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Abstract: The inherently weak nature of chiral light–matter interactions can be enhanced by
orders of magnitude utilizing artificially-engineered nanophotonic structures. These structures
enable high spatial concentration of electromagnetic fields with controlled helicity and chirality.
However, the effective design and optimization of nanostructures requires defining physical
observables which quantify the degree of electromagnetic helicity and chirality. In this perspective,
we discuss optical helicity, optical chirality, and their related conservation laws, describing situations
in which each provides the most meaningful physical information in free space and in the context
of chiral light–matter interactions. First, an instructive comparison is drawn to the concepts of
momentum, force, and energy in classical mechanics. In free space, optical helicity closely parallels
momentum, whereas optical chirality parallels force. In the presence of macroscopic matter, the optical
helicity finds its optimal physical application in the case of lossless, dual-symmetric media, while,
in contrast, the optical chirality provides physically observable information in the presence of
lossy, dispersive media. Finally, based on numerical simulations of a gold and silicon nanosphere,
we discuss how metallic and dielectric nanostructures can generate chiral electromagnetic fields upon
interaction with chiral light, offering guidelines for the rational design of nanostructure-enhanced
electromagnetic chirality.

Keywords: optical chirality; optical helicity; nanophotonics; plasmonics; parity symmetry; time
symmetry

1. Introduction

Chiral electromagnetic fields, exhibiting left- or right-handedness, have the ability to interact
selectively with matter. In particular, the chiral molecular building blocks of biological matter,
e.g., proteins and amino acids, exhibit distinct interactions with left- or right-handed light, thus
enabling the visualization of the role of chirality in natural processes [1]. Additionally, the selectivity
and sensitivity of chiral light–matter interactions has shown promise in a variety of technological
applications. The development of pharmaceuticals faces the challenge of heterochirality, where an
unbiased chemical reaction forms equal quantities of left- and right-handed products. Importantly, their
biochemical interaction with patients can range from the desired pharmaceutical treatment to harmful
side-effects by simply interchanging molecular chirality [2]. Thus, chiral light has been proposed as
a non-invasive method to bias chemical reactions toward products of a single handedness [3–5] or
to detect and separate molecules based on their chirality [6,7]. The chirality of light has additionally
found potential in optical information storage and transfer [8,9], with the ability to increase capacity
and selectivity.
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The interaction between chiral electromagnetic plane waves, such as circularly polarized light
(CPL), and matter is inherently limited in sensitivity due to their bounded spatial distribution.
Rapidly-evolving research efforts in the field of chiral nanophotonics aim to address this challenge
by the tailored design of metallic [10–28] and dielectric [29–38] nanostructures, arranged periodically
in sub-wavelength metamaterials and metasurfaces, or in colloidal dispersions, achieving highly
concentrated electromagnetic chirality in their evanescent field (see also review articles [25,39–42]).
However, the rational design of enhanced electromagnetic chirality in the presence of matter requires
the definition of physical observables by which to quantify the chirality of light. For this, the optical
helicity and the optical chirality have been proposed, where each quantity has been altered from its
free-space form to account for interactions with matter. While closely related, the optical helicity and
the optical chirality differ in their physical meaning, and their application in the presence of matter is
subtle yet distinct. This perspective performs a comprehensive comparison of each quantity and its
physical significance in free space and in the presence of matter.

First, the optical helicity and optical chirality are introduced in the context of rotating vector
fields and chiral symmetries, while the physical significance of each quantity in free space is
discussed in analogy to the relationship between momentum and force in classical mechanics.
Subsequently, the implications of optical helicity, optical chirality and their respective conservation
laws upon interaction with microscopic and macroscopic matter are considered with a particular
focus on the role of matter-induced losses. For this, an additional, physically-relevant comparison to
energy and momentum conservation in classical mechanics is provided and the physical observables
arising from the conservation law of optical chirality in lossy, dispersive media are discussed.
Finally, we apply these observables to elucidate the physical mechanisms of chiral light–matter
interactions in artificial nanostructures, where the distinct cases of metallic and dielectric nanoparticles
are analyzed numerically. In particular, the chiral electromagnetic fields generated by gold and silicon
nanospheres with 75 nm radius are considered, demonstrating in both cases that achiral, linearly
polarized excitation does not yield a net electromagnetic chirality, while chiral excitation with left- and
right-handed CPL results in mirror-symmetric optical chirality flux spectra.

2. Rotating and Handed Vector Fields

A rotating vector field is handed when its motion exhibits a non-zero component parallel to the
rotational axis. This vector field property, found in a variety of natural phenomena [43,44], can be
quantified by the helicity, a pseudoscalar resulting from projection of the angular momentum vector
onto the linear momentum vector [45,46]. In fluid dynamics, the helicity is obtained from the projection
of the fluid velocity v onto its curl, also known as vorticity, ∇× v [47]:

Hfluid =
∫

v · (∇× v)d3x. (1)

In plasma physics, the magnetic helicity:

Hmagnetic =
∫

A · (∇×A)d3x, (2)

can be employed for the topological classification of a magnetic induction field B = ∇×A, with vector
potential A [48], where integration over all of space results in gauge invariance of Equation (2) [43,49].
In contrast to Equations (1) and (2), single-particle helicity has been quantified in quantized systems
where, for instance, photon helicity amounts to ±1 [43,46,50].

In classical electrodynamics, where Maxwell’s equations describe the relationship between electric
and magnetic fields, Equation (2) can be extended to define the optical helicity [43]:

Hoptical =
1
2

∫ [√ ε0

µ0
A · (∇×A) +

√
µ0

ε0
C · (∇×C)

]
d3x, (3)
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where C is the electric pseudovector potential with E = −∇×C for electric field E in free space [43,49].
While the vector and pseudovector potentials A and C are gauge variant, upon integration over
all of space in Equation (3), only their gauge-invariant transverse components are non-zero [43].
The integrand of Equation (3), termed optical helicity density, is the lowest-order term in an infinite set of
conserved quantities [49,51], where higher orders are obtained by mapping the magnetic and electric
vector potentials onto their curls: A→ ∇×A and C→ ∇×C [52,53]. The first-order transformation
in this series yields the optical chirality density, a quantity identified as physically significant in the
study of chiral light–matter interactions [54]. The corresponding volume-integrated optical chirality is
written as [54,55]:

Ξ =
∫ [ ε0

2
E · (∇× E) +

1
2µ0

B · (∇× B)
]
d3x. (4)

While both the optical helicity (Equation (3)) and optical chirality (Equation (4)) provide
information on the handedness of electromagnetic fields, they are physically distinct quantities,
exhibiting a proportionality in the case of monochromatic electromagnetic fields in free space [43].

3. Physical Significance of Optical Helicity and Optical Chirality in Free Space

Noether’s theorem [56] states that a conserved quantity arises in the dynamic equations of
any continuous symmetry of a nondissipative system. As demonstrated by Calkin in 1965 [57],
the optical helicity density h (integrand of Equation (3)) is the conserved quantity related to
electromagnetic duality symmetry in free space, where electromagnetic duality describes a transformation
between electric and magnetic fields written as: E → Eθ = Ecosθ − Hsinθ and H → Hθ =

Esinθ + Hcosθ [50,57].
Concurrently in 1964, Lipkin utilized Maxwell’s equations to identify a new conservation law,

naming the conserved quantity Lipkin’s zilch [55]. It was not until 2010 when the physical significance
of Lipkin’s zilch was identified by Tang and Cohen as the local density of electromagnetic chirality,
now known as the optical chirality density χ (integrand of Equation (4)).

The optical helicity density h, the optical chirality density χ and their respective flux densities
Φ and F, follow formally analogous continuity equations in free space, as indicated in Table 1.
This congruence along with the ability of both the optical helicity and optical chirality to describe
the handedness of electromagnetic fields opens the question on how to distinguish these quantities,
as discussed below.

Table 1. Conservation laws of optical helicity (left column) and optical chirality (right column) in
free space with optical helicity density h, optical helicity flux density Φ, optical chirality density
χ, optical chirality flux density F, electric vector potential C, magnetic vector potential A, electric
field E, and magnetic induction field B. ε0 and µ0 represent the free-space electric permittivity and
magnetic permeability.

Optical Helicity Conservation in Free Space Optical Chirality Conservation in Free Space

h = 1
2
[√ ε0

µ0
A · (∇×A) +

√
µ0
ε0

C · (∇×C)
]

χ = ε0
2 E · (∇× E) + 1

2µ0
B · (∇× B)

Φ = 1
2
[√ ε0

µ0
A× (∇×C)− 1

c C× (∇×A)
]

F = 1
2
[
E× (∇× B)− B× (∇× E)

]
δh
δt +

1
µ0
∇ ·Φ = 0 δχ

δt + 1
µ0
∇ · F = 0

The physical significance of the optical helicity density has been described with the help of
dimensional analysis, as it has units of angular momentum density

(N m s
m3

)
[43,52,58]. Here, we extend

this dimensional analysis to the optical chirality density χ with units of force density
( N

m3

)
.

Their respective units of angular momentum and force invite a qualitative comparison to the
relationship between momentum and force in classical mechanics, illustrated in Table 2.
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Table 2. Top: The relationship between force and momentum for linear and rotational motion
in classical mechanics, for linear momentum p, force F, angular momentum L, and torque τ.
Bottom: The relationship between the optical helicity density h and the optical chirality density
χ in classical electrodynamics.

Physical Significance Fundamental → Observable

Classical Mechanics

Linear Motion: dp
dt = F Linear Momentum [N s]

d
dt−→ Force [N]

Rotational Motion: dL
dt = τ Angular Momentum [N m s]

d
dt−→ Torque [N m]

Classical Electrodynamics

Handed Motion: h ∇×−−→ χ Optical Helicity Density [ N m s
m3 ] ∇×−−→ Optical Chirality Density [ N

m3 ]

For a closed system with time-invariant mass, Newton’s second law states that the net force
exerted on the system is equal to the time derivative of the linear momentum (first row in Table 2).
Similarly, for rotational motion in classical mechanics, the angular momentum is obtained from the
time derivative of the torque (second row in Table 2). Equivalent information can, therefore, be
obtained from the conservation of momentum and the conservation of force. However, momentum
conservation, from which force conservation can be derived, is more generally valid. In contrast,
for practical applications, forces lend themselves more easily to measurement and observation [59,60].

Inspired by classical mechanics, we draw a similar comparison for optical helicity and optical
chirality (third row in Table 2) [61,62]. While the vector potentials inherent to the optical helicity are not
directly physically observable, the optical chirality depends only on uniquely defined and observable
field quantities derived from Maxwell’s equations. In contrast, the optical chirality is a higher order
transformation of the optical helicity. Thus, while both the optical helicity density h and the optical
chirality density χ can provide information on the local handedness of an electromagnetic field in free
space, h is the more fundamental quantity, while χ is more suitable for experimental observation.

Chiral Symmetries in Electromagnetism

After establishing the optical chirality density and flux as physically observable quantities which
describe electromagnetic chirality, this section applies symmetry relations to illustrate how these
quantities represent the chirality of electromagnetic fields [61]. A chiral system exhibits parity odd
and time even symmetries [54,63]. For a function f (x, y, z) with spatial coordinates x, y, and z, parity
transformation occurs by inversion of the spatial coordinates through the origin. Specifically, f is parity
odd when f (x, y, z) = − f (−x,−y,−z) [63,64]. In addition, a function f is time even when inversion
of the temporal coordinate t results in f (t) = f (−t) [63,64]. Thus, chiral systems can take on two left-
and right-handed mirror-symmetric forms. For chiral electromagnetic quantities χ and F (as defined in
Table 1), the parity and time symmetries are noted in Table 3, resulting from the parity odd and time
even symmetry of the electric (E) field and the parity even and time odd symmetry of the magnetic
induction (B) field. To elucidate their physical origin, we now construct the symmetry relations of the
E and B fields from source charges and currents.

Table 3. Parity and time symmetries of the optical chirality density χ and the optical chirality flux
density F.

Physical Quantity Tensor Rank Parity Symmetry Time Symmetry

Optical Chirality Density χ 3 Odd (pseudoscalar) Even
Optical Chirality Flux Density F 1 Even (pseudovector) Even
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A static electric field is induced by interaction between positive and negative point charges
(Figure 1a). For spatial coordinates (x, y, z), an electric field vector E = (E, 0, 0) is induced by
a positive point charge at (−x, 0, 0) and a negative point charge at (+x, 0, 0). Parity inversion
directs the electric field vector along −x, whereupon the parity-odd electric field vector becomes
Eparity inversion = (−E, 0, 0). The time-even symmetry of E results from invariance of the polarity of
the point charges upon time reversal.

(a) Electric Field

E

x -x

Parity Odd

(b) Magnetic Induction Field (c) Rotating 

Vector Field

Chiral

Vector Field

Parity Even

B

x

-x

B

Figure 1. Illustration of parity symmetry for an electric field (E) arising between positive and
negative point charges (a) and the magnetic induction field (B) arising from a steady state current (b).
(c) Illustration of the distinction between a rotating vector field and a chiral vector field, where rotational
motion has a component along the axis of rotation.

Figure 1b illustrates how a static magnetic induction field B is induced by a temporally
steady-state current. While a current along +x results in a clockwise rotation of B, parity inversion,
directing the current along −x, leads to anti-clockwise rotation of B. Thus, B is parity even due to
the parity-odd symmetry of the curl operator [64]. Time inversion transforms the rotation of B from
clockwise to anti-clockwise as the current flows backwards temporally. With time invariance of the
curl operator, the B field is, therefore, time odd. Building on these fundamental examples, the parity
and time symmetries of chiral electromagnetic quantities, as noted in Table 1, are now discussed.

Regarding parity symmetry, the optical chirality density χ (Table 1) is a parity-odd pseudoscalar,
attributed to the scalar product of a vector (the E field or the curl of the B field) and a pseudovector (the
B field or the curl of the E field). In contrast, the optical chirality flux density F (Table 1) is a parity-even
pseudovector, its flux integral thus being parity odd. As shown in Figure 1c, rotating vector fields, e.g.,
the parity-even fields (∇× E) or B, do not exhibit the symmetries of a chiral quantity [65], as their
signs remain invariant upon parity inversion. Thus, a parity-odd pseudoscalar is obtained from the
product of these rotating fields with their related vector fields E or (∇× B), respectively [61].

We now describe the time symmetry of a chiral electromagnetic system by comparison to a
right-handed helical chiral object, the handedness of which is invariant upon forwards or backwards
motion in time. Similarly, a chiral electromagnetic field exhibits rotational motion about its axis and
the handedness of this motion remains unchanged under time reversal. This time-even property of
chiral electromagnetic fields is seen in the optical chirality density χ due to the projection of the E or B
fields onto their respective curl [61].

4. Physical Significance of Optical Helicity and Chirality upon Interaction with Matter

The free-space definitions of optical helicity and optical chirality (Table 1), require further
consideration in systems where light interacts with matter. In general, the presence of matter breaks
duality symmetry and the conservation of optical helicity, as predicted by Noether’s theorem [56], is
no longer valid. In contrast, the conservation law of optical chirality in the presence of matter requires
no such restrictions in the electric and magnetic fields or the material properties. Indeed, matter has
been identified as a source or sink of optical chirality [54,66,67]. While both conservation laws of
optical helicity and optical chirality have been modified from their free-space form to account for
interactions with matter [44,50,68–71], this section discusses the distinction in their physical relevance
and applicability.
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To better differentiate optical helicity and optical chirality conservation in the presence of matter,
we again draw a qualitative comparison between classical mechanics and classical electrodynamics.
Figure 2a illustrates the elastic (left panel) and inelastic (right panel) collision of two moving objects
with masses m1, m2 and velocities v1, v2, respectively. For elastic collision (left), both the linear
momentum p = mv and the mechanical energy, specifically the kinetic energy, of the system are
conserved at times t1 before the collision and t2 after the collision. In contrast, while the inelastic
collision (right) conserves the linear momentum p of the system, the mechanical energy is no
longer conserved as a portion is converted into other forms of energy (predominantly heat) [59].
Importantly, the comparison of elastic and inelastic collisions in Figure 2a reveals how the dissipation
of kinetic energy in the inelastic collision is only represented by energy conservation and is not
accounted for by momentum conservation. Momentum and energy conservation can thus provide
equivalent information in the lossless case of an elastic collision. However, their utility differs in the
dissipative case of an inelastic collision.

While physically distinct, the example of elastic and inelastic collisions in classical mechanics
is instructive for the qualitative understanding of optical helicity and optical chirality conservation
in matter. The presence of microscopic sources, in the form of point charges and currents, breaks duality
symmetry due to the existence of electric charges and the absence of magnetic charges in matter [64].
Under constraint of the divergence-free transverse component of the current density, the conservation
law of optical helicity has been reformulated to account for the presence of microscopic sources [44,70].
However, as this definition depends on vector potentials, where non-locality is circumvented by
restricting the fields to their transverse components, the resulting source term is not directly physically
observable. In contrast, the conservation law of optical chirality in the presence of microscopic material
sources has been defined as a direct consequence of Maxwell’s equations, resulting in a source term
composed solely of physical, observable quantities [54]:

δχ

δt
+

1
µ0
∇ · F = −1

2
(
j0 · ∇ × E + E · ∇ × j0

)
, (5)

where the source term arising from microscopic matter is shown on the right-hand side of Equation (5)
and j0 is the primary current density.

Figure 2b illustrates the physical relevance of optical helicity and optical chirality conservation in
the presence of macroscopic matter, in systems free of primary sources. The left panel of Figure 2b
shows chiral light interacting with a piecewise homogeneous, isotropic medium with constant εi/µi
over all material domains i [50]. Under these conditions, duality symmetry holds and both optical
helicity and optical chirality are conserved [50]. Duality symmetry can also be induced in cylindrically
symmetric dielectric objects and collections of objects under specific excitation conditions [72–74], also
leading to helicity conservation. The conservation of optical helicity has proven instrumental in the
analysis of the conversion of CPL into light with orbital angular momentum (OAM) [75–78]; it has
also enabled generation of enhanced optical mirages from dual nanospheres [79,80] and an improved,
elegant understanding of the interaction of vortex beams with well-defined helicity and macroscopic
matter [81].

The right panel of Figure 2b represents a lossy, dispersive medium interacting with chiral light.
In this case, the presence of matter breaks duality symmetry in the studied system and the optical
helicity is no longer conserved in its physically observable form. In contrast, the conservation law of
optical chirality can be extended from its free-space form (Table 1) to account for the presence of lossy,
dispersive media, as outlined below in Section 4.1 [66,67]. Note that duality symmetry can also be
broken in non-dispersive media where ε 6= µ.

The definition of optical helicity in the presence of material losses faces a set of challenges:
For divergence-free displacement fields, the electric vector potential C, inherent to the optical helicity,
is written as E = −∇×C [49]. Gauss’ law in the presence of sources and currents, ∇ ·D = ρ0 [64],
elucidates two cases for which this condition is met (i) systems free of primary sources (ρ0 = 0)
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and (ii) lossless media. Systems obeying (i) and (ii) have been rigorously studied in previous
work [50,68,71,82]—note that the model presented in [71] can be applied to systems with negligible
material losses, such as perfect metals.

For applications in nanophotonics, we focus on chiral light–matter interactions in artificial
nanostructures composed of linear, homogeneous, isotropic media, where material losses can play a
significant role in the generation of chiral electromagnetic fields [66,67,83]. We consider time-harmonic
electromagnetic fields with notation E(r, t) = Re

[
E(r)e−iωt] for the electric field, where E(r) is the

complex electric field amplitude of the electric field at spatial coordinate r. For short-hand notation,
we write complex field amplitudes as E(r) = E . In linear media, the complex electric permittivity
ε = ε0(ε

′ + iε′′) has its imaginary part of the relative permittivity ε′′ = σ(r, ω)/(ε0ω), where σ is the
conductivity and J cond = σ(r, ω)E(r) is the complex amplitude of the conduction current density.
We then reformulate Gauss’ law as [61,64]:

∇ ·D = ∇ ·
(
ε0ε′E

)
+

i
ω
∇ ·

(
σ(r, ω)E

)︸ ︷︷ ︸
∇·J cond=iωρcond(r)

= ρ0(r), (6)

with angular frequency ω. Equation (6) demonstrates that the electric displacement fields are not
divergence free in lossy media. Specifically, the underbrace in Equation (6) shows time-harmonic
charge continuity, from which Gauss’ law can be reformulated as: ∇ ·

(
ε0ε′E

)
= ρ0(r) + ρcond(r).

Thus, revisiting the case of an elastic and inelastic collision in classical mechanics (Figure 2),
we draw a qualitative comparison to the physical relevance of optical helicity and optical chirality in the
presence of matter. From Noether’s theorem, the conservation of linear momentum in a lossless system
arises from translational invariance [50,56] and, as Figure 2 demonstrates, the conservation of linear
momentum captures the translational motion of a mechanical collision. Similarly, the conservation
of optical helicity, with units of angular momentum, finds its physically relevant application
in the description of chiral symmetries of propagating electromagnetic fields in systems where
electromagnetic duality symmetry holds. In contrast, just as energy conservation captures the
conversion of kinetic energy to heat in the case of an inelastic collision, optical chirality conservation is
the suitable conservation law to describe the physical mechanism of optical chirality dissipation in the
presence of lossy, dispersive media.
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CLASSICAL MECHANICS

Lossless, Elastic Collision Lossy, Inelastic Collision

(a)

(b)

Momentum Conserved Momentum Conserved

Mechanical Energy Conserved Mechanical Energy Not Conserved

t1

t2
t2

CLASSICAL ELECTRODYNAMICS IN  MACROSCOPIC MATTER

Lossless, Dual-Symmetric Medium Lossy, Dispersive Medium

Optical Helicity Conserved

Optical Chirality ConservedOptical Chirality Conserved

Optical Helicity Not Conserved

m1v1(t1) m2v2(t1)

m1v1(t2) m2v2(t2) (m1 + m2)v(t2)

Figure 2. (a) Illustration of an elastic (left) and inelastic (right) collision of two objects with masses m1,
m2, moving at velocities v1, v2 at times t1, before the collision (top) and t2, after the collision (bottom),
respectively. While the total linear momentum of the system p = mv is conserved for the elastic (left)
and inelastic collision (right), the mechanical (kinetic) energy is not conserved for the inelastic collision
due to energy dissipation. (b) Illustration of the interaction between chiral light and macroscopic
matter for a lossless, dual-symmetric medium (left) and a lossy, dispersive medium (right). While
both optical helicity and optical chirality conservation hold for the lossless, dual-symmetric case (left),
the presence of a lossy, dispersive medium (right) breaks duality symmetry and helicity conservation
no longer holds in its physically observable form. In contrast, the conservation law of optical chirality
can be formulated to account for dissipative effects in the presence of lossy, dispersive media.

4.1. Observables Derived from Chiral Electromagnetism

In systems free of primary sources for time-harmonic fields, the conservation law of optical
chirality (Equation (5)) in linear, dispersive media with losses is written as [66]:

− 2ω
∫

V
Im(χe − χm)d3x +

∫
V

Re(∇ ·F )d3x = 0. (7)

The first term in Equation (7) represents optical chirality dissipation:

Im(χe − χm) = (8)
1
8
[−∇ε′ · Im(E × E∗)−∇µ′ · Im(H×H∗)]

+
1
4

ω(ε′µ′′ + ε′′µ′)Im(E∗ ·H),

where E and H are complex field amplitudes of the electric and magnetic induction fields, with
ε = ε′+ iε′′ as the complex electric permittivity and µ = µ′+ iµ′′ as the complex magnetic permeability.
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Equation (8) is composed of two physically distinct terms, where the first represents optical chirality
dissipation arising from material anisotropy, expressed by the gradient of ε′ and µ′, and the second
describes optical chirality dissipation due to material loss, expressed by the imaginary parts of the
material functions ε′′ and µ′′ [66,84]. The second term in Equation (7) represents the volume-integrated
optical chirality flux, with density F defined as:

F =
1
4
[E × (∇×H∗)−H∗ × (∇× E)]. (9)

In the far field, where electromagnetic fields are well-approximated as plane waves, F can be
represented by a weighted superposition of the optical chirality flux density arising from left- (F LCPL)
and right-handed (FRCPL) circularly polarized plane waves, yielding a total far-field (FF) optical
chirality flux F FF = |l|2F LCPL + |r|2FRCPL. The weighting factors for left- and right-handed CPL
are represented by constants l and r, respectively. From this, FFF is directly proportional to the third
Stokes parameter S3, describing the degree of circular polarization, as [66,85]:

F FF =
ω

c
(|l|2SLCPL − |r|2SRCPL) ∝ S3, (10)

where c is the speed of light and S = E ×H∗ is the complex amplitude of the Poynting vector [64].
The optical chirality flux generated by lossy, dispersive media has been experimentally observed in
the far field for periodic arrays of two-dimensionally chiral metallic nanoantennas [83] and colloidal
dispersions of three-dimensionally chiral metallic nanopyramids at the single-particle level [86].
These experimental results demonstrated how the optical chirality flux is a physically relevant far-field
observable, with the ability to provide information on chiral light–matter interactions in the near and
far field.

In addition to the physically observable description of optical chirality dissipation and flux,
derived from the conservation law of optical chirality (Equation (7)), the optical chirality density
χ (Table 1) has the ability to locally quantify the chirality of electromagnetic fields which can be
strongly enhanced upon interaction with matter. The free-space optical chirality density (Table 1) of
time-averaged, time-harmonic fields is written as:

χ̄ = − ω

2c2 Im(E∗ ·H) = − ω

2c2 |E ||H|cos(βiE ,H), (11)

where E and H are the complex electric field and magnetic field amplitudes, βiE ,H is the
angle between the product iE and the H field, and the overbar in χ̄ denotes the time average.
Tang and Cohen identified Equation (11) within the excitation rate equation for chiral molecules [54].
This finding revealed the possibility to increase chiral selectivity of molecular excitation by orders
of magnitude, when chiral molecules interact with electromagnetic fields of enhanced χ̄ [6].
Subsequently, the rapidly-developing research area of chiral nanophotonics, summarized in a series of
review articles [25,40–42], devoted itself to constructing solutions to Maxwell’s equations for which χ̄

exceeds its corresponding value for CPL, where χ̄/|χ̄CPL| was termed optical chirality enhancement by
Schäferling et al. [87].

A single electromagnetic plane wave reaches its maximum value of χ̄ at the circular polarization
state, resulting in |χ̄|/|χ̄CPL| = 1 [83]. However, the scale discrepancy between chiral molecules and
the wavelength of CPL results in inherently weak selectivity [54]. Optical chirality enhancement
beyond unity coincides with the concentration of electromagnetic energy (w = we + wm), as χ̄ is
bounded by c|χ̄|/(ωw) ≤ 1 for speed of light c and angular frequency ω [88,89].

In free space, theoretical studies have predicted |χ̄|/|χ̄CPL| > 1 for the diffraction-limited focusing
of a circularly polarized Gaussian beam or the appropriate superposition of two Gaussian beams
with radial and azimuthal polarization [90,91]. To better match molecular dimensions, evanescent
waves can achieve a theoretically-unlimited spatial concentration of electromagnetic fields at material
interfaces [92], enabling optical chirality enhancement beyond the diffraction limit [83]. In particular,
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artificial nanostructures, with dimensions comparable to the wavelength of light, show great promise
for the rational design of concentrated chiral electromagnetic fields.

We now provide a physical interpretation on how the optical chirality density χ and optical
chirality flux density F of electromagnetic fields (Table 1) can be enhanced upon interaction with
matter. A qualitative comparison can be made to vortex flow in fluid dynamics [61]. From Equation (1),
the helicity density of a fluid vortex is written as hfluid = v ·

(
∇× v

)
for fluid velocity v and vorticity

ω = ∇× v [47]. Further, the flux of the solenoidal vorticity ω is conserved, ∇ ·ω = 0, indicating that
an equal number of vortices with clockwise or counterclockwise rotation crosses the boundary of a
closed system [47].

The formal analogy between the v field of hfluid and the electric and magnetic fields of χ allows
for the interpretation of χ as the wrapping density of electric and magnetic field lines around their
rotation axis [54]. With increasing wrapping density along this axis, χ will increase in value. Further,
while they differ in form, the vorticity flux ∇ · ω = 0 can support the interpretation of the optical
chirality flux ∇ ·F . In particular, ∇ ·F 6= 0 when the boundary of a studied system is traversed by
an excess of one handedness of chiral electromagnetic field lines.

In contrast to fluidics, the interplay between electric and magnetic fields gives rise to additional
complexity in electromagnetic chirality. In particular, Maxwell’s equations dictate that a magnetic field
can be induced by the rotation of an electric field and vice versa [64]. Further, while solid interfaces
can act as sources of fluid vorticity, affecting fluid flow on boundary layers [93], the conservation law
of optical chirality (Equation (7)) elucidates how material charges and currents can act as sources or
sinks of chiral electromagnetic fields. In particular, both material loss and anisotropy (Equation (8))
can result in the dissipation and generation of electromagnetic chirality [54,66,67,70,83].

5. Chiral Light–Matter Interactions in Artificial Nanostructures

The effective design and optimization of artificial nanostructures with respect to their chiral
optical fields requires insight into the mechanism of their interaction with chiral light. This section
discusses the ability of metallic and dielectric nanostructures to generate chiral electromagnetic fields
and elucidates the physical mechanisms present in each case. Figure 3 shows numerical simulations
of the optical chirality flux generated by gold (part a) and silicon (part b) nanospheres of 75 nm
radius (COMSOL Multiphysics 5.3a, gold material functions from Johnson and Christy [94] and silicon
material functions from Aspnes and Studna [95]). In both systems, linearly polarized plane-wave
excitation (LP, black) does not generate an optical chirality flux. In contrast, excitation with left-
(LCP, red) and right-handed (RCP, blue) circularly polarized plane waves results in mirror-symmetric
optical chirality flux spectra. Thus, in an achiral system, such as the studied nanospheres, inversion
of the sign of the excitation light source inverts the sign of the optical chirality flux generated by
the nanostructure.

The conservation law of optical chirality (Equation (7)), which sets equal the physical mechanisms
of optical chirality dissipation and optical chirality flux can explain the generation of chiral optical
fields in Figure 3. In particular, a non-zero optical chirality dissipation arises from the interaction
between the achiral nanospheres and the chiral excitation source, leading to the generation of an optical
chirality flux. In contrast, prior work has shown that nanostructures with a chiral geometry interacting
with achiral, linearly polarized light have the ability to dissipate optical chirality, thus generating an
optical chirality flux [66,83,86,96]. Figure 3 also demonstrates that the silicon nanosphere generates an
optical chirality flux an order of magnitude larger than the gold nanosphere of the same size.

Beyond the simple case of spherical nanoparticles shown in Figure 3, we now discuss distinct
mechanisms which can contribute to enhancement of the optical chirality flux generated by metallic
and dielectric nanostructures. The delocalized surface-electron gas, oscillating on resonance in metallic
nanostructures [97], results in polarization and conduction currents which can interact in a sensitive
and selective manner with chiral electromagnetic fields [61]. Thus, metallic nanoparticles exhibiting a
left- or right-handed chiral geometry can effectively dissipate optical chirality and generate an optical
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chirality flux [66,83,86,96]. A myriad of research efforts have, therefore, realized metallic nanostructures
with complex chiral geometries, such as metallic helices, pyramids, dimers, and oligomers [10–28]
(see also review articles [25,39–41]).
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Figure 3. (a) Schematic illustration of a gold nanoparticle (spherical geometry, 75 nm radius) interacting
with a circularly polarized plane wave. Numerical simulations of the total, volume-integrated optical
chirality flux F̄ =

∫
V ∇ · Fd3x of the gold nanosphere upon excitation with linearly polarized

(LP, black), left-handed circularly polarized light (CPL) (LCP, red), and right-handed CPL (RCP, blue).
(b) Schematic illustration of a silicon nanoparticle (spherical geometry, 75 nm radius) interacting with a
circularly polarized plane wave. Numerical simulations of the total, volume-integrated optical chirality
flux F̄ of the silicon nanosphere upon excitation with linearly polarized (LP, black), left-handed CPL
(LCP, red), and right-handed CPL (RCP, blue).

In dielectric nanostructures, the conduction and polarization currents are considerably smaller
than in metals [98]. Further, in the absence of primary sources, an intrinsic magnetic dipole moment
arises from the magnetization current. Thus, tailoring the magnitude and phase shift of the intrinsic
electric and magnetic dipole moments can enhance the chiral electromagnetic fields generated by
dielectric nanostructures. This can be controlled by phase-shifted electric and magnetic fields in the
excitation source, as is the case for CPL (Figure 3b), or further geometric tuning, as was demonstrated
in recent research for achiral silicon nanospheres [29,30], silicon disk and sphere metasurfaces [32,33,
35,36], or dielectric dimer structures [31,34,37,38]. These additional degrees of freedom inherent to
the mechanism of chiral light–matter interactions in dielectric nanostructures enable the generation
of highly enhanced chiral electromagnetic fields in simplified geometric configurations, suitable for
high-throughput applications where strong optical chirality enhancement can be rationally designed
in the nanostructure near field.

6. Conclusions

In conclusion, this perspective provides insight on the physical applicability of the optical helicity
and the optical chirality in free space and in the presence of matter. In free space, a qualitative parallel
between momentum in classical mechanics and optical helicity in classical electrodynamics can be
made; likewise, a parallel between force and optical chirality also exists. We applied time and parity
symmetry relations to demonstrate how the optical chirality density and flux quantify the handedness
of an electromagnetic field. When chiral light interacts with macroscopic matter, we then identified
how the optical helicity provides useful physical information for the case of lossless, dual-symmetric
media, while the optical chirality provides physically observable information in the case of lossy,
dispersive media. Here, a comparison to energy and momentum conservation for the lossless, elastic
collision and the lossy, inelastic collision of two moving objects provides insight on the applicability
of optical helicity and optical chirality conservation in the presence of matter. Finally, we applied
the conservation law of optical chirality to numerically simulate the optical chirality flux generated
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by a gold and silicon nanosphere of 75 nm radius. While no optical chirality flux was generated
upon linearly polarized excitation, left- and right-handed CPL resulted in mirror-symmetric optical
chirality flux spectra in both cases. This effect can be further enhanced by tuning the geometry of
the nanostructure; while metallic nanostructures with a chiral shape direct the currents arising from
the surface-electron gas, the interplay between electric and magnetic dipole moments in dielectric
nanostructures affects the generation of chiral light. This information provides a platform from which
researchers can improve the rational design of nanophotonic structures for the optimized enhancement
of chiral light–matter interactions.
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