φ independent potential). Thereby, θ may be used as
the evolution (time) variable, in the form that the variational principle and quantization procedure
suggest. Notice that the quintessence field has now the functionality of a super-time in this new
description, where the particle evolves in an effective two-dimensional conformally flat spacetime.

Classically, it can be rigorously shown [23] that the Hamiltonian for the system described by
Lagrangian (23) is:

H =
√

g00

√
1− g11π2 =

√
g00

√
1 +

π2

Ω2 , (28)

where π is the canonical momentum. We used this Hamiltonian to construct the quantum theory for
the FRWq system. In order to avoid factor ordering issues, the quantum Hamiltonian operatorH may
be constructed from its classical analogue (28) as:

H = Ω1/2
√

1 + p̂2 Ω1/2 , (29)

where p̂ is the momentum operator defined as

p̂ =
√
−g11π̂ =

π̂

Ω
= − i

Ω
∂

∂ξ
, (30)

because of π̂ = −i∂ξ . In this way, the quantum equation that describe the quantization of the FRWq
system is:

ih̄
∂Ψ
∂θ

= HΨ , (31)

where Ψ is the wavefunction of the FRWq system.
In principle, one may ask whether there are ways to construct other Hamiltonian operators

that differ from Equation (29), giving rise to quantum theories which are not equivalent to the one
described by Equation (31) (see, for instance [24]). This point is subtle, and the answer is affirmative;
however, the operator (29) has the advantage in that it reproduces results from quantum field theory
in curved spacetimes, as we will see below. In what follows, we proceed to quantize the FRWq theory
in two majorly different ways. In the first case, we quantize the system using a procedure devised for
spinless particles. This approach produces a Klein–Gordon equation for the wavefunction of the FRWq
Universe. The second case corresponds to the quantization of the FRWq system as a Dirac particle.

4.1. Quantization of the FRWq System as a Klein–Gordon Particle

One way to canonically quantize the relativistic spinless particle can be obtained following the
method developed by Gavrilov and Gitman [25]. This procedure is a consistent way to construct the
quantum theory along Dirac’s theory for gauge and constrained systems [26,27]. We will not reproduce
the calculations for this quantization scheme here, but we limit ourselves to exhibit the results of
applying this method. The quantization for the FRWq system produces the quantum equation [25]:

i∂θΨ = ĥΨ , (32)

(taking h̄ = 1 for convenience) where Ψ is the spinor:
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Ψ =

(
χ

ψ

)
, (33)

and ĥ is a matrix Hamiltonian:

ĥ =

(
0 −∂2

ξ + Ω2

1 0

)
. (34)

Let us notice that these are not two dynamical equations for a spinor, but Equation (32) will
produce the constraint i∂θψ = χ. Therefore, Equation (32) gives rise to a Klein–Gordon equation:

0 =
∂2ψ

∂θ2 −
∂2ψ

∂ξ2 + Ω2ψ , (35)

that it also can be written as:
0 = gµν∂µ∂νψ + ψ , (36)

with the notation from previous section, Equations (24) and (25), x0 = θ and x1 = ξ. The wavefunction
ψ represents the probability amplitude obtained by using the quantization of the FRWq Universe
system as a Klein–Gordon particle. It obeys the same equation of the Klein–Gordon field in Minkowski
space but now with an effective mass term whose origin is the conformal metric. Equation (35)—or
(36)—is consistent with the principle of manifest covariance, as this quantum theory emerges from
general relativity. A similar result is obtained when a scalar field is quantized in an expanding curved
spacetime background [28], obtaining a mass-corrected term due to a conformal time. However, we
must emphasize that our treatment is different because, in our approach, it is the spacetime itself that
is quantized.

The conserved Klein–Gordon probability density is not positive definitive. For the case at hand,
one can calculate, from Equation (35), the probability density ρψ for the Klein–Gordon field as:

ρψ =
∫ a f

0

da
ia

(
ψ∗

∂ψ

∂θ
− ∂ψ∗

∂θ
ψ

)
, (37)

where ψ∗ is the complex conjugated of the wavefunction (41), and a f is some value of the scale factor
that can be equal or larger than its present value. We notice that the probability density depends on θ.
In the same way, for our case, the expected value of the scale factor is [29]:

〈a(θ)〉 = 1
|ψ|2

∫ a f

0

da
i

(
ψ∗

∂ψ

∂θ
− ∂ψ∗

∂θ
ψ

)
, (38)

which depends on θ, as well.
We can solve Equation (35) exactly for k = 0 and any constant V. Assuming the dependence

ψ(ξ) = φ(ξ) eiEθ , for a constant parameter E, the previous equation becomes:

∂2φ

∂ξ2 =
(

Ω2 − E2
)

φ . (39)

For a spatially flat Universe k = 0, where Ω2 = −3Ve4ξ /8—being V = V(θ) a constant related to
the cosmological constant—, the general solution is found to be:

φ(ξ) = C1 J−iE/2

(
e2ξ

4

√
3V
2

)
Γ
(

1− iE
2

)

+ C2 JiE/2

(
e2ξ

4

√
3V
2

)
Γ
(

1 +
iE
2

)
, (40)
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where Γ is the Euler gamma function, and Jn is the modified Bessel function of the first kind of order n.
By appropiate choice of constants C1 and C2, the wavefunction φ can be real.

To find solutions for k 6= 0 for the wavefunction ψ, we proceed assuming that the wavefunction
can be decomposed as:

ψ(ξ, θ) = ψ(a, θ) =
∞

∑
n=0

ψn(a) eiEnθ , (41)

where the reason to go back to the a-representation in the variables will be clear in the following. Here,
En is a parameter that, as we will see below, can be associated with the energy of the n-state of the
Klein–Gordon field ψn. Using this decomposition, we can find a suitable equation to be solved. First,
let us define the field un(a) =

√
a ψn(a). This new field follows the differential equation:

− d2un

da2 + Veff(a) un =
9E2

n
4a2 un , (42)

where we have introduced the effective potential:

Veff(a) =
9Ω2 − 1

4a2 , (43)

that depends on the value of k. Equation (42) can be converted in the following Ricatti equation:

− i
dµn

da
+ µ2

n +

(
Veff −

9E2
n

4a2

)
= 0 , (44)

where:
µn(a) = −i

d
da

ln un . (45)

The above Ricatti equation can be generally solved if a particular solution can be found for any k.
This is not a trivial task. An approximated solution of Equation (42) for the field un can be

obtained using the Spectral Method (SM) [30,31] in the expansion (41). This method is usually utilized
in similar quantum theories for the Universe [17]. As the wavefunction of the Universe must vanish at
the origin, as well as in infinity, the SM uses the approximation that the wavefunction vanishes at some
length L (as large as we require). Thus, the SM allows us to expand the wavefunction un in a Fourier
series:

un(a) ≈
N

∑
m=1

A(n)
m sin

(mπ

L
a
)

, (46)

where A(n)
m are constant coefficients that depends on the n-state. Notice that this expansion implies,

from Equation (41), that the wavefunction ψ(a→ 0, θ)→ 0, which is the desired behavior. Here, N is
a number that can be chosen arbitrarily. The approximation improves as N increases. According to the
SM, we can expand also the following functions:

Veff(a) un(a) ≈
N

∑
m=1

B(n)
m sin

(mπ

L
a
)

,

9
4a2 un(a) ≈

N

∑
m=1

C(n)
m sin

(mπ

L
a
)

, (47)

where again B(n)
m and C(n)

m are coefficients depending on the n-state. It is straightforward to find
the relation between B(n)

m and C(n)
m with A(n)

m . Using Equation (46) in Equation (47), we get that
B(n)

m = ∑N
l=1 Dml A

(n)
l , and C(n)

m = ∑N
l=1 Fml A

(n)
l , where:
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Dml =
2
L

∫ L

0
sin
(mπ

L
a
)

Veff(a) sin
(

lπ
L

a
)

da ,

Fml =
9

2L

∫ L

0
sin
(mπ

L
a
) 1

a2 sin
(

lπ
L

a
)

da . (48)

Now, with the expansion in Equations (46) and (47) in Equation (42), we can finally obtain the
eigenvector equation:

F−1 ·K ·A(n) = E2
nA(n) , (49)

for the A(n) vector (with N components A(n)
l ) and where En corresponds to the eigenvalues. Here,

F−1 is the N × N inverse matrix of F (with components Fml), and the N × N matrix K has the
components Dml + (mπ/L)2δml . The dimensions of the matrices F and K will be fixed once a cut on
the series Equation (46) in Equation (47) will be done, while the better the approximation, the larger
will be the matrices. Thus, the system is completed solved. The values of En correspond to the
energies of the different possible states of the Universe. This also allows us to identify the variable θ as
a super-time, as it was previously discussed.

If one is being less restrictive with the assumption that the potential V(θ) is constant,
Equation (35) can be written in the form of the Wheeler–DeWitt Super-Hamiltonian formalism [12,21].
For example, for a closed universe k = 1—and the case quinteessence ε = −1—, it is possible to
rewrite Equation (35) as:

∂2ψ

∂A2 −
∂2ψ

∂ϕ2 +
(

m̂2 ϕ2e6α − e4α
)

ψ ≡ Hψ = 0, (50)

whereA = ln a, and ϕ = 2θ/3. To obtain this equation, we chose m̂2 = 1/18 and V(θ) = 3m̂2 ϕ2, where
m̂ is the mass of the field. Here, H is usually called the Wheeler–DeWitt Super-Hamiltonian [12,21].
Thus, the quantization of the FRWq system as a Klein–Gordon particle proposed here can reproduce
known results of quantization using the Super-Hamiltonian formalism.

On the other hand, another possible solution of Equation (42) could be achieved using the
Frobenius (polynomial) method, which is different from the SM. This solution corresponds to
a polynomial expansion in a, where all the coefficients can be found from recurrence relations.
A polynomial solution for un has the form:

un(a) ≈ ay
∞

∑
m=0

b(n)m am , (51)

where y > 0 and b(n)m are constants. For the sake of simplicity, we choose b(n)0 = 1. Using the previous
expansion in Equation (42) we find:

∞

∑
m=0

[
(m + y)(m + y− 1) +

9E2
n + 1
4

]
b(n)m am+y−2

−
∞

∑
m=4

18k b(n)m−4am+y−2 +
∞

∑
m=6

6V b(n)m−6am+y−2 = 0 , (52)

where V is defined after Equation (9). Equating every term to zero, we can readily find the solutions:
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y =
1
2
± 3i

2
En ,

b(n)4 =
72k

(3iEn + 9) (3iEn + 7)
,

b(n)6 =
−24V

(3iEn + 13) (3iEn + 11)
,

b(n)8 =
72k

(3iEn + 17) (3iEn + 15)
, (53)

with also b(n)2 = 0, b(n)2m+1 = 0, and the recurrence relation for m ≥ 5 is:

b(n)2m =
72kb(n)2m−4 − 24Vb(n)2m−6

(3iEn + 4m + 1) (3iEn + 4m− 1)
, (54)

where now the problem is completely solved. The weakness of this method is that it does not give any
physical meaning to the constant En in the ansatz (41).

4.2. Quantization of the FRWq System à la Dirac-Pauli

Basically, the quantization process proposed here consists in finding the square root of the
Hamiltonian operator (29). In principle, one can use matrices to find the square root, but its use implies
the notion that the cosmological model behaves as a Dirac particle. At a first glance, it may appear
strange to quantize a model for a relativistic pointlike particle with a quantum spin theory. However,
in 1928, Breit [7] showed that there exists a correspondence between the Dirac and the relativistic
pointlike particle Hamiltonians. In that work, it is shown that one can obtain the Dirac equation via
a prescription of replacement of the particle velocity and the Dirac matrices, as well as the prescription
in Schrödinger or Klein–Gordon theories where the energy and momentum and can be replaced by the
time and space derivatives. Thus, Breit’s prescription implies a classical and geometrical interpretation
of the spin. We leave the calculations and the deep discussion of this idea to Section 5. For now, in
this section, we restrict ourselves to follow Breit’s interepretation and perform the quantization of the
FRWq Universe using Dirac matrices.

We propose that the Hamiltonian (29) can be written using Dirac matrices (α and β). This will
give us the Hamiltonian operator:

H = Ω1/2 (α · p̂ + β)Ω1/2 . (55)

In Section 5, we justify this choice. This Hamiltonian allows us to quantize a FRWq Universe as
if it were a relativistic spin particle. Using the operator (55), the quantum mechanical Equation (31)
now reads:

i
∂Ψ
∂θ

= −iαξ

[
∂

∂ξ
+

1
2

∂ ln Ω
∂ξ

]
Ψ + βΩΨ , (56)

where Ψ now is a bi-spinor. Here, αξ stands for any of the Dirac matrices α. Choosing the Dirac
representation γ0 = β and γξ = γ0αξ , we can operate Equation (56) by γ0 by the left to find that:

iγ0 ∂Ψ
∂θ

+ iγξ

(
∂

∂ξ
+

1
2

∂ ln Ω
∂ξ

)
Ψ = ΩΨ . (57)

This equation describes the quantum theory for the FRWq Universe modeled as a Dirac particle.
Also, it can be obtained directly from the theory of the Dirac equation in curved spacetimes, thus
giving validity to our quantization scheme (shown in Appendix A).
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Dirac matrices are 4× 4, and as we are describing a two-dimensional conformal system, we
may anticipate that the above equation is reducible. This means that Dirac Equation (57) couples
the wavefunction in pairs, implying that the two pairs of wavefunctions satisfy the same equation.
This gives us a hint that a completely equivalent quantization formalism to the previous one can be
achieved using Pauli matrices. Solving the Hamiltonian (29) using Pauli matrices—notice that there is
no restriction to this ansatz—, the Hamiltonian operator (29) can be written as:

H = Ω1/2 (σx + σy p̂
)

Ω1/2 , (58)

where σx and σy can be any two different Pauli matrices. The quantum mechanical equation (31)
describing the FRWq system becomes (setting h̄ = 1):

i1
∂Ψ
∂θ

= Ω σxΨ− iσy

[
∂

∂ξ
+

1
2

∂ ln Ω
∂ξ

]
Ψ , (59)

where 1 is the unit matrix, and Ψ represents a spinor field. We can use the Pauli matrices properties to
put the previous equation in the following form:

iσx
∂Ψ
∂θ
− σz

[
∂

∂ξ
+

1
2

∂ ln Ω
∂ξ

]
Ψ = Ω Ψ , (60)

where iσz = σxσy. It can be proven that choosing σx = σ3 and σz = σ2 gives the same dynamical
equation as choosing γξ = γ1 in the Dirac equation.

On the other hand, from Equation (57), we notice a that defining the bi-spinor Ψ′ =
√

ΩΨ, we
can obtain the equation:

i
(

γ0 ∂

∂θ
+ γξ ∂

∂ξ

)
Ψ′ = ΩΨ′ , (61)

which is a flat 1+1 spacetime massless Dirac equation with a scalar potential. The principle of manifest
covariance of this quantum cosmology model can be explicitly seen here, as we could have re-written
the previous equation as:

iγµ∂µΨ′ = ΩΨ′ . (62)

These kinds of equations have been extensively studied and approximated solutions have been
found [32–35].

Finally, using the wavefunction Ψ (given by solving either the Dirac or Pauli equations), we can
calculate the probability density of the Dirac field as:

|Ψ(θ)|2 =
∫ a f

0

da
a

Ω Ψ†Ψ , (63)

where Ψ† is the transpose conjugated of the wavefunction Ψ. In the previous expression, Ψ and Ψ† are
written in terms of a. In a similar fashion, the expected value of the scale factor for the Universe under
the Dirac quantization is obtained:

〈a(θ)〉 = 1
|Ψ|2

∫ a f

0
da Ω Ψ†Ψ , (64)

depending again on the values of super-time θ.
To further study the system, let us do the bi-spinor descomposition:
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Ψ(θ, ξ) =
∞

∑
n=0

eiEnθ


ψn(ξ)

ζn(ξ)

ϕn(ξ)

χn(ξ)

 , (65)

where En are constants. Using Equation (65) in Equation (57), gives:

0 =
dχn

dξ
+

1
2Ω

dΩ
dξ

χn + i(En + Ω)ψn ,

0 =
dψn

dξ
+

1
2Ω

dΩ
dξ

ψn + i(En −Ω)χn , (66)

where we have made the particular choice of the Dirac matrix:

γξ = γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 . (67)

The same mathematical equations can be obtained for the fields ζn and ϕn, reflecting that the
system can also be studied using Pauli matrices. Now the fields ψn and χn appear coupled. From those
equations, it is impossible to recover the Klein–Gordon Equation (39). The reason is that wavefunctions
are coupled to the spacetime metric through the potential due to the quintessence field.

Let us notice that a simple exact solution of Equation (66) can be found when the fields do not
depend on quintessence, i.e., when En = 0. In this case, the solutions are:

ψn(ξ) =
i√
Ω

exp (ΩI) = iχn(ξ) , (68)

where we define:

ΩI(ξ) ≡
(

1
2
− 2

31/3k
V

e−4ξ/3

)√
34/3k

2
e8ξ/3 − 3Ve4ξ

8
. (69)

However, these solutions are not well-behaved at ξ → −∞ (a→ 0) as it diverges. Therefore, we
will seek solutions with En 6= 0.

A more general solution can be obtained in the following way. Let us define φ+
n (ξ) =

√
Ω ψn(ξ),

and φ−n (ξ) =
√

Ω χn(ξ). Thus, the Equation (66) can be re-written as:

dφ±n
dξ

= Ω∓φ∓n , (70)

where Ω± = ±i (En ±Ω), such that Ω+Ω− = E2
n −Ω2. The previous equations are coupled, but we

can find the following second-order equation, which holds for each of the fields:(
− d2

dξ2 +
1

Ω∓
dΩ∓

dξ

d
dξ

+ Ω+Ω−

)
φ±n = 0 . (71)

The above equation can be reduced to familiar expressions doing the change φ±n =√
Ω∓ exp (i

∫
µ±(ξ ′)dξ ′). The equation for µ is reduced to a Ricatti equation:

dµ±
dξ

+ iµ2
± − iV± = 0 , (72)
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with:

V± = − 3
4Ω2
∓

(
dΩ∓

dξ

)2
+

1
2Ω∓

d2Ω∓
dξ2 −Ω−Ω+ . (73)

A general solution of the Ricatti Equation (72) can be found if we are able to find a particular
solution.

On the other hand, when the solutions depend on the quintessence field, we can use the SM to
completely solve the Dirac Equation (66), as well as in the previous section. As it was shown before,
this method allows us to reduce the complicated Equation (66) to an eigenvalue problem for any k.
First, we define the wavefunctions un(a) =

√
Ω ψn(a)/a and vn(a) =

√
Ω χn(a)/a, where now ψn and

χn should be written in terms of a; similar changes can be done for the fields ζn and ϕn. These two
new functions satisfy the equations:

0 = a
dvn

da
+ vn + i (En + Ω) un ,

0 = a
dun

da
+ un + i (En −Ω) vn . (74)

We can now use the SM for the functions un and vn. Notice that every term in Equation (74)’s
approach to zero as a goes to zero. With the SM, we can assume the following dependence for the
different functions:

un(a) ≈
N

∑
m=1

A(n)
m sin

(mπ

L
a
)

,

vn(a) ≈
N

∑
m=1

B(n)
m sin

(mπ

L
a
)

, (75)

where again A(n)
m and B(n)

m are constant coefficients that depend on the n-state. Anew, the wavefunction
(65) behaves as Ψ(θ, a→ 0)→ 0. Similarly, we get:

Ω(a) un(a) ≈
N

∑
m=1

C(n)
m sin

(mπ

L
a
)

,

Ω(a) vn(a) ≈
N

∑
m=1

D(n)
m sin

(mπ

L
a
)

,

a
dun(a)

da
≈

N

∑
m=1

E(n)
m sin

(mπ

L
a
)

,

a
dvn(a)

da
≈

N

∑
m=1

F(n)
m sin

(mπ

L
a
)

, (76)

where the relations between the coefficients are C(n)
l = ∑N

l=1 Glm A(n)
m , D(n)

l = ∑N
l=1 GlmB(n)

m , E(n)
l =

∑N
l=1 Hlm A(n)

m and F(n)
l = ∑N

l=1 HlmB(n)
m , with the matrix elements:

Glm =
2
L

∫ L

0
sin
(

lπ
L

a
)

Ω(a) sin
(mπ

L
a
)

da ,

Hlm =
2mπ

L2

∫ L

0
a sin

(
lπ
L

a
)

cos
(mπ

L
a
)

da . (77)

Using Equation (75) in Equation (76), and the previous relations on Equation (74), we find, after
some algebra, the eigenvector equation:

M ·V(n) = EnV(n) , (78)
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where En corresponds to the eigenvalues (associated to the energy), and the eigenvector V(n) is formed
by the 2N components A(n)

m and B(n)
m as:

V(n) =

(
A(n)

B(n)

)
, (79)

and the 2N × 2N matrix M is such that:

M =

(
−G i (I+H)

i (I+H) G

)
, (80)

where the N × N matrices G and H are constructed by the components given in Equation (77); I is the
identity matrix. The evolution of the system is completely determined by solving the eigenvector and
eigenvalue Equation (78). The approximated solution improves by increasing N.

4.3. Quantization of the FRWq System à la Majorana

Strictly speaking, the Dirac description of the FRQW system implies that the Universe can interact
with self-electromagnetic fields, as the particle modeled can have charge. One way to avoid this issue
is to use Majorana matrices instead of Dirac matrices. In this way, the quantization scheme models
a Universe with quintessence as a neutral relativistic quantum particle. The quantum mechanical
equation is:

iγ0
M

∂ΨM
∂θ

+ iγξ
M

(
∂

∂ξ
+

1
2

∂ ln Ω
∂ξ

)
ΨM = ΩΨM , (81)

where now γM are the Majorana matrices, and ΨM represents the wavefunction of the FRWq system
in the Majorana scheme of quantization.

Similar to the previous case, the expected value of the scale factor for the Universe under the
Majorana quantization is:

〈a(θ)〉 = 1
|ΨM|2

∫ a f

0
da Ω Ψ†

MΨM , (82)

where Ψ†
M is the transpose conjugated of the wavefunction ΨM, and the probability density is

|ΨM|2 =
∫ a f

0 da Ω Ψ†
MΨM/a. As well as all the previous cases, the expected value of the scale factor

depends on θ.
Analytical representation of the solutions can be obtained by performing the descomposition:

ΨM(θ, ξ) =
∞

∑
n=0

eiEnθ


ψn(ξ)

ζn(ξ)

ϕn(ξ)

χn(ξ)

 , (83)

and choosing:

γ
ξ
M = γ1

M =


i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

 ; (84)

then Equation (81) may be rewritten as:

0 =
dψn

dξ
+

(
1

2Ω
dΩ
dξ

+ Ω
)

ψn − iEnχn ,

0 =
dχn

dξ
+

(
1

2Ω
dΩ
dξ
−Ω

)
χn − iEnψn . (85)



Symmetry 2019, 11, 860 15 of 21

Again the wavefunction ψn is coupled to χn. Similarly, ζn and ϕn are coupled by the same
mathematical equations.

Notice that unlike the Dirac case, when En = 0, the equations in the Majorana scheme decouple.
In this case, the simple solutions can be obtained as:

ψn(ξ) =
1√
Ω

exp (−ΩI) , χn(ξ) =
1√
Ω

exp (ΩI) , (86)

where we use the definition (69) for ΩI . As in Dirac scheme, these solutions again diverge for ξ → −∞
(a→ 0). For En 6= 0, we can find a modified Klein–Gordon equation for ψn:

0 =
d2ψn

dξ2 +
1
Ω

dΩ
dξ

dψn

dξ

+

(
1

2Ω
d2Ω
dξ2 −

1
4Ω2

(
dΩ
dξ

)2
+

dΩ
dξ
−Ω2 + E2

n

)
ψn , (87)

which contains an effective mass term depending on curvature variations, which can be compared
with Equation (39). For the special case of k = 0, it can be shown that this equation reduces to the
equation for a diatomic molecule decribed by the Morse potential [6]. Performing the change of
variables ψ = exp(−ξ) φ′, Equation (87) can be simplified to:

∂2φ′

∂ξ2 =

(
−3

8
Ve4ξ − E2 −

√
−3

2
Ve2ξ

)
φ′ . (88)

As discussed in the begining of Section 4, the general potential V̄ must be positive. Therefore, we
can choose a representation of V = V(θ) = −(8/3) exp(2xe), where xe is a constant. Making another
change of variables x = −2ξ and defining E = E2/4, Equation (88) can be put in the form:

Eφ′ =

[
− ∂2

∂x2 +
1
4

(
e−2(x−xe) − 2e−(x−xe)

)]
φ′ , (89)

which is the quantum equation for a diatomic molecule described by the Morse potential.
The wavefunctions and energy spectrum of this problem are already known.

Similar to previous sections, analytical approximated solutions for any k can be found using
the SM approach. As before, we can perform this task by defining the variables un =

√
Ω ψn/a and

vn =
√

Ω χn/a that satisfy the following equations:

0 = a
dun

da
+ (1 + Ω) un − iEnvn ,

0 = a
dvn

da
+ (1−Ω) vn − iEnun . (90)

Again, notice that the SM allows us to have a well-defined behavior of the wavefunction
(83) as ΨM(θ, a → 0) → 0. Applying the SM means we have to use similar decompositions, as
in Equations (75)–(77), to the Majorana case. For simplicity, we use the same notation as before.
Equation (90) can be finally written as:

K ·V(n) = EnV(n) , (91)

where again En are the eigenvalues and V(n) is the vector (79). The 2N × 2N matrix K is now:

K = −i

(
O I+H−G

I+H+G O

)
, (92)
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where again G and H are N×N matrices constructed by Equation (77), and O is the N×N zero matrix.
Another important feature of Equation (85) deserves to be highlighted. Defining the new

wavefunctions φ+
n =

√
Ωψn and φ−n =

√
Ωχn, then Equation (85) can be re-expressed as:

Z±φ±n = ±iEnφ∓n , (93)

where the operators are defined as [6]

Z± = ± d
dξ

+ Ω . (94)

Notice that Equation (93) represents the equations for supersymmetric quantum mechanics [35–37].
Each wavefunction satisfies:

H1φ+
n =

E2
n

2
φ+

n , H2φ−n =
E2

n
2

φ−n , (95)

where the Hamiltonians:

H1 = −1
2

d2

dξ2 +
1
2

(
−dΩ

dξ
+ Ω2

)
,

H2 = −1
2

d2

dξ2 +
1
2

(
dΩ
dξ

+ Ω2
)

, (96)

can be used to define the Super-Hamiltonian:

HM =

(
H1 0
0 H2

)
, (97)

used to write the above Equation (95) as:

HM

(
φ+

n
φ−n

)
=

E2
n

2

(
φ+

n
φ−n

)
. (98)

The operators (94) can be used to define the supercharges:

Q =

(
0 0

Z+ 0

)
, Q† =

(
0 Z−
0 0

)
, (99)

which are operators that can change bosonic (fermionic) states into fermionic (bosonic) ones. The above
supersymmetric system exhibits the same features of any other supersymmetric quantum theory [37].

5. Discussion

The quantization schemes presented here (Klein–Gordon, Dirac, or Majorana) are only possible
due the unification between the FRW geometry and the quintessence scalar field with a Fermat-like
Lagrangian for a relativistic particle moving in a two-dimensional, conformally flat spacetime.
The quantum equations obtained for every case can be considered as generalizations of the
Wheeler–DeWitt Super-Hamiltonian formalism, and they are consistent with the principle of manifest
covariant. Our proposal establishes that the quintessence field could be necessary as a first step
to construct a geometrically unified theory for the quantization of an expanding universe (with
a quintessence type of dark energy).

The quantum theory for the FRW Universe using a relativistic quantum theory for Dirac particles
follows the quantization scheme for a relativistic pointlike particle model developed by Breit [7]. In
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Breit’s interpretation, the spin can emerge as a geometrical and dynamical interpretation of the classical
velocity of the particle. Dirac matrices follow a replacement prescription similar to those largely used
in non-relativistic quantum mechanics and spinless relativistic quantum mechanics. Originally, this
prescription is shown for a particle on flat spacetime; however, we can generalize it for a relativistic
particle in a conformally two-dimensional flat space. From the classical Hamiltonian (28), we can
obtain the relation H2 = g00 + π2, where we have made use of g00 = Ω2. From here we can obtain that:

√
g00

H
=
√

1− q2 , (100)

where we have defined the velocity variable:

q =
π

H
. (101)

Using this variable, the Hamiltonian (28) can be re-written as H = g00/H + π2/H, or:

H =
√

g00

(
qπ

Ω
+
√

1− q2
)

. (102)

Breit’s interpretation corresponds to the identification of the Dirac matrices as [7]:

q→ α ,
√

1− q2 → β . (103)

This allows us to construct the quantum Hamitonian (55)—with the definition (30) for momentum
operator—from its classical analogue (28). Breit showed that the identification (103) is consistent
with the postulates of Dirac theory. The implications of this prescription have been investigated with
the purpose of understanding the underlying nature of the spin or antiparticles [38,39]. Therefore,
the previous interpretation gives validity to the quantum theories developed in Sections 4.2 and 4.3 and
also, as it is shown in Appendix A, both treatments are completely equivalent to the well-established
Dirac theory in curved spacetimes.

It is important to discuss a common concept appearing in the three different quantum theories
of Section 4, and it is related with the emergent gravity phenomenon, where classical observables
can be consequence of these quantum theories [40,41]. In all models, we can identify a new time
variable θ for the quantized cosmological model, suggesting that the Universe evolves along this
super-time, and not with the usual time coordinate. Thus, the super-time θ is the quintessence field
φ =

√
8/3 θ, given by Equation (14). This implies that the evolution of this quantum cosmological

model is not possible in the absence of quintessence. This emegent gravity phenomenon can explain
the spacetime properties of time and dark energy, as they follow from the evolution of the quantum
cosmology theories along this super-time. An argument can be given in the following way: As the
quantum Universe evolves through to the super-time, we classically detect the quantum evolution as
a quintessence field which produces a cosmological negative pressure as dark energy.

On the other hand, we have limited ourselves to present solutions of the quantum cosmological
theories developed in previous section. In principle, with the quantum Equations (35), (57) and (81), we
can study their Bohm dynamics and their trajectory-based dynamics. This has been already done for
the Wheeler–DeWitt equation [42–46], thus using similar tools, the trajectory-based dynamics analysis
can be done for Equations (35), (57) and (81). In the same fashion, we can use the Klein–Gordon, Dirac,
and Majorana models to study their statistical features of those quantum space-time dynamics in
an analogue fashion to Wheeler–DeWitt equation [47–49]. These works are left for the future.

Another interesting feature of the quantization theories of Sections 4.2 and 4.3 is the physical
meaning of the wavefunctions components of the bi-spinor. In comparison with the Dirac theory for
physical particles, we can recognize that every component of the wavefunctions introduced along
this work has the dynamics of an entity in interaction with the others. Hence, we can argue that
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each component represents a Universe, evidencing that the Dirac bi-spinor wavefunction (65), or
the Majorana bi-spinor wavefunction (83), represents a description of a Multiverse. The different
Universes ψ and χ (or ζ and ϕ) appear coupled, implying an interaction between the Universes. In this
way, the Multiverse behaves as a di-atomic molecule under some potential. The interaction between
the wavefunction of the Universes produces the dynamical evolution of the expected value of the scale
factor, as it can be seen from Equations (64) and (82). Therefore, the expansion rate of the scale factor,
produced by quintessence (dark energy), could be a direct consequence of the existence of a Multiverse.
Also, according to Equation (93), we can infer that the Multiverse has the structure of a supersymmetric
system, being that the two Universes are the super-partners of each other. In principle, we can use all
the well-known tools of supersymmetry [37] to study the main characteristics of this Multiverse theory.
This idea will be explored in forthcoming works, comparing it with other versions of the Multiverse
idea [50–61].

Finally, we would like to remark that the three quantization schemes are only possible due to the
geometrical unification between spacetime and the quintessence field. In the case of the Klein–Gordon
theory, the unification leads to results that coincide with similar ones in literature. We expect that this
unification can bring new insights in the field of quantum cosmology.
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Appendix A Dirac Equation in Curved Spacetimes.

In general, the curved spacetime Dirac equation is:

ieµ
dγd

(
∂µ +

1
8

ωabµ[γ
a, γb]

)
Ψ = Ψ , (A1)

where we defined the vierbein as:
gµν = eµ

aeν
bηab , (A2)

with the flat-spacetime metric ηab. Here, eµ
d is the inverse vierbein in the sense that eµ

aeµ
b = δa

b . We
also define the spin connection ωabµ = ηacωc

bµ, with:

ωc
bµ = ec

νeν
b,µ + ec

νeσ
bΓν

σµ , (A3)

where Γν
σµ are the Christoffel symbols. Because the antisymmetry of the spin connection in its first

two indices, we have ωabµ[γ
a, γb] = 2ωabµγaγb.

For a given metric, the Dirac equation for that curved spacetime can be straightforwardly
constructed. In our two-dimensional, conformally flat case of the FRWq system, the vierbeins are:

e0
0 = Ω , e1

1 = Ω , e0
0 =

1
Ω

, e1
1 =

1
Ω

, (A4)

Thus, the Dirac equation becomes:

iγ0
(

∂0 +
1
4

ωab0γaγb
)

Ψ + iγ1
(

∂ξ +
1
4

ωab1γaγb
)

Ψ = ΩΨ . (A5)

We also have that ωab0γaγb = 2ω010γ0γ1, ωab1γaγb = 2ω011γ0γ1, and:

ω010 = Γ0
10 = ∂ξ ln Ω , ω011 = Γ0

11 = 0 , (A6)
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for the two-dimensional, conformally flat metric. Then, the Dirac equation is written as:

iγ0
(

∂0 +
1
2

∂ ln Ω
∂ξ

γ0γ1
)

Ψ + iγ1∂ξ Ψ = ΩΨ , (A7)

or:

iγ0∂0Ψ + iγ1
(

∂ξ +
1
2

∂ ln Ω
∂ξ

)
Ψ = ΩΨ , (A8)

which is exactly the same equation than (57) for appropiated choices of matrices, and identifying the
time with θ.
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