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Abstract: In this paper, the (G′/G, 1/G)-expansion method is applied to acquire some new, exact
solutions of certain interesting, nonlinear, fractional-order partial differential equations arising
in mathematical physics. The considered equations comprise the time-fractional, (2+1)-dimensional
extended quantum Zakharov-Kuznetsov equation, and the space-time-fractional generalized
Hirota-Satsuma coupled Korteweg-de Vries (KdV) system in the sense of the conformable fractional
derivative. Applying traveling wave transformations to the equations, we obtain the corresponding
ordinary differential equations in which each of them provides a system of nonlinear algebraic
equations when the method is used. As a result, many analytical exact solutions obtained of these
equations are expressed in terms of hyperbolic function solutions, trigonometric function solutions,
and rational function solutions. The graphical representations of some obtained solutions are
demonstrated to better understand their physical features, including bell-shaped solitary wave
solutions, singular soliton solutions, solitary wave solutions of kink type, and so on. The method
is very efficient, powerful, and reliable for solving the proposed equations and other nonlinear
fractional partial differential equations with the aid of a symbolic software package.

Keywords: time-fractional (2+1)-dimensional extended quantum Zakharov-Kuznetsov equation;
space-time-fractional generalized Hirota-Satsuma coupled Korteweg-de Vries system;
(G′/G, 1/G)-expansion method; conformable fractional derivative

1. Introduction

Nonlinear evolution equations (NLEEs), which can be described using partial differential
equations (PDEs), play a significant role for understanding qualitative behaviors of many real-world
phenomena. Obtaining exact solutions of a complicated nonlinear evolution system makes
it possible to visually comprehend the mechanism of the system considered. Nonlinear wave
phenomena occur in various scientific and engineering fields, such as quantum mechanics [1],
fluid mechanics [2], optical fibers [3], chemical physics and geochemistry [4], solid-state physics [5], and
biology [6]. With the advanced development of symbolically computational packages, such as Maple
or Mathematica, constructing for the exact traveling wave solutions of NLEEs has become one
of the important themes of challenging interest in mathematical physics and the applied sciences.

Over the last few decades, many kinds of solutions of NLEEs, including exact solutions,
analytical approximate solutions, and numerical solutions, have been successfully obtained using
various and efficient methods. Examples of the methods for obtaining analytical approximate
solutions of NLEEs are the Adomian decomposition method (ADM) [7,8], the revised variational
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iteration method (RVIM) [9], the reduced differential transform method [10], and the homotopy
perturbation method (HPM) [11,12]. Useful methods for solving NLEEs numerically are those
such as the finite element method [13], the finite volume method [14], and the finite-difference
predictor–corrector method [15]. Several efficient and reliable methods which have recently been
developed to obtain exact explicit solutions for NLEEs are, for instance, the Jacobi elliptic function
method [16], the (G′/G)-expansion method and its various modifications [17–20], the Exp-function
method [21], the sub-equation method [22], the first integral method [23], the modified trial equation
method [24,25], and the simplest equation method [26].

Recently, fractional differential equations (FDEs) has been able to be used extensively
as the generalized type of integer-order differential equations, including ordinary differential equations
and partial differential equations. FDEs have attracted the researchers’ attention for modeling
real-world phenomena, such as modeling anomalous diffusion using a nonlinear fractional
Fokker–Planck equation with fractional velocity derivatives and Langevin dynamics to elucidate
the effect of non-local transport in the plasma turbulence [27]. More examples of applications of FDEs
for real-world problems can be found in [28–30] and the references therein. In general, systems actually
may not rely only on the local time but also on the former time in history. Hence, the memory
and hereditary properties of materials and processes can be described using the theory of fractional
derivatives and integrals [31–33]. In consequence, nonlinear fractional evolution equations (NLFEEs)
have been widely investigated in many aspects, for example, solving the equations for solutions
and establishing conditions for which their solutions are asymptotically stable. The exploration
for exact solutions of NLFEEs is currently of high interest in applied mathematics and engineering
research [19,34,35]. However, the objective of our work is to use the (G′/G, 1/G)-expansion method
to construct exact traveling wave solutions of the following two NLFEEs in the sense of the conformable
fractional derivative.

1. The time-fractional (2+1)-dimensional extended quantum Zakharov-Kuznetsov equation [36]
is written as:

Dα
t u + auux + b(uxxx + uyyy) + c(uxyy + uyxx) = 0, (1)

where Dα
t u denotes the conformable fractional derivative of u with respect to t of order α and a, b, c

are real constants, and the solution u(x, y, t), which is a function of the time variable t and space
variables x and y, represents the potential of electrostatic wave in space. Solutions of the equation
elucidates the spreading of optical pulse in fiber optics [36]. Some articles involved in finding exact
solutions of Equation (1) are as follows. Raza et al., [36] found the exact solutions of Equation (1),
consisting of the trigonometric function, Jacobi elliptic sine-cosine functions, and hyperbolic function
solutions, using the trial equation method. Conversely, Ali et al., [37] obtained the exact solutions
of Equation (1) using the (G′/G2)-expansion method and the modified Kudryashov method.
Their exact solutions include the trigonometric, hyperbolic, and rational solutions.

2. The space-time-fractional generalized Hirota-Satsuma coupled Korteweg de Vries (KdV)
system [38] can be expressed as:

Dρ
t u =

1
4

D3η
x u + 3uDη

x u + 3Dη
x (−v2 + w),

Dρ
t v = −1

2
D3η

x v− 3uDη
x v,

Dρ
t w = −1

2
D3η

x w− 3uDη
x w,

(2)

where Dρ
t ϕ and Dη

x ϕ denote the conformable fractional derivative of ϕ with respect to t of order
ρ and to x of order η, respectively. The first-order Hirota-Satsuma coupled KdV system [39],
which was first proposed by Satsuma and Hirota in 1981 and obtained from the four reductions
of Kadomtsev-Petviashvili (KP) hierarchy [40], describes interactions of two long waves with different
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dispersion relations, while the generalized first-order Hirota-Satsuma coupled KdV system [40]
is one of the essential nonlinear equations in applied mathematics and physics. The system emerges
as a special case of the Toda lattice equation, which is used to describe the interaction of neighboring
particles of equal mass in a lattice formation with a crystal [41]. The interesting applications
of the generalized Hirota-Satsuma coupled KdV system are as follows [41–43]. Firstly, it can be used
to explain generic properties of string dynamics for strings and multi-strings in constant curvature
space. Secondly, the system is associated with most types of long waves with weak dispersion,
internal, acoustic, and planetary waves in geophysical hydrodynamics. Therefore, finding solutions
of Equation (2) is potentially useful to describing the physical behaviors of the applications,
as mentioned above. The associated equations of the generalized Hirota-Satsuma coupled KdV system
have been solved using different methods as follows. In 2007, Zhang [44] used the direct algebraic
method to construct the exact solutions for the first-order generalized Hirota-Satsuma coupled KdV
systems. In 2010, Zigao et al., [45] applied the improved F-expansion method to the variable-coefficient
first-order generalized Hirota-Satsuma coupled KdV system for obtaining the new exact solutions.
In 2017, Khater et al., [46] found the exact traveling wave solutions of the system using the modified
simple equation method, while the time-fractional generalized Hirota-Satsuma coupled KdV system
was solved using the direct algebraic method by Neirameh [41] in 2015.

The rest of this article is organized as follows. In Section 2, the description of the conformable
fractional derivative and its important properties are presented. In Section 3, the main steps
of the (G′/G, 1/G)-expansion method is provided. The applications of the method for solving the two
problems mentioned are given in Section 4. Finally, the conclusions of this paper are discussed
in Section 5.

2. Conformable Fractional Derivative and Its Properties

In this section, the definition of the conformable fractional derivative and its important properties
are given as follows.

Definition 1. Given a function f : [0, ∞)→ R, the conformable fractional derivative of f of order α is defined
by [47,48]

Dα
t f (t) = lim

ε→0

f (t + εt1−α)− f (t)
ε

, for all t > 0, 0 < α ≤ 1. (3)

If the limit in Equation (3) exists, then we say that f is α-conformable differentiable at a point t > 0.

Theorem 1. Let α ∈ (0, 1], and f (t), g(t) be α-conformable differentiable at a point t > 0, then

Dα
t (λ) = 0, where λ = constant,

Dα
t (t

µ) = µtµ−α, for all µ ∈ R,

Dα
t (a f (t) + bg(t)) = aDα

t f (t) + bDα
t g(t), for all a, b ∈ R,

Dα
t ( f (t)g(t)) = f (t)Dα

t g(t) + g(t)Dα
t f (t),

Dα
t

(
f (t)
g(t)

)
=

g(t)Dα
t f (t)− f (t)Dα

t g(t)
g(t)2 .

Remark 1. Conformable fractional derivative of some functions are as follows [47].

(1) Dα
t (e

ct) = ct1−αect, c ∈ R.
(2) Dα

t (sin bt) = bt1−α cos bt, b ∈ R.
(3) Dα

t (cos bt) = −bt1−α sin bt, b ∈ R.
(4) Dα

t (
1
α tα) = 1.

(5) Dα
t ( f (t)) = t1−α d f (t)

dt
, provided that f (t) is differentiable.
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The following chain rule is very useful for transforming a partial differential equation into an ordinary
differential equation, which is required for the methods in finding exact solutions of the equations.

Theorem 2. Let f : (0, ∞) → R be a function such that f is differentiable and α-conformable differentiable.
Also, let g be a differentiable function defined in the range of f . Then,

Dα
t ( f ◦ g)(t) = t1−α f ′(g(t))g′(t),

where the prime notation (′) represents the ordinary derivative.

3. Algorithm of the (G′/G, 1/G)-Expansion Method

In this section, the description of the (G′/G, 1/G)-expansion method [19,49–51] is concisely
provided. Consider a nonlinear fractional evolution partial differential equation in three independent
variables, x, y, and t, as follows:

F(u, Dα
t u, Dβ

x u, Dγ
y u, D2α

t u, Dα
t Dβ

x u, Dα
t Dγ

y u, . . .) = 0, 0 < α, β, γ ≤ 1, (4)

where Dα
t u, Dβ

x u, and Dγ
y u are the conformable derivatives of a dependent variable u with respect

to independent variables t, x, and y when F is a polynomial of unknown function u = u(x, y, t),
and its various partial derivatives are those in which the highest order derivatives and nonlinear terms
are involved.

Using the following traveling wave transformation

u(x, y, t) = U(ξ), ξ =
kxβ

β
+

lyγ

γ
+

ctα

α
, (5)

where k, l, and c are constants to be determined later, then Equation (4) is reduced to an ODE
in U = U(ξ) as

P(U, U′, U′′, . . .) = 0, (6)

where P is a polynomial of U(ξ) and its various derivatives. The prime notation (′) in the above
equation denotes the derivative with respect to ξ.

The following necessary concepts are introduced before providing the main steps
of the (G′/G, 1/G)-expansion method. Consider the following second-order linear ODE:

G′′(ξ) + λG(ξ) = µ, (7)

where the prime notation (′) denotes the derivative with respect to ξ and where λ, µ, are constants.
Next, we set

φ(ξ) =
G′(ξ)
G(ξ)

and ψ(ξ) =
1

G(ξ)
. (8)

Equations (7) and (8) can be transformed into the system of two nonlinear ODEs, as follows:

φ′ = −φ2 + µψ− λ, ψ′ = −φψ. (9)

The solutions of Equation (7) can be classified into the following three cases.

Case 1: If λ < 0, then the general solution of Equation (7) is written as

G(ξ) = A1 sinh
(

ξ
√
−λ
)
+ A2 cosh

(
ξ
√
−λ
)
+

µ

λ
, (10)
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and we have

ψ2 =
−λ

λ2σ1 + µ2

(
φ2 − 2µψ + λ

)
, (11)

where A1 and A2 are arbitrary constants and σ1 = A2
1 − A2

2.

Case 2: If λ > 0, then the general solution of Equation (7) can be given as

G(ξ) = A1 sin
(

ξ
√

λ
)
+ A2 cos

(
ξ
√

λ
)
+

µ

λ
, (12)

and we have the following relation

ψ2 =
λ

λ2σ2 − µ2

(
φ2 − 2µψ + λ

)
, (13)

where A1 and A2 are arbitrary constants and σ2 = A2
1 + A2

2.

Case 3: If λ = 0, then the general solution of Equation (7) can be provided as

G(ξ) =
µ

2
ξ2 + A1ξ + A2, (14)

and the corresponding relation is

ψ2 =
1

A2
1 − 2µA2

(
φ2 − 2µψ

)
, (15)

where A1 and A2 are arbitrary constants.

The main steps of the (G′/G, 1/G)-expansion method are described as follows.
Step 1: Suppose that the solution to Equation (6) can be expressed by a polynomial of the two

variables φ and ψ, as follows:

U(ξ) = a0 +
N

∑
j=1

ajφ
j +

N

∑
j=1

bjφ
j−1ψ, (16)

where a0, aj and bj (j = 1, 2, ..., N) are constants to be determined later with a2
N + b2

N 6= 0 and where
the functions φ = φ(ξ) and ψ = ψ(ξ) are implicitly associated with Equation (7) using the relations
in Equation (8).

Step 2: Determine the positive integer N in Equation (16) by inserting Equation (16)
into Equation (6), and then using the homogeneous balance between the highest-order derivatives
and the nonlinear terms in Equation (6). If the degree of U(ξ) is Deg[U(ξ)] = N, then the degree
of other terms will be formulated as follows:

Deg
[

dqU(ξ)

dξq

]
= N + q, Deg

[
(U(ξ))p

(
dqU(ξ)

dξq

)s]
= Np + s(N + q). (17)

In particular, if the balance number N of some nonlinear equations is not a positive integer
(e.g., a fraction and a negative integer), then the special transformations are applied for U(ξ)

in Equation (6) to have a new equation in terms of the new function W(ξ) with a positive integer
balance number (see details in [51,52]).

Step 3: Substituting the resulting equation of Equation (16) into Equation (6) with the aid
of Equations (9) and (11), the function P in Equation (6) can be transformed into a polynomial
in φ and ψ, in which the degree of ψ is not larger than one. Equating each coefficient
of the resulting polynomial to zero, we obtain a system of algebraic equations, which can
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be solved using symbolic computational packages, such as Maple or Mathematica, for the following
unknowns: a0, aj, bj (j = 1, 2, . . . , N), k, l, c, µ, λ(< 0), A1, and A2. The resulting traveling wave
solutions generated by this step with the transformation in Equation (5) are expressed in terms
of hyperbolic functions.

Step 4: In the same manner as Step 3, substituting the resulting equation of Equation (16)
into Equation (6) with the aid of Equations (9) and (13) for the case λ > 0, we can obtain
the exact solutions of Equation (4) by using the transformation in Equation (5). They are written
as trigonometric functions.

Step 5: Similarly to Step 3, substituting the resulting equation of Equation (16) into Equation (6)
with the aid of Equations (9) and (15) for the case λ = 0, we can obtain the traveling wave solutions
of Equation (4) by using the transformation in Equation (5). The resulting exact solutions are expressed
as rational functions.

Remark 2. The two-variable (G′/G, 1/G)-expansion method reduces to the (G′/G)-expansion method when
µ = 0 and bj = 0 in Equations (7) and (16), respectively. In consequence, the (G′/G, 1/G)-expansion method
is an extension of the (G′/G)-expansion method. Hence, the strength of the (G′/G, 1/G)-expansion method
beyond the (G′/G)-expansion method is that the solutions obtained using the second method can be drawn from
the solutions obtained using the first one. This is the reason why the (G′/G, 1/G)-expansion method is used
in our work instead of the (G′/G)-expansion method.

4. Applications of the (G′/G, 1/G)-Expansion Method

4.1. The Time-Fractional (2+1)-Dimensional Extended Quantum Zakharov-Kuznetsov Equation

Applying the transformation ξ = −k tα

α + x + y to Equation (1), we attain the following ordinary
differential equation

−kU′ + aUU′ + 2(b + c)U′′′ = 0. (18)

Integrating (18) with respect to ξ, it gives

−kU +
a
2

U2 + 2(b + c)U′′ + p = 0, (19)

where p is a constant of integration. Applying the homogeneous balance principle to the terms U2

and U′′ in Equation (18), we obtain N = 2. Hence, the specific form of the solution in Equation (16)
is written as

U(ξ) = a0 + a1φ(ξ) + a2φ(ξ)2 + b1ψ(ξ) + b2ψ(ξ)φ(ξ), (20)

where the constant coefficients a0, a1, a2, b1, and b2 are determined at a later step, provided
that a2

2 + b2
2 6= 0. Using the (G′/G, 1/G)-expansion method, there are three cases of the function

G(ξ) associated with the functions φ(ξ) and ψ(ξ), depending on the sign of λ in Equation (7)
as described above.

Case 1: Hyperbolic function solutions (λ < 0)

If λ < 0, we substitute Equation (20) into Equation (19) along with the use of Equation (9)
and Equation (11). Then, the left-hand side of (19) turns out to be a polynomial in φ(ξ) and ψ(ξ).
Equating all the coefficients of the resulting polynomial to be zero, we obtain the following system
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of nonlinear algebraic equations in a0, a1, a2, b1, b2, A1, A2, λ, µ, k, and p, provided that
λ2 (A2

1 − A2
2
)
+ µ2 6= 0.

φ4(ξ) : 2 aλ2 A2
1a1b2 + 2 aλ2 A2

1a2b1 − 2aλ2 A2
2a1b2 − 2aλ2 A2

2a2b1 − 40bλ2µA2
1a2 + 8cµ2b1

+ 40bλ2µ A2
2a2 − 40cλ2µ A2

1a2 + 40 cλ2µ A2
2a2 + 8 bλ2 A2

1b1 − 8 bλ2 A2
2b1 + 8 cλ2 A2

1b1

− 8 cλ2 A2
2b1 + 2 aλ µ b2

2 + 2aµ2a1b2 + 2aµ2a2b1 − 40bµ3a2 − 40cµ3a2 + 8bµ2b1 = 0,

φ3(ξ) : 2aλ2 A2
1a1a2 − 2aλ2 A2

2a1a2 + 8bλ2 A2
1a1 − 8bλ2 A2

2a1 + 8cλ2 A2
1a1 − 8cλ2 A2

2a1

+ 2aµ2a1a2 − 2aλ b1b2 + 24bλµ b2 + 8bµ2a1 + 24cλµb2 + 8cµ2a1 = 0,

φ3(ξ)ψ(ξ) : 2 aλ2 A2
1a2b2 − 2aλ2 A2

2a2b2 + 24bλ2 A2
1b2 − 24bλ2 A2

2b2 + 24cλ2 A2
1b2 − 24cλ2 A2

2b2

+ 2aµ2a2b2 + 24bµ2b2 + 24cµ2b2 = 0,

φ2(ξ) : 2 aλ2 A2
1a0a2 + aλ2 A2

1a2
1 − 2aλ2 A2

2a0a2 − aλ2 A2
2a2

1 + 32bλ3 A2
1a2 − 32bλ3 A2

2a2

+ 32cλ3 A2
1a2 − 32cλ3 A2

2a2 − 2kλ2 A2
1a2 + 2kλ2 A2

2a2 − aλ2b2
2 + 2aµ2a0a2 + aµ2a2

1

+ 24bλµ2a2 + 24cλµ2a2 − aλ b2
1 + 4bλµ b1 + 4cλµb1 − 2kµ2a2 = 0,

φ2(ξ)ψ(ξ) : 2 aλ2 A2
1a1b2 + 2aλ2 A2

1a2b1 − 2aλ2 A2
2a1b2 − 2aλ2 A2

2a2b1 − 40bλ2µ A2
1a2 + 2aλµb2

2

− 40 cλ2µ A2
1a2 + 40 cλ2µ A2

2a2 + 8 bλ2 A2
1b1 − 8 bλ2 A2

2b1 + 8 cλ2 A2
1b1 − 8 cλ2 A2

2b1

+ 2 aµ2a1b2 + 2 aµ2a2b1 − 40 bµ3a2 − 40 cµ3a2 + 8 bµ2b1 + 8 cµ2b1 + 40 bλ2µ A2
2a2 = 0,

φ(ξ) : 2 aλ2 A2
1a0a1 − 2 aλ2 A2

2a0a1 + 8 bλ3 A2
1a1 − 8 bλ3 A2

2a1 + 8 cλ3 A2
1a1 − 8 cλ3 A2

2a1

− 2kλ2 A2
1a1 + 2kλ2 A2

2a1 − 2 aλ2b1b2 + 2aµ2a0a1 + 24 bλ2µ b2 + 8bλ µ2a1 + 24 cλ2µ b2

+ 8 cλ µ2a1 − 2 kµ2a1 = 0,

φ(ξ)ψ(ξ) : 2 aλ2 A2
1a0b2 + 2 aλ2 A2

1a1b1 − 2 aλ2 A2
2a0b2 − 2 aλ2 A2

2a1b1 + 20 bλ3 A2
1b2 − 20 bλ3 A2

2b2

− 12 bλ2µ A2
1a1 + 12 bλ2µ A2

2a1 + 20 cλ3 A2
1b2 − 20cλ3 A2

2b2 − 12cλ2µ A2
1a1 − 2 kµ2b2

− 2 kλ2 A2
1b2 + 2 kλ2 A2

2b2 + 4aλµ b1b2 + 2 aµ2a0b2 + 2 aµ2a1b1 − 28 bλ µ2b2 − 12 bµ3a1

− 28cλµ2b2 − 12cµ3a1 + 12cλ2µ A2
2a1 = 0,

ψ(ξ) : −16 bλ3µ A2
1a2 + 16 bλ3µ A2

2a2 − 16 cλ3µ A2
1a2 + 16 cλ3µ A2

2a2 + 2 aλ2 A2
1a0b1

− 2 aλ2 A2
2a0b1 + 4 bλ3 A2

1b1 − 4 bλ3 A2
2b1 + 4 cλ3 A2

1b1 − 4 cλ3 A2
2b1 − 2 kλ2 A2

1b1

+ 2 kλ2 A2
2b1 + 2 aλ µ b2

1 + 2 aµ2a0b1 − 4 bλ µ2b1 − 4 cλ µ2b1 − 2 kµ2b1 = 0,

φ(ξ)0 : 8 bλ4 A2
1a2 − 8bλ4 A2

2a2 + 8cλ4 A2
1a2 − 8cλ4 A2

2a2 + aλ2 A2
1a2

0 − aλ2 A2
2a2

0 − 2 λ2 pA2
2

− 2kλ2 A2
1a0 + 2kλ2 A2

2a0 − aλ2b2
1 + aµ2a2

0 + 4 bλ2µ b1 + 4cλ2µ b1 + 2λ2 pA2
1 + 2µ2 p

− 2kµ2a0 = 0.

(21)

Using the Maple package program to solve the above algebraic system, we obtain
the following results.
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Result 1:

a0 = −16(b + c)− k
a

, a1 = 0, a2 = −24(b + c)
a

, b1 = 0, b2 = 0,

p = −64 (b + c)2 λ2 − k2

2a
, µ = 0, λ = λ, k = k,

(22)

where a 6= 0, b, c, λ(< 0), µ, k are arbitrary constants. From Equations (10), (20), and (22), we obtain
the traveling wave solution of Equation (1) as follows:

u(x, y, t) = −16(b + c) + k
a

+
24λ

(
cosh

(
ξ
√
−λ
)

A1 + sinh
(

ξ
√
−λ
)

A2

)2
(b + c)(

A1 sinh
(

ξ
√
−λ
)
+ A2 cosh

(
ξ
√
−λ
))2

a
, (23)

where ξ = −k tα

α + x + y and A1, A2 are arbitrary constants.
Result 2:

a0 = a0, a1 = 0, a2 = −12 (b + c)
a

, b1 =
12µ (b + c)

a
, b2 = ±12(b + c)

a

√
−σ1 λ2 − µ2

λ
,

p =
(12λ (b + c) + aa0) (8λ (b + c) + aa0)

2a
, µ = µ, λ = λ, k = aa0 + 10 bλ + 10 cλ,

(24)

where a0, a 6= 0, b, c, λ(< 0), µ are arbitrary constants and σ1 = A2
1 − A2

2, where A1, A2 are arbitrary
constants. From Equations (12), (20), and (24), we obtain the exact solution of Equation (1) as follows:

u(x, y, t) = a0 +
12λ3

(
cosh

(
ξ
√
−λ
)

A1 + sinh
(

ξ
√
−λ
)

A2

)2
(b + c)(

A2 cosh
(

ξ
√
−λ
)

λ + A1 sinh
(

ξ
√
−λ
)

λ + µ
)2

a

+
12λ µ (b + c)(

A2 cosh
(

ξ
√
−λ
)

λ + A1 sinh
(

ξ
√
−λ
)

λ + µ
)

a

∓
12 (−λ)3/2√λ

(
cosh

(
ξ
√
−λ
)

A1 + sinh
(

ξ
√
−λ
)

A2

)√
−σ1λ2 − µ2 (b + c)(

A2 cosh
(

ξ
√
−λ
)

λ + A1 sinh
(

ξ
√
−λ
)

λ + µ
)2

a
,

(25)

where ξ = −k tα

α + x + y with k defined in Equation (24).

Case 2: Trigonometric function solutions (λ > 0)

If λ > 0, we insert Equation (20) into Equation (19) along with the use of Equations (9) and (13).
Then, the left-hand side of (19) becomes a polynomial in φ(ξ) and ψ(ξ). Setting all of coefficients of
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this resulting polynomial to be zero, we have the following system of nonlinear algebraic equations in
a0, a1, a2, b1, b2, A1, A2, λ, µ, k, and p, provided that λ2 (A2

1 + A2
2
)
− µ2 6= 0.

φ4(ξ) : aλ2 A2
1a2

2 + aλ2 A2
2a2

2 + 24 bλ2 A2
1a2 + 24 bλ2 A2

2a2 + 24cλ2 A2
1a2 + 24cλ2 A2

2a2

− aµ2a2
2 + aλ b2

2 − 24 bµ2a2 − 24 cµ2a2 = 0,

φ3(ξ) : 2 aλ2 A2
1a1a2 + 2 aλ2 A2

2a1a2 + 8 bλ2 A2
1a1 + 8 bλ2 A2

2a1 + 8 cλ2 A2
1a1 + 8 cλ2 A2

2a1

− 2 aµ2a1a2 + 2 aλ b1b2 − 24 bλ µ b2 − 8 bµ2a1 − 24 cλ µ b2 − 8 cµ2a1 = 0,

φ3(ξ)ψ(ξ) : 2 aλ2 A2
1a2b2 + 2 aλ2 A2

2a2b2 + 24 bλ2 A2
1b2 + 24 bλ2 A2

2b2 + 24 cλ2 A2
1b2 + 24 cλ2 A2

2b2

− 2 aµ2a2b2 − 24 bµ2b2 − 24 cµ2b2 = 0,

φ2(ξ) : 2 aλ2 A2
1a0a2 + aλ2 A2

1a2
1 + 2 aλ2 A2

2a0a2 + aλ2 A2
2a2

1 + 32 bλ3 A2
1a2 + 32 bλ3 A2

2a2

+ 32 cλ3 A2
1a2 + 32 cλ3 A2

2a2 − 2 kλ2 A2
1a2 − 2 kλ2 A2

2a2 + aλ2b2
2 − 2 aµ2a0a2 − aµ2a2

1

− 24 bλ µ2a2 − 24 cλ µ2a2 + aλ b2
1 − 4 bλ µ b1 − 4 cλ µ b1 + 2 kµ2a2 = 0,

φ2(ξ)ψ(ξ) : 2 aλ2 A2
1a1b2 + 2 aλ2 A2

1a2b1 + 2 aλ2 A2
2a1b2 + 2 aλ2 A2

2a2b1 − 40 bλ2µ A2
1a2 − 8 cµ2b1

− 40 bλ2µ A2
2a2 − 40 cλ2µ A2

1a2 − 40 cλ2µ A2
2a2 + 8 bλ2 A2

1b1 + 8 bλ2 A2
2b1 + 8 cλ2 A2

1b1

+ 8 cλ2 A2
2b1 − 2 aλ µ b2

2 − 2 aµ2a1b2 − 2 aµ2a2b1 + 40 bµ3a2 + 40 cµ3a2 − 8 bµ2b1 = 0,

φ(ξ) : 2 aλ2 A2
1a0a1 + 2 aλ2 A2

2a0a1 + 8 bλ3 A2
1a1 + 8 bλ3 A2

2a1 + 8 cλ3 A2
1a1 + 8 cλ3 A2

2a1

− 2 kλ2 A2
1a1 − 2 kλ2 A2

2a1 + 2 aλ2b1b2 − 2 aµ2a0a1 − 24 bλ2µ b2 − 8 bλ µ2a1 − 24 cλ2µ b2

− 8 cλ µ2a1 + 2 kµ2a1 = 0,

φ(ξ)ψ(ξ) : 2 aλ2 A2
1a0b2 + 2 aλ2 A2

1a1b1 + 2 aλ2 A2
2a0b2 + 2 aλ2 A2

2a1b1 + 20 bλ3 A2
1b2 + 2 kµ2b2

+ 20 bλ3 A2
2b2 − 12 bλ2µ A2

1a1 − 12 bλ2µ A2
2a1 + 20 cλ3 A2

1b2 + 20 cλ3 A2
2b2 + 12 cµ3a1

− 12 cλ2µ A2
1a1 − 12 cλ2µ A2

2a1 − 2 kλ2 A2
1b2 − 2 kλ2 A2

2b2 − 4 aλ µ b1b2 − 2 aµ2a0b2

− 2 aµ2a1b1 + 28 bλ µ2b2 + 12 bµ3a1 + 28 cλ µ2b2 = 0,

ψ(ξ) : −16 bλ3µ A2
1a2 − 16 bλ3µ A2

2a2 − 16 cλ3µ A2
1a2 − 16 cλ3µ A2

2a2 + 2 aλ2 A2
1a0b1

+ 2 aλ2 A2
2a0b1 + 4 bλ3 A2

1b1 + 4 bλ3 A2
2b1 + 4 cλ3 A2

1b1 + 4 cλ3 A2
2b1 − 2 kλ2 A2

1b1

− 2 kλ2 A2
2b1 − 2 aλ µ b2

1 − 2 aµ2a0b1 + 4 bλ µ2b1 + 4 cλ µ2b1 + 2 kµ2b1 = 0,

φ(ξ)0 : 8 bλ4 A2
1a2 + 8 bλ4 A2

2a2 + 8 cλ4 A2
1a2 + 8 cλ4 A2

2a2 + aλ2 A2
1a2

0 + aλ2 A2
2a2

0 − 2 µ2 p

− 2 kλ2 A2
1a0 − 2 kλ2 A2

2a0 + aλ2b2
1 − aµ2a2

0 − 4 bλ2µ b1 − 4 cλ2µ b1 + 2 λ2 pA2
1

+ 2 kµ2a0 + 2 λ2 pA2
2 = 0.

(26)

By solving the above algebraic system using the Maple package program, we obtain
the following results.

Result 1:

a0 = −16(b + c)− k
a

, a1 = 0, a2 = −24(b + c)
a

, b1 = 0, b2 = 0,

p = −64 (b + c)2 λ2 − k2

2a
, µ = 0, λ = λ, k = k,

(27)

where a 6= 0, b, c, λ(> 0), k are arbitrary constants. From Equations (12), (20) and (27), we obtain
the exact solution of Equation (1) as follows:

u(x, y, t) = −16(b + c)− k
a

−
24λ

(
cos

(
ξ
√

λ
)

A1 − sin
(

ξ
√

λ
)

A2

)2
(b + c)(

A1 sin
(

ξ
√

λ
)
+ A2 cos

(
ξ
√

λ
))2

a
, (28)

where ξ = −k tα

α + x + y and A1, A2 are arbitrary constants.



Symmetry 2019, 11, 952 10 of 29

Result 2:

a0 = a0, a1 = 0, a2 = −12(b + c)
a

, b1 =
12µ (b + c)

a
, b2 = ±12(b + c)

a

√
σ2λ2 − µ2

λ
,

p =
(12λ (b + c) + aa0) (8λ (b + c) + aa0)

2a
, µ = µ, λ = λ, k = aa0 + 10 bλ + 10 cλ,

(29)

where a0, a 6= 0, b, c, λ(> 0), µ are arbitrary constants and σ2 = A2
1 + A2

2, where A1, A2 are arbitrary
constants. From Equations (12), (20), and (29), we obtain the exact solution of Equation (1) as follows:

u(x, y, t) = a0 −
12λ3

(
cos

(
ξ
√

λ
)

A1 − sin
(

ξ
√

λ
)

A2

)2
(b + c)(

A2 cos
(

ξ
√

λ
)

λ + A1 sin
(

ξ
√

λ
)

λ + µ
)2

a

+
12λ µ (b + c)(

A2 cos
(

ξ
√

λ
)

λ + A1 sin
(

ξ
√

λ
)

λ + µ
)

a

±
12λ5/2

(
cos

(
ξ
√

λ
)

A1 − sin
(

ξ
√

λ
)

A2

)√
σ2λ2 − µ2 (b + c)(

A2 cos
(

ξ
√

λ
)

λ + A1 sin
(

ξ
√

λ
)

λ + µ
)2

a
,

(30)

where ξ = −k tα

α + x + y with k defined in Equation (29).

Case 3: Rational function solutions (λ = 0)

If λ = 0, we substitute Equation (20) into Equation (19) along with the use of Equations (9)
and (15). Then, the left-hand side of (19) becomes a polynomial in variables φ(ξ) and ψ(ξ).
Setting all of the coefficients of the resulting polynomial to be zero, we have the following system
of nonlinear algebraic equations in a0, a1, a2, b1, b2, A1, A2, λ, µ, k, and p, provided that
A2

1 − 2µA2 6= 0.

φ4(ξ) : −2 aµ A2a2
2 + aA2

1a2
2 − 48 bµ A2a2 + 24 bA2

1a2 − 48 cµ A2a2 + 24 cA2
1a2 + ab2

2 = 0,

φ3(ξ) : −4 aµ A2a1a2 + 2 aA2
1a1a2 − 16 bµ A2a1 + 8 bA2

1a1 − 16 cµ A2a1 + 8 cA2
1a1 + 2 ab1b2

− 24 bµ b2 − 24 cµ b2 = 0,

φ3(ξ)ψ(ξ) : −4 aµ A2a2b2 + 2 aA1
2a2b2 − 48 bµ A2b2 + 24 bA2

1b2 − 48 cµ A2b2 + 24 cA2
1b2 = 0,

φ2(ξ) :− 4 aµ A2a0a2 − 2 aµ A2a2
1 + 2 aA2

1a0a2 + aA2
1a2

1 + 8 bµ2a2 + 8 cµ2a2 + 4 kµ A2a2

− 2 kA2
1a2 + ab2

1 − 4 bµ b1 − 4 cµ b1 = 0,

φ2(ξ)ψ(ξ) : −4 aµ A2a1b2 − 4 aµ A2a2b1 + 2 aA2
1a1b2 + 2 aA2

1a2b1 + 80 bµ2 A2a2 − 40 bµ A2
1a2

+ 80 cµ2 A2a2 − 40 cµ A2
1a2 − 2 aµ b2

2 − 16 bµ A2b1 + 8 bA2
1b1 − 16 cµ A2b1 + 8 cA1

2b1 = 0,

φ(ξ) : −4 aµ A2a0a1 + 2 aA2
1a0a1 + 4 kµ A2a1 − 2 kA2

1a1 = 0,

φ(ξ)ψ(ξ) : −4 aµ A2a0b2 − 4 aµ A2a1b1 + 2 aA2
1a0b2 + 2 aA2

1a1b1 + 24 bµ2 A2a1 − 12 bµ A2
1a1

+ 24 cµ2 A2a1 − 12 cµ A2
1a1 − 4 aµ b1b2 + 48 bµ2b2 + 48 cµ2b2 + 4 kµ A2b2 − 2 kA2

1b2 = 0,

ψ(ξ) : −4 aµ A2a0b1 + 2 aA2
1a0b1 − 16 bµ3a2 − 16 cµ3a2 − 2 aµ b2

1 + 8 bµ2b1 + 8 cµ2b1 + 4 kµ A2b1

− 2 kA2
1b1 = 0,

φ(ξ)0 : −2 aµ A2a2
0 + aA2

1a2
0 + 4 kµ A2a0 − 2 kA2

1a0 − 4 µ pA2 + 2 pA2
1 = 0.

(31)

On solving the above algrebraic system using the Maple package program, we obtain the
following results.
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Result 1:

a0 = a0, a1 = 0, a2 = −24(b + c)
a

, b1 = 0, b2 = 0, p =
aa2

0
2

, µ = 0, k = aa0, (32)

where a0, a 6= 0, b, c are arbitrary constants. From Equations (14), (20) and (32), we obtain the traveling
wave solution of Equation (1) as follows:

u(x, y, t) = a0 −
A2

1 (24 b + 24 c)

(A1ξ + A2)
2 a

, (33)

where ξ = −k tα

α + x + y with k defined in Equation (32) and A1, A2 are arbitrary constants.
Result 2:

a0 = a0, a1 = 0, a2 = −12(b + c)
a

, b1 =
144 (b + c)2 A2

1 − a2b2
2

24aA2 (b + c)
, b2 = b2, p =

aa2
0

2
,

µ =
b1a

12(b + c)
, k = aa0,

(34)

where a0, b2, a, b, c, A1, A2 are arbitrary constants such that aA2 (b + c) 6= 0. From Equations (14),
(20), and (34), we obtain the traveling wave solution of Equation (1) as follows:

u(x, y, t) = − 48 (b + c) (12 (b + c) A1 + b1aξ)2

(24 A1ξ (b + c) + b1aξ2 + 24 A2 (b + c))2 a
+

24b1 (b + c)
24 A1ξ (b + c) + b1aξ2 + 24 A2 (b + c)

+
48b2 (b + c) (12 (b + c) A1 + b1aξ)

(24 A1ξ (b + c) + b1aξ2 + 24 A2 (b + c))2 ,
(35)

where ξ = −k tα

α + x + y with k defined in Equation (34).
In the following part, the selected exact solutions of Equation (1), which are expressed

in Equations (25), (28) and (35), are plotted for the three-dimensional representations. They will
be portrayed on −10 ≤ x, t ≤ 10 by varying the fractional order α ∈ {1, 0.9, 0.8}. The graphical
results are as follows.

The following fixed values a0 = 1, µ = 1, λ = −0.1, A1 = 2, A2 = 1, a = 1, b = 1, c = 1
and the variation of α ∈ {1, 0.9, 0.8} are utilized to plot associated graphs of u(x, y, t) expressed
in Equation (25). In Figure 1a, the solution u(x, y, t) with α = 1 is plotted to describe the bell-shaped
solitary wave solution. The graphs of the solution u(x, y, t) for α = 0.9 and α = 0.8 are shown
in Figure 1b,c, respectively. The graph of |u(x, y, t)| for α = 0.8 is depicted in Figure 1d. Figure 1b,c
cannot show a graphical representation for −10 < t < 0 since u(x, y, t) is a complex-valued function
on this interval.
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(a) α = 1 (b) α = 0.9

(c) α = 0.8 (d) α = 0.8

Figure 1. Associated plots of u(x, y, t) in Equation (25) of Equation (1) on −10 ≤ x, t ≤ 10 using
the (G′/G, 1/G)-expansion method.

In Figure 2a, the periodic traveling wave solution, obtained using the solution u(x, y, t)
in Equation (28), is displayed using the parameter values k = 1, λ = 2, A1 = 2, A2 = 1, a = −1,
b = 1, c = 1, and the fractional orders α = 1. Using the above parameter values, Figure 2b,c, represent
the solution u(x, y, t) describing singular soliton solutions for α = 0.9 and α = 0.8, respectively.
The graph of |u(x, y, t)| with α = 0.8 is portrayed in Figure 2d. We can observe that Figure 2b,c
cannot give a graphical representation for −10 < t < 0, since u(x, y, t) is a complex-valued function
on this interval.
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(a) α = 1 (b) α = 0.9

(c) α = 0.8 (d) α = 0.8

Figure 2. Associated plots of u(x, y, t) in Equation (28) of Equation (1) on −10 ≤ x, t ≤ 10 using
the (G′/G, 1/G)-expansion method.

For the fixed values a0 = 1, b2 = 1, A1 = 2, A2 = 1, a = −1, b = 1, c = 1, the graphs
of the exact solutions u(x, y, t) in Equation (35) of Equation (1) corresponding to the given variation
of α are investigated. The solution u(x, y, t) with α = 1, describing the solitary wave solution
of singular soliton type, is depicted in Figure 3a. The solutions u(x, y, t) with α = 0.9 and α = 0.8,
showing the discontinuous singular single-soliton solution, are presented in Figure 3b,c, respectively.
Since u(x, y, t) is a complex-valued function on −10 < t < 0, then these figures do not present any
graph for this interval. The graph of |u(x, y, t)| with α = 0.8 is plotted in Figure 3d.
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(a) α = 1 (b) α = 0.9

(c) α = 0.8 (d) α = 0.8

Figure 3. Associated plots of u(x, y, t) in Equation (35) of Equation (1) on −10 ≤ x, t ≤ 10 using
the (G′/G, 1/G)-expansion method.

Next, we compare our exact solutions of Equation (1), achieved using the (G′/G, 1/G)-expansion
method to the ones obtained using the different methods, which were reported before. In 2019,
Ali et al., [37] analytically solved Equation (1) using the modified Kudryashov method and the
(G′/G2)-expansion method. They found that the former method provided the two exact solutions
written in terms of the reciprocal of exponential function solutions. The latter method, which they
employed, released six sets of the coefficients and parameter values in which each set generated
three classes of the solutions, including trigonometric, hyperbolic, and rational function solutions,
while our results generated using the (G′/G, 1/G)-expansion method included two hyperbolic
function solutions, two trigonometric function solutions, and two rational function solutions. When
comparing the number of solution classes obtained using the (G′/G2)-expansion method and the
(G′/G, 1/G)-expansion method, they are the same number. However, their solutions and our solutions
are not exactly the same. Applying the (G′/G, 1/G)-expansion method to Equation (1), our solutions
are new and distinct from the results in [37].
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4.2. The Space-Time-Fractional Generalized Hirota-Satsuma Coupled KdV System

Before finding exact traveling wave solutions of the space-time-fractional generalized
Hirota-Satsuma coupled KdV system in Equation (2) by using the (G′/G, 1/G)-expansion method,
we must convert it to a system of ordinary differential equations using the following transformations

u(x, t) = U(ξ), v(x, t) = V(ξ), w(x, t) = W(ξ), ξ = k
(

xη

η
− c

tρ

ρ

)
, (36)

where k and c are non-zero arbitrary constants to be determined later. Substituting Equation (36)
into Equation (2), we yield a system of ODEs, as follows:

−ckU′ =
1
4

k3U′′′ + 3kUU′ + 3k(−V2 + W)′, (37)

−ckV′ = −1
2

k3V′′′ − 3kUV′, (38)

−ckW ′ = −1
2

k3W ′′′ − 3kUW ′.. (39)

Let [53]

U = αV2 + βV + γ, W = AV + B, (40)

where α, β, γ, A and B are constants to be determined later.
Substituting Equation (40) into Equations (38) and (39), and then integrating once, we know that

Equations (38) and (39) give the same resulting equation as follows:

k2V′′ = −2αV3 − 3βV2 + 2(c− 3γ)V + c1, (41)

where c1 is a constant of integration. Multiplying Equation (41) by V′ and then integrating the resulting
equation with respect to ξ, we obtain

k2(V′)2 = −αV4 − 2βV3 + 2(c− 3γ)V2 + 2c1V + c2, (42)

where c2 is also a constant of integration.
Differentiating Equation (40) with respect to ξ and then using Equations (41) and (42), we obtain

k2U′′ = 2αk2(V′)2 + k2(2αV + β)V′′,

= 2α
[
−αV4 − 2βV3 + 2(c− 3γ)V2 + 2c1V + c2

]
+(2αV + β)

[
−2αV3 − 3βV2 + 2(c− 3γ)V + c1

]
. (43)

Integrating Equation (37) once, we get

1
4

k2U′′ +
3
2

U2 + cU + 3(−V2 + W) + c3 = 0, (44)

where c3 is a constant of integration. Substituting Equations (40) and (43) into Equation (44), we obtain
that the following coefficients of the resulting polynomial are zero, as follows:

3αc− 3αγ +
3
4

β2 − 3 = 0,

1
2
(αc1 + βc + γβ) + A = 0,

1
4
(2αc2 + βc1) +

3
2

γ2 + cγ + 3B + c3 = 0.

(45)
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Let

c1 =
1

2α2 (β3 + 2cαβ− 6αβγ), V(ξ) = aP(ξ)− β

2α
. (46)

We find from (45) that

α =
β2 − 4

4(γ− c)
, A =

4β(c− γ)

β2 − 4
,

B =
1

6 (−γ + c) (β2 − 4)2

(
16 c3c β2 − 2 c3c β4 − 16 c3γ β2 + 2 c3γ β4

+ 56 c2γ β2 − 48 γ2c β2 − 16 c2 +
1
4

c2β6 − 3 c2β4 + 12 c2β2 − 16 γ2c

− 32 c2γ− 8 c3β2 + β4γ3 − 2 β4c3 + 32 c3γ− 32 c3c + 48 γ3 + β4γ2c
)

. (47)

From (41), we hence acquire

ak2P′′ − a
(

2c− 6γ +
3β2

2α

)
P + 2αa3P3 = 0. (48)

Applying the homogeneous balance principle and the formulas in Equation (17) mentioned
in Step 3 to the terms P′′ and P3, we then have that

Deg
[
P′′
]
= N + 2 = Deg

[
P3
]
= 3N, (49)

which leads to N = 1. Hence, the form of exact solutions of the ODE in Equation (48) using
the method is

P(ξ) = a0 + a1φ(ξ) + b1ψ(ξ), (50)

where the constant coefficients a0, a1 and b1 are determined at a later step, provided that a2
1 + b2

1 6= 0.
Using the (G′/G, 1/G)-expansion method, the following three cases of the obtained exact traveling
solutions of Equation (2), depending on the function G(ξ) which is a solution of the auxiliary
Equation (7), are as follows.

Case 1: Hyperbolic function solutions (λ < 0)

If λ < 0, we substitute Equation (50) into Equation (48), along with the use of Equations (9)
and (11). Then, the left-hand side of Equation (48) becomes a polynomial in φ(ξ) and ψ(ξ).
Setting all of the coefficients of this resulting polynomial to be zero, we obtain the following
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system of nonlinear algebraic equations in a0, a1, b1, A1, A2, λ, µ, k, and c, provided that
λ2 (A2

1 − A2
2
)
+ µ2 6= 0.

φ3(ξ) : 4a3α2λ4 A4
1a3

1 − 8a3α2λ4 A2
1 A2

2a3
1 + 4a3α2λ4 A4

2a3
1 + 8a3α2λ2µ2 A2

1a3
1 − 8a3α2λ2µ2 A2

2a3
1

− 12a3α2λ3 A2
1a1b2

1 + 12a3α2λ3 A2
2a1b2

1 + 4aαk2λ4 A4
1a1 − 8aαk2λ4 A2

1 A2
2a1 + 4aαk2λ4 A4

2a1

+ 4a3α2µ4a3
1 − 12a3α2λµ2a1b2

1 + 8 aα k2λ2µ2 A2
1a1 − 8 aα k2λ2µ2 A2

2a1 + 4 aα k2µ4a1 = 0,

φ2(ξ) : 12 a3α2λ4 A4
1a0a2

1 − 24 a3α2λ4 A2
1 A2

2a0a2
1 + 12 a3α2λ4 A4

2a0a2
1 + 24a3α2λ2µ2 A2

1a0a2
1

− 24a3α2λ2µ2 A2
2a0a2

1 − 12a3α2λ3 A2
1a0b2

1 + 12a3α2λ3 A2
2a0b2

1 + 12a3α2µ4a0a2
1 − 8a3α2λ2µb3

1

− 12a3α2λµ2a0b2
1 + 2aαk2λ3µA2

1b1 − 2aαk2λ3µA2
2b1 + 2aα k2λµ3b1 = 0,

φ2(ξ)ψ(ξ) : 12a3α2λ4 A4
1a2

1b1 − 24 a3α2λ4 A2
1 A2

2a2
1b1 + 12 a3α2λ4 A4

2a2
1b1 + 24 a3α2λ2µ2 A2

1a2
1b1

− 24 a3α2λ2µ2 A2
2a2

1b1 − 4 a3α2λ3 A2
1b3

1 + 4 a3α2λ3 A2
2b3

1 + 4 aα k2λ4 A4
1b1 − 8 aα k2λ4 A2

1 A2
2b1

+ 4 aα k2λ4 A4
2b1 + 12 a3α2µ4a2

1b1 − 4 a3α2λ µ2b3
1 + 8 aα k2λ2µ2 A2

1b1 − 8 aα k2λ2µ2 A2
2b1

+ 4aα k2µ4b1 = 0,

φ(ξ) : 12 a3α2λ4 A4
1a2

0a1 − 24 a3α2λ4 A2
1 A2

2a2
0a1 + 12 a3α2λ4 A4

2a2
0a1 − 12 a3α2λ4 A2

1a1b2
1

+ 12 a3α2λ4 A2
2a1b2

1 + 24 a3α2λ2µ2 A2
1a2

0a1 − 24 a3α2λ2µ2 A2
2a2

0a1 + 4 aα k2λ5 A4
1a1

− 8 aα k2λ5 A2
1 A2

2a1 + 4 aα k2λ5 A4
2a1 − 12 a3α2λ2µ2a1b2

1 + 12 a3α2µ4a2
0a1 − 4 aα cλ4 A4

1a1

+ 8 aα cλ4 A2
1 A2

2a1 − 4 aα cλ4 A4
2a1 + 12 aα γ λ4 A4

1a1 − 24 aα γ λ4 A2
1 A2

2a1 + 12 aα γ λ4 A4
2a1

+ 8 aα k2λ3µ2 A2
1a1 − 8 aα k2λ3µ2 A2

2a1 − 3aβ2λ4 A4
1a1 + 6 aβ2λ4 A2

1 A2
2a1 − 3 aβ2λ4 A4

2a1

− 8aαcλ2µ2 A2
1a1 + 8 aα cλ2µ2 A2

2a1 + 24 aα γ λ2µ2 A2
1a1 − 24 aα γ λ2µ2 A2

2a1 + 4 aα k2λ µ4a1

− 6 aβ2λ2µ2 A2
1a1 + 6 aβ2λ2µ2 A2

2a1 − 4 aα cµ4a1 + 12 aα γ µ4a1 − 3 aβ2µ4a1 = 0,

φ(ξ)ψ(ξ) : 24 a3α2λ4 A4
1a0a1b1 − 48 a3α2λ4 A2

1 A2
2a0a1b1 + 24 a3α2λ4 A4

2a0a1b1 + 24 a3α2λ3µ A2
1a1b2

1

− 24 a3α2λ3µ A2
2a1b2

1 + 48 a3α2λ2µ2 A2
1a0a1b1 − 48 a3α2λ2µ2 A2

2a0a1b1 − 6 aα k2λ4µ A4
1a1

+ 12 aα k2λ4µ A2
1 A2

2a1 − 6 aα k2λ4µ A4
2a1 + 24 a3α2λµ3a1b1

2 + 24a3α2µ4a0a1b1

− 12aα k2λ2µ3 A2
1a1 + 12 aα k2λ2µ3 A2

2a1 − 6 aα k2µ5a1 = 0,

ψ(ξ) : 12 a3α2λ4 A4
1a2

0b1 − 24 a3α2λ4 A2
1 A2

2a2
0b1 + 12 a3α2λ4 A4

2a2
0b1 − 4 a3α2λ4 A2

1b3
1 + 4 a3α2λ4 A2

2b3
1

+ 24 a3α2λ3µ A2
1a0b2

1 − 24 a3α2λ3µ A2
2a0b2

1 + 24 a3α2λ2µ2 A2
1a2

0b1 − 24 a3α2λ2µ2 A2
2a2

0b1

+ 2 aα k2λ5 A4
1b1 − 4aαk2λ5 A2

1 A2
2b1 + 2 aα k2λ5 A4

2b1 + 12a3α2λ2µ2b3
1 + 24a3α2λµ3a0b2

1

+ 12a3α2µ4a2
0b1 − 4aα cλ4 A4

1b1 + 8 aα cλ4 A2
1 A2

2b1 − 4aα cλ4 A4
2b1 + 12aαγλ4 A4

1b1

− 24aαγλ4 A2
1 A2

2b1 + 12aαγλ4 A4
2b1 − 3aβ2λ4 A4

1b1 + 6aβ2λ4 A2
1 A2

2b1 − 3aβ2λ4 A4
2b1

− 8aαcλ2µ2 A2
1b1 + 8aαcλ2µ2 A2

2b1 + 24aαγλ2µ2 A2
1b1 − 24aαγλ2µ2 A2

2b1 − 2aαk2λµ4b1

− 6aβ2λ2µ2 A2
1b1 + 6aβ2λ2µ2 A2

2b1 − 4aαcµ4b1 + 12aαγµ4b1 − 3aβ2µ4b1 = 0,

φ0(ξ) : 4a3α2λ4 A4
1a3

0 − 8a3α2λ4 A2
1 A2

2a3
0 + 4a3α2λ4 A4

2a3
0 − 12a3α2λ4 A2

1a0b2
1 + 12a3α2λ4 A2

2a0b2
1

+ 8a3α2λ2µ2 A2
1a3

0 − 8a3α2λ2µ2 A2
2a3

0 − 8a3α2λ3µb3
1 − 12a3α2λ2µ2a0b2

1 + 4a3α2µ4a3
0

− 4aαcλ4 A4
1a0 + 8aαcλ4 A2

1 A2
2a0 − 4aαcλ4 A4

2a0 + 12aαγλ4 A4
1a0 − 24aαγλ4 A2

1 A2
2a0

+ 12aαγλ4 A4
2a0 + 2aαk2λ4µ A2

1b1 − 2aα k2λ4µ A2
2b1 − 3aβ2λ4 A4

1a0 + 6 aβ2λ4 A2
1 A2

2a0

− 3 aβ2λ4 A4
2a0 − 8 aα cλ2µ2 A2

1a0 + 8aαcλ2µ2 A2
2a0 + 24aαγλ2µ2 A2

1a0 − 24aαγλ2µ2 A2
2a0

+ 2aαk2λ2µ3b1 − 6 aβ2λ2µ2 A2
1a0 + 6 aβ2λ2µ2 A2

2a0 − 4aαcµ4a0 + 12aαγµ4a0 − 3aβ2µ4a0 = 0.

(51)

Solving the above algebraic system using the Maple package program, we have the following results.
Result 1:

a0 = 0, a1 = ±
k
√
− 1

α

a
, b1 = 0, k = k, c =

12γ− λk2(β2 − 4)
2(β2 + 2)

, µ = 0, λ = λ, (52)
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where k, a 6= 0, β, γ, λ(< 0) are arbitrary constants and α is defined in Equation (47).
From Equations (10), (50) and (52), we obtain the traveling wave solutions of Equation (2), as follows:

v1
1(x, t) = ±k

√
− 1

α

(
A1
√
−λ cosh

(
ξ
√
−λ
)
+ A2

√
−λ sinh

(
ξ
√
−λ
))

A1 sinh
(

ξ
√
−λ
)
+ A2 cosh

(
ξ
√
−λ
) − β

2α
,

u1
1(x, t) = α

(
v1

1(x, t)
)
+ β

(
v1

1(x, t)
)
+ γ, w1

1(x, t) = A
(

v1
1(x, t)

)
+ B,

(53)

where ξ is defined in Equation (36) with k, c defined in Equation (52), A1, A2 are arbitrary constants
and A, B are defined in Equation (47).

Result 2:

a0 = 0, a1 = ±
k
√
− 1

α

2a
, b1 = b1, k = k,

c =

(
β2 − 4

)√
4γ2σ2

1 + 2a2b2
1 (β2 + 2) σ1 + 2 γσ1

(
β2 + 8

)
4 σ1 (β2 + 2)

,

µ = 0, λ =
4αa2b2

1
k2σ1

< 0, (54)

where b1, k, a 6= 0, β, γ are arbitrary constants, α is defined in Equation (47) and σ1 = A2
1 − A2

2, where
A1, A2 are arbitrary constants. From Equations (10), (50) and (54), we obtain the traveling wave
solutions of Equation (2) as follows:

v1
2(x, t) = ±k

√
− 1

α

(
A1

√
− αa2b2

1
k2σ1

cosh

(
2ξ

√
− αa2b2

1
k2σ1

)
+ A2

√
− αa2b2

1
k2σ1

sinh

(
2ξ

√
− αa2b2

1
k2σ1

))
(

A1 sinh

(
2ξ

√
− αa2b2

1
k2σ1

)
+ A2 cosh

(
2ξ

√
− αa2b2

1
k2σ1

))

+
ab1(

A1 sinh

(
2 ξ

√
− αa2b2

1
k2σ1

)
+ A2 cosh

(
2ξ

√
− αa2b2

1
k2σ1

)) − β

2α
,

u1
2(x, t) = α

(
v1

2(x, t)
)
+ β

(
v1

2(x, t)
)
+ γ, w1

2(x, t) = A
(

v1
2(x, t)

)
+ B,

(55)

where ξ is defined in Equation (36) with k, c defined in Equation (54) and A, B are defined
in Equation (47).

Result 3:
Result 3.1

a0 = 0, a1 =
k
√
− 1

α

2a
, b1 = ± k

2a

√
λ2σ1 + µ2

αλ
, k = k, c =

48 γ− λk2(β2 − 4)
8(β2 + 2)

,

µ = µ, λ = λ, (56)

Result 3.2

a0 = 0, a1 = −
k
√
− 1

α

2a
, b1 = ± k

2a

√
λ2σ1 + µ2

αλ
, k = k, c =

48 γ− λk2(β2 − 4)
8(β2 + 2)

,

µ = µ, λ = λ, (57)
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where k, a 6= 0, β, γ, µ, λ(< 0) are arbitrary constants, α is defined in Equation (47) and σ1 = A2
1 − A2

2,
where A1, A2 are arbitrary constants. From Equations (10), (50) and (56), we obtain the traveling wave
solutions of Equation (2) as follows:

v1
3(x, t) = k

√
− 1

α

(
A1
√
−λ cosh

(
ξ
√
−λ
)
+ A2

√
−λ sinh

(
ξ
√
−λ
))

2
(

A1 sinh
(

ξ
√
−λ
)
+ A2 cosh

(
ξ
√
−λ
)
+ µ

λ

)
±

k
√

λ2σ1+µ2

αλ

2
(

A1 sinh
(

ξ
√
−λ
)
+ A2 cosh

(
ξ
√
−λ
)
+ µ

2λ

) − β

2α
,

u1
3(x, t) = α

(
v1

3(x, t)
)
+ β

(
v1

3(x, t)
)
+ γ, w1

3(x, t) = A
(

v1
3(x, t)

)
+ B,

(58)

where ξ is defined in Equation (36) with k, c defined in Equation (56) and A, B are defined in
Equation (47). Similarly, we can use Equations (10), (50) and (57) to obtain the traveling wave solutions
of Equation (2), but they are omitted here.

Case 2: Trigonometric function solutions (λ > 0)

If λ > 0, we substitute Equation (50) into Equation (48), along with the use
of Equations (9) and (13). Then, the left-hand side of Equation (48) becomes a polynomial
in φ(ξ) and ψ(ξ). Setting all of the coefficients of the resulting polynomial to be zero, we obtain
the following system of nonlinear algebraic equations in a0, a1, b1, A1, A2, λ, µ, k, c, provided that
λ2 (A2

1 + A2
2
)
− µ2 6= 0.

φ3(ξ) : 4a3α2λ4 A4
1a3

1 + 8a3α2λ4 A2
1 A2

2a3
1 + 4a3α2λ4 A4

2a3
1 − 8a3α2λ2µ2 A2

1a3
1 − 8a3α2λ2µ2 A2

2a3
1

+ 12a3α2λ3 A2
1a1b2

1 + 12a3α2λ3 A2
2a1b2

1 + 4aαk2λ4 A4
1a1 + 8aαk2λ4 A2

1 A2
2a1 + 4aαk2λ4 A4

2a1

+ 4a3α2µ4a3
1 − 12a3α2λµ2a1b2

1 − 8aα k2λ2µ2 A2
1a1 − 8aα k2λ2µ2 A2

2a1 + 4aαk2µ4a1 = 0,

φ2(ξ) : 12a3α2λ4 A4
1a0a2

1 + 24a3α2λ4 A2
1 A2

2a0a2
1 + 12a3α2λ4 A4

2a0a2
1 − 24a3α2λ2µ2 A2

1a0a2
1

− 24a3α2λ2µ2 A2
2a0a2

1 + 12a3α2λ3 A2
1a0b2

1 + 12a3α2λ3 A2
2a0b2

1 + 12a3α2µ4a0a2
1 − 8a3α2λ2µb3

1

− 12a3α2λµ2a0b2
1 − 2aα k2λ3µ A2

1b1 − 2 aα k2λ3µ A2
2b1 + 2 aα k2λµ3b1 = 0,

φ2(ξ)ψ(ξ) : 12a3α2λ4 A4
1a2

1b1 + 24a3α2λ4 A2
1 A2

2a2
1b1 + 12a3α2λ4 A4

2a2
1b1 − 24a3α2λ2µ2 A2

1a2
1b1

− 24a3α2λ2µ2 A2
2a2

1b1 + 4a3α2λ3 A2
1b3

1 + 4a3α2λ3 A2
2b3

1 + 4aαk2λ4 A4
1b1 + 8aαk2λ4 A2

1 A2
2b1

+ 4aα k2λ4 A4
2b1 + 12a3α2µ4a2

1b1 − 4a3α2λ µ2b3
1 − 8aα k2λ2µ2 A2

1b1 − 8aα k2λ2µ2 A2
2b1

+ 4aαk2µ4b1 = 0,

φ(ξ) : −3aβ2µ4a1 − 24a3α2λ2µ2 A2
2a2

0a1 + 12aαγλ4 A4
1a1 + 12a3α2µ4a2

0a1 − 12a3α2λ2µ2a1b2
1

− 8aαk2λ3µ2 A2
2a1 + 12aαγµ4a1 − 24aαγλ2µ2 A2

1a1 + 8aαcλ2µ2 A2
1a1 + 12a3α2λ4 A4

1a2
0a1

+ 12a3α2λ4 A4
2a2

0a1 − 4aαcµ4a1 − 8aαk2λ3µ2 A2
1a1 + 24a3α2λ4 A2

1 A2
2a2

0a1 + 4aαk2λµ4a1

+ 8aαcλ2µ2 A2
2a1 − 4aαcλ4 A4

1a1 + 6aβ2λ2µ2 A2
1a1 − 24a3α2λ2µ2 A2

1a2
0a1 + 12a3α2λ4 A2

1a1b2
1

+ 12a3α2λ4 A2
2a1b2

1 + 12aαγλ4 A4
2a1 − 8aαcλ4 A2

1 A2
2a1 − 3aβ2λ4 A4

2a1 − 6aβ2λ4 A2
1 A2

2a1

+ 4aαk2λ5 A4
2a1 + 24aαγλ4 A2

1 A2
2a1 − 4aαcλ4 A4

2a1 + 6aβ2λ2µ2 A2
2a1 − 3aβ2λ4 A4

1a1

+ 8aαk2λ5 A2
1 A2

2a1 + 4aαk2λ5 A4
1a1 − 24aαγλ2µ2 A2

2a1 = 0,

(59)



Symmetry 2019, 11, 952 20 of 29

φ(ξ)ψ(ξ) : 24a3α2λ4 A4
1a0a1b1 + 48a3α2λ4 A2

1 A2
2a0a1b1 + 24a3α2λ4 A4

2a0a1b1 − 24a3α2λ3µA2
1a1b2

1

− 24a3α2λ3µA2
2a1b2

1 − 48a3α2λ2µ2 A2
1a0a1b1 − 48a3α2λ2µ2 A2

2a0a1b1 − 6aαk2λ4µA4
1a1

− 12aαk2λ4µA2
1 A2

2a1 − 6aαk2λ4µA4
2a1 + 24a3α2λµ3a1b2

1 + 24a3α2µ4a0a1b1

+ 12aαk2λ2µ3 A2
1a1 + 12aαk2λ2µ3 A2

2a1 − 6aαk2µ5a1 = 0,

ψ(ξ) : 12aαγµ4b1 − 2aα k2λµ4b1 − 24a3α2λ3µ A2
1a0b2

1 − 3aβ2µ4b1 + 24a3α2λ4 A2
1 A2

2a2
0b1

− 24a3α2λ3µA2
2a0b2

1 − 24a3α2λ2µ2 A2
2a2

0b1 + 4a3α2λ4 A2
2b3

1 + 12a3α2λ4 A4
1a2

0b1 + 2aα k2λ5 A4
1b1

+ 12a3α2λ4 A4
2a2

0b1 + 2aαk2λ5 A4
2b1 + 12aαγλ4 A4

2b1 + 6aβ2λ2µ2 A2
1b1 + 4a3α2λ4 A2

1b3
1

+ 12a3α2µ4a2
0b1 − 4aαcλ4 A4

1b1 + 4aαk2λ5 A2
1 A2

2b1 − 24aαγλ2µ2 A2
2b1 + 24a3α2λµ3a0b2

1

− 8aαcλ4 A2
1 A2

2b1 − 6aβ2λ4 A2
1 A2

2b1 + 6aβ2λ2µ2 A2
2b1 + 8aαcλ2µ2 A2

1b1 + 12α2a3b3
1λ2µ2

+ 12aαγλ4 A4
1b1 − 3aβ2λ4 A4

1b1 − 4aαcλ4 A4
2b1 − 4aαcµ4b1 − 24aαγλ2µ2 A2

1b1

− 24a3α2λ2µ2 A2
1a2

0b1 − 3aβ2λ4 A4
2b1 + 24aαγλ4 A2

1 A2
2b1 + 8aαcλ2µ2 A2

2b1 = 0,

φ0(ξ) : −24aαγλ2µ2 A2
2a0 − 8a3α2λ2µ2 A2

1a3
0 + 12a3α2λ4 A2

2a0b2
1 + 12a3α2λ4 A2

1a0b2
1 − 8a3α2λ2µ2 A2

2a3
0

− 4aαcλ4 A4
2a0 − 8α2a3b3

1λ3µ + 24aαγλ4 A2
1 A2

2a0 + 12aαγλ4 A4
1a0 − 4aαcµ4a0 − 4aαcλ4 A4

1a0

− 3aβ2λ4 A4
1a0 − 12a3α2λ2µ2a0b2

1 + 4a3α2λ4 A4
2a3

0 + 8a3α2λ4 A2
1 A2

2a3
0 + 4a3α2λ4 A4

1a3
0

− 8aαcλ4 A2
1 A2

2a0 + 6aβ2λ2µ2 A2
2a0 − 3aβ2λ4 A4

2a0 + 12aαγµ4a0 + 12aαγλ4 A4
2a0

− 2aαk2λ4µA2
1b1 + 2aαk2λ2µ3b1 − 2aαk2λ4µA2

2b1 − 24aαγλ2µ2 A2
1a0 + 6aβ2λ2µ2 A2

1a0

+ 8aαcλ2µ2 A2
1a0 + 8aα cλ2µ2 A2

2a0 − 6aβ2λ4 A2
1 A2

2a0 − 3aβ2µ4a0 + 4a3α2µ4a3
0 = 0.

On solving the above algebraic system using the Maple package program, we obtain
the following results.

Result 1:

a0 = 0, a1 = ±
k
√
− 1

α

a
, b1 = 0, k = k, c =

12γ− λk2(β2 − 4)
2(β2 + 2)

, µ = 0, λ = λ, (60)

where k, a 6= 0, β, γ, λ(> 0) are arbitrary constants, α is defined in Equation (47). From Equations (12),
(50) and (60), we obtain the traveling wave solutions of Equation (2) as follows:

v2
1(x, t) = ±k

√
− 1

α

(
A1
√

λ cos
(

ξ
√

λ
)
− A2

√
λ sin

(
ξ
√

λ
))

A1 sin
(

ξ
√

λ
)
+ A2 cos

(
ξ
√

λ
) − β

2α
,

u2
1(x, t) = α

(
v2

1(x, t)
)
+ β

(
v2

1(x, t)
)
+ γ, w2

1(x, t) = A
(

v2
1(x, t)

)
+ B,

(61)

where ξ is defined in Equation (36) with k, c defined in Equation (60), A1, A2 are arbitrary constants
and A, B are defined in Equation (47).

Result 2:

a0 = 0, a1 = ±
k
√
− 1

α

2a
, b1 = b1, k = k,

c =

(
β2 − 4

)√
γ2σ2

2 + (β2 − 4) b2
1a2σ2 − 2γσ2

(
β2 + 8

)
2σ2 (β2 − 4)

,

µ = 0, λ = −
4αa2b2

1
k2σ2

> 0, (62)
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where b1, k, a 6= 0, β, γ are arbitrary constants, α is defined in Equation (47) and σ2 = A2
1 + A2

2,
where A1, A2 are arbitrary constants. From Equations (12), (50) and (62), we obtain the traveling wave
solutions of Equation (2) as follows:

v2
2(x, t) = ±k

√
− 1

α

(
A1

√
− α a2b2

1
k2σ2

cos

(
2 ξ

√
− α a2b2

1
k2σ2

)
− A2

√
− α a2b2

1
k2σ2

sin

(
2 ξ

√
− α a2b2

1
k2σ2

))
(

A1 sin

(
2 ξ

√
− α a2b2

1
k2σ2

)
+ A2 cos

(
2ξ

√
− α a2b2

1
k2σ2

))

+
ab1(

A1 sin

(
2 ξ

√
− α a2b2

1
k2σ2

)
+ A2 cos

(
2ξ

√
− α a2b2

1
k2σ2

)) − β

2α
,

u2
2(x, t) = α

(
v2

2(x, t)
)
+ β

(
v2

2(x, t)
)
+ γ, w2

2(x, t) = A
(

v2
2(x, t)

)
+ B,

(63)

where ξ is defined in Equation (36) with k, c defined in Equation (62) and A, B are defined
in Equation (47).

Result 3:
Result 3.1

a0 = 0, a1 =
k
√
− 1

α

2a
, b1 = ± k

2a

√
µ2 − λ2σ2

αλ
, k = k, c =

48 γ− λk2(β2 − 4)
8(β2 + 2)

,

µ = µ, λ = λ, (64)

Result 3.2

a0 = 0, a1 = −
k
√
− 1

α

2a
, b1 = ± k

2a

√
µ2 − λ2σ2

αλ
, k = k, c =

48 γ− λk2(β2 − 4)
8(β2 + 2)

,

µ = µ, λ = λ, (65)

where k, a 6= 0, β, γ, µ, λ(> 0) are arbitrary constants, α is defined in Equation (47) and σ2 = A2
1 + A2

2,
where A1, A2 are arbitrary constants. From Equations (12), (50) and (64), we obtain the traveling wave
solutions of Equation (2), as follows:

v2
3(x, t) = k

√
− 1

α

(
A1
√

λ cos
(

ξ
√

λ
)
− A2

√
λ sin

(
ξ
√

λ
))

(
2 A1 sin

(
ξ
√

λ
)
+ 2 A2 cos

(
ξ
√

λ
)
+ 2 µ

λ

)
±

k
√

µ2−λ2σ2
α λ(

2A1 sin
(

ξ
√

λ
)
+ 2 A2 cos

(
ξ
√

λ
)
+ 2 µ

λ

) − β

2α
,

u2
3(x, t) = α

(
v2

3(x, t)
)
+ β

(
v2

3(x, t)
)
+ γ, w2

3(x, t) = A
(

v2
3(x, t)

)
+ B,

(66)

where ξ is defined in Equation (36) with k, c defined in Equation (64) and A, B are defined
in Equation (47). Similarly, we can use Equations (12), (50) and (65) to construct the traveling wave
solutions of Equation (2), but they are omitted here.

Case 3: Rational function solutions (λ = 0)

If λ = 0, we substitute Equation (50) into Equation (48), along with the use of Equations (9)
and (15). Then, the left-hand side of Equation (48) becomes a polynomial in φ(ξ) and ψ(ξ). Setting all
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of the coefficients of this polynomial to be zero, we obtain the following system of nonlinear algebraic
equations in a0, a1, b1, A1, A2, λ, µ, k, c, provided that A2

1 − 2µA2 6= 0.

φ3(ξ) : 16a3α2µ2 A2
2a3

1 − 16a3α2µA2
1 A2a3

1 + 4a3α2 A4
1a3

1 − 24a3α2µA2a1b2
1 + 12a3α2 A2

1a1b2
1

+ 16aαk2µ2 A2
2a1 − 16aαk2µA2

1 A2a1 + 4aαk2 A4
1a1 = 0,

φ2(ξ) : 48a3α2µ2 A2
2a0a2

1 − 48a3α2µ A2
1 A2a0a2

1 + 12a3α2 A4
1a0a2

1 − 24a3α2µA2a0b2
1 + 12a3α2 A2

1a0b2
1

− 8a3α2µb3
1 + 4aα k2µ2 A2b1 − 2aαk2µA2

1b1 = 0,

φ2(ξ)ψ(ξ) : 48a3α2µ2 A2
2a2

1b1 − 48a3α2µ A2
1 A2a2

1b1 + 12a3α2 A4
1a2

1b1 − 8a3α2µA2b3
1 + 4a3α2 A2

1b3
1

+ 16aαk2µ2 A2
2b1 − 16aαk2µA2

1 A2b1 + 4aαk2 A4
1b1 = 0,

φ(ξ) : 48a3α2µ2 A2
2a2

0a1 − 48a3α2µA2
1 A2a2

0a1 + 12a3α2 A4
1a2

0a1 − 16aαcµ2 A2
2a1 + 16aαcµA2

1 A2a1

− 4aαcA4
1a1 + 48aαγµ2 A2

2a1 − 48aαγµA2
1 A2a1 + 12aαγA4

1a1 − 12aβ2µ2 A2
2a1

+ 12aβ2µA2
1 A2a1 − 3aβ2 A4

1a1 = 0,

φ(ξ)ψ(ξ) : 96a3α2µ2 A2
2a0a1b1 − 96a3α2µA2

1 A2a0a1b1 + 24a3α2 A4
1a0a1b1 + 48a3α2µ2 A2a1b2

1

− 24a3α2µA2
1a1b2

1 − 24aαk2µ3 A2
2a1 + 24aαk2µ2 A2

1 A2a1 − 6aαk2µA4
1a1 = 0,

ψ(ξ) : 48a3α2µ2 A2
2a2

0b1 − 48a3α2µA2
1 A2a2

0b1 + 12a3α2 A4
1a2

0b1 + 48a3α2µ2 A2a0b2
1 − 24a3α2µA2

1a0b2
1

+ 16a3α2µ2b3
1 − 8aαk2µ3 A2b1 + 4aαk2µ2 A2

1b1 − 16aα cµ2 A2
2b1 + 16aαcµ A2

1 A2b1 − 4aα cA4
1b1

+ 48aαγµ2 A2
2b1 − 48aαγµA2

1 A2b1 + 12aαγ A4
1b1 − 12aβ2µ2 A2

2b1 + 12aβ2µ A2
1 A2b1

− 3aβ2 A4
1b1 = 0,

φ0(ξ) : 16a3α2µ2 A2
2a3

0 − 16a3α2µA2
1 A2a3

0 + 4a3α2 A4
1a3

0 − 16aαcµ2 A2
2a0 + 16aαcµA2

1 A2a0 − 4aαcA4
1a0

+ 48γaαµ2 A2
2a0 − 48γaαµA2

1 A2a0 + 12γaαA4
1a0 − 12aβ2µ2 A2

2a0 + 12aβ2µA2
1 A2a0

− 3aβ2 A4
1a0 = 0.

(67)

On solving the above algebraic system using the Maple package program, we obtain the
following results.

Result 1:

a0 = 0, a1 = ±
k
√
− 1

α

a
, b1 = 0, k = k, c =

6γ

β2 + 2
, µ = 0, (68)

where k, a 6= 0, β, γ are arbitrary constants, α is defined in Equation (47). From Equations (14), (50)
and (68), we obtain the traveling wave solutions of Equation (2) as follows:

v3
1(x, t) = ±k

√
− 1

α

(
A1

A1ξ + A2

)
− β

2α
,

u3
1(x, t) = α

(
v3

1(x, t)
)
+ β

(
v3

1(x, t)
)
+ γ, w3

1(x, t) = A
(

v3
1(x, t)

)
+ B,

(69)

where ξ is defined in Equation (36) with k, c defined in Equation (68), A1, A2 are arbitrary constants,
and A, B are defined in Equation (47).

Result 2:

a0 = 0, a1 = 0, b1 = ±
A1k

√
− 1

α

a
, k = k, c =

6γ

β2 + 2
, µ = 0, (70)
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where k, a 6= 0, β, γ, A1 are arbitrary constants, and α is defined in Equation (47). From Equations (14),
(50) and (70), we obtain the traveling wave solutions of Equation (2), as follows:

v3
2(x, t) = ±k

√
− 1

α

(
A1

A1ξ + A2

)
− β

2α
,

u3
2(x, t) = α

(
v3

2(x, t)
)
+ β

(
v3

2(x, t)
)
+ γ, w3

2(x, t) = A
(

v3
2(x, t)

)
+ B,

(71)

where ξ is defined in Equation (36) with k, c defined in Equation (70), A2 is an arbitrary constant,
and A, B are defined in Equation (47).

Result 3:
Result 3.1

a0 = 0, a1 = ±
k
√
− 1

α

2a
, b1 =

A1k
√
− 1

α

2a
, k = k, c =

6γ

β2 + 2
, µ = 0, (72)

Result 3.2

a0 = 0, a1 = ±
k
√
− 1

α

2a
, b1 = −

A1k
√
− 1

α

2a
, k = k, c =

6γ

β2 + 2
, µ = 0, (73)

where k, a 6= 0, β, γ, A1 are arbitrary constants, and α is defined in Equation (47). From Equations (14),
(50) and (72), we obtain the traveling wave solutions of Equation (2) as follows:

v3
3(x, t) = ±k

√
− 1

α

(
A1

A1ξ + A2

)
− β

2α
,

u3
3(x, t) = α

(
v3

3(x, t)
)
+ β

(
v3

3(x, t)
)
+ γ, w3

3(x, t) = A
(

v3
3(x, t)

)
+ B,

(74)

where ξ is defined in Equation (36) with k, c defined in Equation (72), A2 is an arbitrary constant
and A, B are defined in Equation (47). Similarly, we can utilize Equations (14), (50) and (73) to construct
the traveling wave solutions of Equation (2), but they are omitted here.

Result 4:

a0 = 0, a1 = ±
k
√
− 1

α

2a
, b1 = b1, k = k, c =

6γ

β2 + 2
, µ =

4a2αb2
1 + k2 A2

1
2k2 A2

, (75)

where b1, k, a 6= 0, β, γ, A1, A2 are arbitrary constants, α is defined in Equation (47).
From Equations (14), (50) and (75), we obtain the traveling wave solutions of Equation (2), as follows:

v3
4(x, t) = ±k

√
− 1

α

(
(4a2αb2

1+k2 A2
1)ξ

k2 A2
+ A1

)
(

2(4a2αb2
1+k2 A2

1)ξ2

k2 A2
+ 2A1ξ + 2A2

) +
ab1

(4a2αb2
1+k2 A2

1)ξ2

4k2 A2
+ A1ξ + A2

− β

2α
,

u3
4(x, t) = α

(
v3

4(x, t)
)
+ β

(
v3

4(x, t)
)
+ γ, w3

4(x, t) = A
(

v3
4(x, t)

)
+ B,

(76)

where ξ is defined in Equation (36) with k, c defined in Equation (75) and A, B are defined
in Equation (47).

Next, we show the three-dimensional plots of some selected exact solutions of Equation (2).
The three exact solutions selected to provide graphical representation are v1

3(x, t) in Equation (58),
v2

1(x, t) in Equation (61), and v3
3(x, t) in Equation (74). They will be drawn on −10 ≤ x, t ≤ 10

with the varied fractional orders η , ρ among 1, 0.9, and 0.8. The graphical results of the selected
solutions are described below.
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The following fixed values k = 1, a = 1, β = −3, γ = −3, µ = 1, λ = −1, A1 = 3, A2 = 2
and the variation of η , ρ ∈ {1, 0.9, 0.8} are used to plot associated graphs of v1

3(x, t) in Equation (58).
In Figure 4a, the solution v1

3(x, t) with η = ρ = 1 was plotted to describe the kink-type solitary wave
solution. The graphs of the solution v1

3(x, t) with η = ρ = 0.9 and η = 0.9 , ρ = 0.8 are presented
in Figure 4b,c, respectively. The graph of |v1

3(x, t)| with η = 0.9 , ρ = 0.8 is shown in Figure 4d.

(a) η = ρ = 1 (b) η = ρ = 0.9

(c) η = 0.9, ρ = 0.8 (d) η = 0.9, ρ = 0.8

Figure 4. Associated plots of v1
3(x, t) in Equation (58) of Equation (2) on −10 ≤ x, t ≤ 10 using

the (G′/G, 1/G)-expansion method.

In Figure 5a, the graphical representation of the periodic wave solutions obtained using
the solution v2

1(x, t) in Equation (61), the parameter values k = 1, a = 1, β = −4, γ = −1, λ = 1,
A1 = 1, A2 = 1, and the fractional orders η = ρ = 1. Using the above parameter values,
Figure 5b,c describe the singular multiple-soliton solutions for v2

1(x, t) with η = 0.9 , ρ = 0.9,
and η = 0.9 , ρ = 0.8, respectively. The graph of |v2

1(x, t)| with η = 0.9 , ρ = 0.8 is portrayed
in Figure 5d.
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(a) η = ρ = 1 (b) η = ρ = 0.9

(c) η = 0.9, ρ = 0.8 (d) η = 0.9, ρ = 0.8

Figure 5. Associated plots of v2
1(x, t) in Equation (61) of Equation (2) on −10 ≤ x, t ≤ 10 using

the (G′/G, 1/G)-expansion method.

For the fixed values k = 5, a = 5, β = 1, γ = −4, A1 = 1, A2 = 1, the graphs of the exact
solutions v3

3(x, t) in Equation (74) of Equation (2) corresponding to the variation of η, ρ are investigated.
The solution v3

3(x, t) with η = ρ = 1, describing the solitary wave solution of singular kink type,
is depicted in Figure 6a. The solutions v3

3(x, t) with η = ρ = 0.9 and η = 0.9, ρ = 0.8, describing the
1-soliton solitary wave solution, are presented in Figure 6b,c, respectively. The graph of |v3

3(x, t)| with
η = 0.9, ρ = 0.8 is plotted in Figure 6d.
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(a) η = ρ = 1 (b) η = ρ = 0.9

(c) η = 0.9, ρ = 0.8 (d) η = 0.9, ρ = 0.8

Figure 6. Associated plots of v3
3(x, t) in Equation (74) of Equation (2) on −10 ≤ x, t ≤ 10 using

the (G′/G, 1/G)-expansion method.

Our results of the space-time-fractional generalized Hirota-Satsuma coupled KdV system
in Equation (2) obtained using the (G′/G, 1/G)-expansion method are the generalization of the exact
solutions reported in [54]. There are two reasons for this: (1) The equation, which was
solved in [54], is the fractional generalized Hirota-Satsuma coupled KdV system, with only
the time-conformable fractional derivative; and (2) the method, which was used to solve the equation
in [54], is the (G′/G)-expansion method which is the particular case of the (G′/G, 1/G)-expansion
method [51] by setting the parameter µ in Equation (7) and the coefficient bj in Equation (16) to be zero.
Particularly comparing our solutions with the ones in [54], the common solutions obtained using
both methods consist of the hyperbolic, trigonometric, and rational function solutions. However,
the number of our exact solutions is more than the number of solutions obtained in [54].

5. Conclusions

In this article, the two-variable (G′/G, 1/G)-expansion method has been used to obtain some
novel exact solutions of the time-fractional (2+1)-dimensional extended quantum Zakharov-Kuznetsov
equation and the space-time-fractional generalized Hirota-Satsuma coupled KdV system,
as given in Equations (1) and (2), respectively. The method employed provided a variety
of solutions for both problems, including the hyperbolic, trigonometric, and rational function
solutions. Some of the solutions of (1) have been characterized in distinct physical structures,
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such as a bell-shaped solitary wave solution, a periodic traveling wave solution, and a singular
soliton solution. The kink-type solitary wave solution and the singular multiple-soliton solution were
found from the exact solutions of (2), which are depicted in Section 4.2. All solutions obtained in our
work have been checked with the Maple package program by substituting them back into the original
equations. To the best of our knowledge, these new solutions have not been constructed in previous
literature—hence, they may be of vital importance for explaining some relevant physical phenomena
of the mentioned equations. In summary, the (G′/G, 1/G)-expansion method equipped with the
fractional complex transform is very powerful, reliable, and efficient in its application for obtaining
exact traveling solutions for a wide class of NLFEEs.
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