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Abstract: Recently, the degenerate A-Stirling polynomials of the second kind were introduced
and investigated for their properties and relations. In this paper, we continue to study the
degenerate A-Stirling polynomials as well as the r-truncated degenerate A-Stirling polynomials
of the second kind which are derived from generating functions and Newton’s formula. We
derive recurrence relations and various expressions for them. Regarding applications, we show
that both the degenerate A-Stirling polynomials of the second and the r-truncated degenerate
A-Stirling polynomials of the second kind appear in the expressions of the probability distributions
of appropriate random variables.

Keywords: degenerate A-Stirling polynomials of the second kind; r-truncated degenerate A-Stirling
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1. Introduction

For n > 0, the Stirling numbers of the second kind are defined as (see [1-26])
n
x" = Z Sa(n, k) (x)g, (1)
k=0

where (x)g=1,(x), =x(x—1)---(x—n+1), (n>1).
From (1), we note that the generating function for Sy (1, k) is given by (see [8,9,23,26])

1
ke—l ZSznk —, (k>0). )

For A € R, the degenerate exponential function is defined by (see [10,11,27,28])
e5(t) = (1+ A0, ey(t) = e} (t) = (1+ADT. 6)

In view of (2), the degenerate A-Stirling polynomials of the second kind are defined by the
generating function

c(ea(t) — 1) ( Z s&)(n @)

where x € R and k is a nonnegative integer, (see [10,11]).

When x = 0, Sg(n, k) = Spa(n,k) are called the degenerate A-Stirling numbers of the
second kind. Note that lim, 9 Sy 1 (1, k) = S2(n,k), (n,k >0).
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By letting A — 0 in (4), we have the generating function for the Stirling polynomials of the second
kind S (, k) (see [11,13,14,22]):

l( t_l)k xt __ is(’f)( k)ﬂ (5)
K¢ ¢ _n—k 2 WA

Let X be a discrete random variable with probability mass function P[X = x| = p(x). Then, the
probability generating function of X is given by (see [4,17,18,20,22])

G(t) = E[*] = }_ #p(x). (6)
x=0
Suppose that X = (Xj,Xp,---,X) is a discrete random variable taking values in the

k-dimensional nonnegative integer lattice. Then, the probability generating function of X is defined as
(see [4])

X
G(t) = G(t, ta, -+ k) = E[ 52 - - 1]

- X1 4X2 X (7)
= Z ['1 t2 tk p(xlle’...xk)l
x1,X2,++ X =0

where p(x1,xp, - - - x) is the probability mass function of X = (X1, Xp, - -+, Xj).
X is the random variable with the zero-truncated Poisson distribution with parameter A if the
probability mass function of X is (see [4,17,18,20,22])

RS
1—e A x!

, ®)

where x is a positive integer.
For r € N, X is the random variable with r-truncated Poisson distribution with parameter A if the
probability mass function of X is

PIX =x]=px) = C()\,r)e*)‘—!, )

where C(A,7) = (1 —e A Y24 A1)~

In this paper, we study the degenerate A-Stirling polynomials, as a continuation of the previous
work in [10], and also the r-truncated degenerate A-Stirling polynomials of the second kind which are
derived from generating functions and Newton’s formula. We derive recurrence relations and various
expressions for them. As applications, we show that both the degenerate A-Stirling polynomials of the
second kind and the r-truncated degenerate A-Stirling polynomials of the second kind appear in the

expressions of the probability distributions of appropriate random variables.

2. The Degenerate A-Stirling Polynomials of the Second Kind

Let x, t be real numbers and let n be a nonnegative integer. The difference operator A is defined
by Af(x) = f(x+1) — f(x). Itis easy to show that

" n

(1+2)'f0) = £ = 1 1) 8400) (10)
k=0

From (10), we can derive Newton’s formula which is given by

£ =Y. ;)20 a

k=0
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Let us take f(f) = (t+x), 1, (1 >0). Then, by (11), we get

(t+X)n0 3 <£> {Ak(f + x)n,/\] Y

(fetesonl, .

IS e

I
]

T
o

I
™=

»
i
o

T
(e}

|
=
x|

Here, the generalized factorial sequence (x), ) is given by

(For =1L, (x)pa =x(x = A)---(x = (n =1)A), (n=1). (13)

Let

1 1
{20 = [ 2504 200 =gt (k2 0) (14)

Then, by (12) and (14), we get
(E+%)un = Y S5 (k) (B (1> 0). (15)

In (18) below, we show that the ng/i (n,k) in (14) or (15) is really the degenerate A-Stirling
polynomials of the second kind defined in (4).
Using (13), (15), and interchanging the order of summations, we note that

S = L (et Pt = Zs("> (0 W)
n=0 ' n=0k= :
o o (16)
-Y (% Séf?(n,k),)(y)k
k=0 \n=k
On the other hand
X X - 1 X
ey (1) = XD (ea(t) —1+1)Y = ) 5 ea(t) = DFeX (D) (v (17)
k=0 """
By (16) and (17), we get
1 © "
e = Dfef(6) = L Sk, (k> 0). (18)
! = !

Thus, we have shown that the definition of the degenerate A-Stirling polynomials of the second
kind can be given as (14) or equivalently (15) or equivalently (18).
Note that
559(0,0) =1, S5(1,0) = (x)ua, S57(0,k) =0, (k #0). (19)
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We would like to derive a recurrence relation for the degenerate A-Stirling polynomials of the
second kind. Now, we observe that

n+1
Y S+ L) () = (E+x)ys1p = (F+ X)ua(t+x—nA)
k=0
_tng" B + (x —nA) ZS%)
k=0 k=0
n+1 n
—tzsgxnk—l()k 1+ ( x—n/\zéx/znk
nlf&-l1 - (20)
=Y (t—k+14+k—1)S5) (n,k —1) (1)1 + (x —nA)
k=1 k
n+1 n n
=3 S5, k) (e + Y kSS) (1, k) (1) + (x — nA) 32 S5 (n, ) (
k=1 k=0 k=0
n+1

2 {s("> nk—1)+ (k—i—x—n)t)Sg)z(n,k)}(t)k.

S35 (m, k) (1)

™=

0

Therefore, by comparing the coefficients on both sides of (20), we obtain the following theorem.
Theorem 1. Let n, k be nonnegative integers. Then, we have
Sy (n+1,k) = S (n,k — 1) + (k+x —nA)SS) (n, k), (n>k—1).

Note that
SgA(n k) =0, ifk>n, S3\(n,m) = 1.

From (14), we have
(0) _ 1k _
52,/\(71/ k) - EA (0)71,)\ - SZ,)\(”/ k)r (nrk Z O) (21)

Here, we want to derive an explicit expression for the degenerate A-Stirling polynomials of the
second kind. By (18), we get

3 sk = L e 1)

= T2AN Tl

1 & (Oma m o ( (1)11/\(1)12)\"'(1)lkA> i
= — 7t 4 ’ L t

! mgo m! Ek - ZHk TR (22)
e (G (W)nmia (1)11,/\(1)12,A"'(1)lk,/\)tn
_n;< !Ek (n—1)! ,ﬁ_glk:, Ll - 1! n!’

where all [;’s are positive integers.

Therefore, by comparing the coefficients on both sides of (22), we obtain the following theorem.

Theorem 2. Forn,k € NU {0}, with n > k, we have

n 1 Dy - (1
ngA) (k) %Z Jn—1A Y (DA (W)ppa--( )lk,)\’

1’1—1) I+t =l ll'l2llk'

where in the inner sum, all I;'s are positive integers.
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Next, we want to derive more explicit expressions for the degenerate A-Stirling polynomials of
the second kind.
From (18), we note that

o X n . 1
L S0 = e ea(t) - 1)
o) [e9) 1
_ Zo (32111'1,/\ o ; Soall, k)% (23)
m= ' = :
= (zk (}) 2000001 ) 1
n=k \l=

On the other hand, we have

1, PR .
He,\(t)(e/\(t) 1) = 0 )
1=0 (24)

Therefore, by (23) and (24), we obtain the following theorem.

Theorem 3. Let n, k be nonnegative integers with n > k. Then, we have

SHOTES o () ENCTIEE k,z() 14 %)

I=k

For r € N, we define the r-truncated degenerate A-Stirling polynomials of the second kind, Séx)z (n,k|r),

by the generating function

vin 1 E @i 2 ()
eA(t)k!<eA(t) ]; F > nzrkS L (n,k|r)—. (25)

Now, we derive an explicit expression for the r-truncated degenerate A-Stirling polynomials of
the second kind. From (25), we note that

I~ _ k
(x) o 1 = (Wi
; Sz,A(”'kV)m = ei(t)ﬁ ex(t) — Z Tt]
n=rk j=0
1y " WD Wy,
=7 () mr— < L Z ks >t (26)
k! mz MA ! nzz;k ll+_;lk:l LU L)
_n i ( f (X)n-1.0 Y (1)11,)\(1)12,A'“(1)lk,/\)t"
k! I=rk \ =k (7’[ — l)' [ —" - llllz! cee lk! n!

where all [;’s are integers with [; > r.
Therefore, by comparing the coefficients on both sides of (26), we obtain the following theorem.

Theorem 4. Let n, k be nonnegative integers. Then, we have

(WA (Dga
NI

S n ) = 5 3 R Y (1= 1),

: ll++lk:l

where the inner sum runs over all integers ly,- -+ I > r,withly + -+ -+ =L
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Remark 1. When x = 0, Sé?i(n,kh) = Sy A (n,k|r) are called the r-truncated degenerate A-Stirling numbers
of the second kind.

From (25), we note that

=) " o | | .
£ siean -} - £ )

n=rk =0 ]l
:mio (92:'1 zzrkSZ/\ (1 k|r )li )
2 i
-L (lgk (}) S0 M s ) 1
Thus, by (27), we get
Séﬁ)(n,klr) =0, if n <kr, (28)
and
S50k = Y- () S2a 0 (s if 2 b )
I=rk

Next, we deduce a recurrence relation for the r-truncated degenerate A-Stirling polynomials of
the second kind. Now, we observe that

stgﬁ(n,kvﬂ);— k(z )sgfg(n,k|r+1);|
n=r : n=k(r+1 :
X t r 1 k
S LIPG X ity
—1 (1), K (30)
—%eﬁ(t) (eA(t) - Zl (1]?']'A t (12:)‘#)
=
1o (K =W N Wi,
qu(t)é)(l) e;\(t)—]g6 ]'Mt1> (1) (;4])1)\ I

1=0 =
(71)1(1)1',)\ ad X t"

=Ly X Sy k=1l

1=0 n=(k—I)r

£ (-1 ()] pn-tr
_ J)L rl (" _ _
*EO 1(rt)! : n2kr52 n—Irk—lr) (n— Ir)!

ok (=1)!(1): pn
=ZZ( ),( >M<>lsgg( lrk—l|)

n=kr 1=0 ! (rHt =

Comparing the coefficients on both sides of (30), we obtain the following theorem.

Theorem 5. Let 1,k be nonnegative integers. For n > kr, we have

Sy (n,klr +1) = Z (r!)l S — 1,k —1|r).
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Definition 1. We call a random variable Y the degenerate Poisson random variable with parameter  if the
probability mass function of Y is given by

/(1) ya

PIY = yY 2 0] = p(y) = &1 () —

(31)

X is called the zero-truncated degenerate Poisson random variable with parameter « if the probability mass
function of X is given by

_ _ _ 1 “1y (Dxan”
PIX = 31X > 0] = plo) =y e @ @)
Note that - oy

Y p) et Y Sy,
y=0 =0 Y
and - . = (1)

xalk” o

;p(x):e)\(rx)—lxg:l x! =1

As an application, we show that the degenerate A-Stirling polynomials of the second kind appear
in the expression of the probability distributions of appropriate random variables. Suppose that
X1, X3, -+, Xj are independent random variables with degenerate zero-truncated Poisson distribution
with parameter « and that Y is another random variable with degenerate Poisson distribution with
parameter «. If Y is independent of X = X; + X5 + - - - + X, then we have

E[tXTY] = E[tX|E[tY] = ( . E[txf})E[tY].
j=1
From (32), we note that
; c- x 1 o (D™ o
) = P = = o
1 (33)
= 8/\(0() _1(6/\(‘Xt) _1)
By (33), we get
k 1 k k k! 1 k
Xj1 — —
LLee = (=) (ae0-1) = mpm(aen 1) Y
By (31), we get
E[f] = Y P[Y = ylt! — ¢! S 73 (1)y’“ty
7= LRy =yl =0 -
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From (34) and (35), we have

E[#X+Y] = (f[E[tXf})E[tY]

j=1
k! 1 k
~ e(@)(er(a) —1FR (eW) - 1) ex(at) (36)
_y k! ) L
= L @@ nF R
On the other hand,
E[tXHY] = Y P[X+Y =mn]t". )

n=k

Therefore, by (36) and (37), we obtain the following theorem.

Theorem 6. Suppose that X1, Xo, - - - , Xy are independent random variables with degenerate zero-truncated
Poisson distribution with parameter o, and Y is another random variable with degenerate Poisson distribution
with parameter «. If Y is independent of X = Xy + X5 + - - - + X, then the probability distribution of X +Y
is given by

k! ol 5(1)

P = = ey — T 24 R

where n > k.

For r € N, we define X as the random variable with the r-truncated degenerate Poisson
distribution with parameter « if the probability mass function of X is given by

1 x
P[X = x|X > 1] = p(x) = @ ¥ (Da (38)
-1 r—1 ax(l)xa x'
T—ey () omg —5 |

As an application, we show that the r-truncated degenerate A-Stirling polynomials of the second
kind appear in the expression of the probability distribution of appropriate random variables. Suppose
that X1, Xy, - - - , X} are independent random variables with r-truncated degenerate Poisson distribution
with parameter &, and Y is a random variable with degenerate Poisson distribution with parameter «.
If Y is independent of X = Xj + X5 + - - - + X}, then we have

E[t*+Y] = E[tX|E[Y] = (ﬁE[tXfo E[tY]. (39)
j=1

From (38), we have

E[t%] = i P[X; = n]t"
) 1 )[x"(l)n,a Y
;;:r <e/\(lx) - Z]r;cl) (1)}7[““] m
y Ui (40)
= ( 1 (1); j) (eA(oct) — Z Wﬂ,)
) Z]’.;(l) ;7'[”% = I

=Cy(A,1) <e/\(¢xt) - le Wﬂ),

=
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where Cy (A, 7) = W
EA(“)*ZJY‘:[) ]]'
By (40), we get
k =1(1): af Nk
HE tX C/\ (A7) (6,\(Dét> _ Z ()]/'“wt]) ) (41)
j=1 j=0 J:
From (35) and (41), we note that
X+Y K 1 - Jw"‘] A
B = k) (ea(at) - ; ) e wenar)
r—1 (1)]0( j k
= kICK(A, 1) (lx)k' <e/\(at) Z ]; tl) ey (at)
j=0
o kick "
=Y A( )SélA)(n,k|r)—|t”
n—kr 6/\(06) ’ n:
On the other hand,
E[tX-i-Y] — Z P[X+Y = n]t". (42)
n=k

Therefore, by (41) and (42), we obtain the following theorem.

Theorem 7. For r € N, suppose that X1, Xy, - , Xy are independent random variables with r-truncated
degenerate Poisson distribution with parameter « and that Y is a random variable with degenerate Poisson
distribution with parameter «. If Y is independent of X = Xy + Xo + - - - 4+ X, then the probability distribution
of X+ Y is given by

kmﬂmﬂ

ex(a) n!’

PIX+Y =n] = ) (n, k)=

where n > kr.

Remark 2. Suppose that X1, Xy, - - - , Xy are independent random variables with r-truncated degenerate Poisson
distribution with parameter «, and Y1, Yo, - - - , Yy, are independent random variables with degenerate Poisson
distribution with parameter a. If Y = Y1+ Yo + -+ + Yy, is independent of X = X3+ Xo + -+ + Xi,
then we have

w“W=HMHM=(ﬁHWD(ﬁHwQ )

=1

From (35) and (40), we have

r—1 . [xj , k
E[5HY] — k!Cﬁ(A,r)% (eA(at) - (1)]{;"4151) ey " (a)ef (at)

j=0
KICk (A7) 1 (1) \F
— el _ / ] m 44
) K (eA(at) Jg) f t> el (at) (44)
0 k'C ) n
=) Sy (n, Klr) o
n=kr
On the other hand,
E[t*"Y] = Y PIX+Y =n]t". (45)



Symmetry 2019, 11, 1046 10 of 11

From (44) and (45), we obtain the probability distribution of X + Y to be

KICk(A, 1)

ex (@)

m o
Sy (n, klr) =

P[X+Y:n]: I’l"

where n > kr.

3. Conclusions

The degenerate A-Stirling polynomials of the second kind were introduced and investigated for
their properties and relations in [10]. In this paper, we continued to study the degenerate A-Stirling
polynomials as well as the r-truncated degenerate A-Stirling polynomials of the second kind which
are derived from generating functions and Newton’s formula. We derived recurrence relations and
various expressions for them. Regarding applications, we showed that both the degenerate A-Stirling
polynomials of the second kind and the r-truncated degenerate A-Stirling polynomials of the second
kind appear in the expressions of the probability distributions of appropriate random variables.
Indeed, the degenerate A-Stirling polynomials of the second kind (more precisely, the value at 1 of
them) appear in the probability distribution of the random variable given as the sum of a finite number
of random variables with degenerate zero-truncated Poisson distributions and a random variable with
degenerate Poisson distribution, all having the same parameter. Similarly, the r-truncated degenerate
A-Stirling polynomials of the second kind (more precisely, the value at 1 of them) appear in the
probability distribution of the random variable given as the sum of a finite number of random variables
with r-truncated Poisson distributions and a random variable with degenerate Poisson distribution,
all having the same parameter. As one of our future projects, we will continue to pursue this line
of research, namely study certain special polynomials and numbers and their applications as regards
probability theory.
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