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Abstract: A commuting graph is a graph denoted by C(G, X) where G is any group and X, a subset
of a group G, is a set of vertices for C(G, X). Two distinct vertices, x, y ∈ X, will be connected by
an edge if the commutativity property is satisfied or xy = yx. This study presents results for the
connectivity of C(G, X) when G is a symmetric group of degree n, Sym(n), and X is a conjugacy class
of elements of order three in G.
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1. Introduction

An element g of the symmetric group of degree n, Sym(n), can be written as a product of mutually
disjoint cycles in the form

g = g1g2 . . . gr. (1)

Generally, the cycle type of g is defined to be

cm1
1 cm2

2 . . . cms
s

if in the cycle decomposition of g (Equation (1)), there are mi cycles of length ci for 1 ≤ i ≤ s. Each
mi and ci will be positive integers and c1 < c2 < . . . < cs, an increasing sequence. We note that fixed
points as 1-cycles must not be excluded in presenting the cycle type of any permutations of Sym(n).

Suppose an arbitrary element a ∈ G has cycle type e1
f1 . . . em

fm . For some 1 ≤ hi ≤ fi and
1 ≤ hj ≤ f j, we define a graph, denoted by Γ, whose vertex set is V(Γ) = {1, . . . , m} and i, j ∈ V(Γ)
are linked by an edge if and only if eihi = ejhj. Clearly, the cycle type of the element a ∈ G determines
the graph Γ. An edge (i, j) ∈ E(Γ) is called an exact edge if hi = fi and hj = f j. A special edge (i, j)
with source i of Γ satisfies ej f j = ei and b(i) = ei where

b(i) :=
ei

lcm{d : d | ei, d ≤ fi}
(2)

for 1 ≤ i ≤ m.
Given this notation, it is worth noting the definition of commuting graph and two related results

in [1]. These two theorems are extremely useful to prove the connectivity of commuting graphs C(G, X)

in symmetric groups for elements of order three described in Section 2.
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Definition 1. Let G be any group and X a subset of a group G. Commuting graph denoted by C(G, X),
is a graph whose set of vertices is X and two distinct vertices, x, y ∈ X, will be connected by an edge if the
commutativity property is satisfied or xy = yx.

Theorem 1. [1] Let G = Sym(n), a ∈ G be of cycle type e f , and X = aG. Then, C(G, X) is connected if and
only if b(1) = 1, or e ≤ 3 and f = 1.

Theorem 2. [1] Let G = Sym(n), a ∈ G be of cycle type e1
f1 . . . em

fm with m > 1. Let X = aG. Then,
C(G, X) is connected if and only if the following hold:

1. Γ is connected.
2. gcd {b(i) : 1 ≤ i ≤ m} = 1.
3. Γ has at least one edge which is not exact.
4. The vertex set of Γ is not of the form E ∪Y, with E ∩Y = ∅ and E, Y 6= ∅, such that the following hold:

(a) for all i, j ∈ E with i 6= j, (i, j) is an exact edge;
(b) there exists a vertex y ∈ Y such that for all i ∈ E, (i, y) is a special edge with source y;
(c) no vertex of E is joined to a vertex of Y\{y}; and
(d) gcd {b(i) : i ∈ Y} = ey.

For instance, having G as the symmetric group of degree 7, Sym(7) and X = (1, 2, 3)G,
the commuting graph C(G, X) is connected with diameter 3. It shows an absolute contrast to the
case having G as the symmetric group of degree 6, Sym(6) and X = (1, 2, 3)G, where C(G, X) is
disconnected even though both cases deal with the set of elements of cycle type 31 as the vertex
set. More specific examples of connected and disconnected commuting graphs can be referred from
the results in Table 1 of [2] and Table 1 of [3]. Evidently, there are certain cases where C(G, X) is
not connected or disconnected, which further motivate us to categorize them. Consequently, some
questions arise when C(G, X) is not connected: How many connected components are there? What is
the size or diameter of the connected components?

Commuting graphs have been studied for a large varieties of groups and subset of the groups [2,4].
Woodcock [5] analyzed commuting graphs C(G, X) for symmetric group, Sym(n) and having the set
of nontrivial elements of the group as the vertex set. It is proven there that C(G, X) is disconnected
for two particular cases, either n or n− 1 is a prime, where n is the degree for the symmetric group.
The multiple connected components are also identified alongside with their diameters. Researchers
also give attention to the case where X is a conjugacy class of involutions, the commuting involution
graphs [6–8]. Indeed, conjugacy classes of non-involution have a great impact in several other area of
mathematics, see for instance in subspace arrangements [9], in rational geometry [10] or in algebraic
geometry [11,12].

This paper consists of three sections. Section 2 provides three cases where C(G, X) will be
disconnected when the vertex set of the graph is the conjugacy class of elements of order three in
Sym(n): (1) when n = 3r and r = 2; (2) when n = 3r + 1 or n = 3r + 2 and r ≥ 1; and (3) when
n = 3r + q; r = 1 or r = 2 and q = 3, where r is the number of 3-cycles in elements of X. In Section 3,
we attempt to give some information about the number of connected components of some specific
disconnected graphs of symmetric groups and also the size of each connected components. As a result,
we also obtain the isomorphism of every connected component of disconnected C(G, X) with the
complete graph of the same order as the size of the component.

Throughout we assume G = Sym(Ω) = Sym(n) acts on the set Ω = {1, . . . , n} in the usual
manner. Write, without loss of generality, an element t ∈ G as follows:

t = (1, 2, 3)(4, 5, 6)(7, 8, 9) . . . (3r− 2, 3r− 1, 3r).
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Thus, t has order 3 and is of cycle type 1n−3r3r. Set X = tG, the G-conjugacy class of t. Evidently,
the centralizer of t in G is

CG(t) ∼= (3r : Sym(r))× Sym(n− 3r).

2. Connectedness of the Commuting Graph

By using Theorems 1 and 2 where appropriate, we can now put these to good use to partially
prove the following result (note that this observation is based on the results in Table 1 of [2] and Table 1
of [3]):

Theorem 3. Let G = Sym(n) and t ∈ G be of cycle type 3r with r ≥ 1. Let X = tG. Then, C(G, X) is
disconnected if and only if one of the following holds:

1. n = 3r and r = 2;
2. n = 3r + 1 or n = 3r + 2 and r ≥ 1; and
3. n = 3r + q; r = 1 or r = 2 and q = 3.

Proof of Theorem 3. The case r = 1 (n = 3) is trivial. The latter statement of Theorem 1 shows that
C(G, X) is connected for G = Sym(3) and t = (1, 2, 3).

Now, suppose r = 2 (n = 6). This means G = Sym(6) and t ∈ G is of cycle type 32. Applying
Equation (2) to get b(i) where i = 1, ei = e1 = 3, fi = f1 = 2 and d = 1, we get b(1) = 3. Thus,
by Theorem 1, C(G, X) is disconnected.

Now, suppose r ≥ 3 (n ≥ 9). This means f1 ≥ 3 and hence d is either 1 or 3, since d is a divisor
of 3. Thus, lcm{1, 3} = 3. Therefore, b(1) = 1 and again by Theorem 1, C(G, X) is connected. Hence,
for the case n = 3r, C(G, X) is disconnected if and only if r = 2.

We can prove the second part by employing Theorem 2. However, here we can also prove it by
using a more direct approach. Note that t is of cycle type 1n−3r3r, r ≥ 1. If n = 3r + 1, then t leaves
only the point 3r + 1 fixed. Therefore, any elements of G which belong to the same conjugacy class as
t, named X, and satisfy the commutativity property with t also fix 3r + 1. By induction, every element
of X = tG in the connected component of t will fix 3r + 1. Thus, C(G, X) is disconnected.

If n = 3r + 2, then t fixes the points 3r + 1 and 3r + 2. Thus, by using the same argument as before,
any elements in X = tG which commutes with t will also fix 3r + 1 and 3r + 2. Again, by induction,
every element of G which belongs to the same conjugacy class as t and is in the connected component
of t fixes 3r + 1 and 3r + 2. Thus, C(G, X) is disconnected.

Generally, here we have n = 3r + q; r ≥ 1 and q ≥ 3. We need to show that C(G, X) is only
connected for the cases r = 1 and q ≥ 4, r = 2 and q ≥ 4, and, r ≥ 3 and q ≥ 3 or otherwise C(G, X)

is disconnected.
First, we prove that C(G, X) is connected when n = 3r + q; r ≥ 3 and q ≥ 3. We do this by

observing each condition in Theorem 2:

Condition 1. We claim that Γ is connected. Thus, there exists at least one edge which joins two vertices.
The only possible edge is (1, 2) since there exists only e1 = 1 and e2 = 3 (note that (2, 1) is the same edge as
(1, 2) as they both connect the same vertices, (1 and 2). In this case, f1 = q ≥ 3 and f2 = r ≥ 3. Therefore, we
always get this equality:

1h1 = 3h2, for some 1 ≤ h1 ≤ f1 and 1 ≤ h2 ≤ f2

and hence (1, 2) is an edge. Thus, Γ is connected and Theorem 2 (1) is satisfied.
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Condition 2. We require the formula in Equation (2) to get b(i). In this case, we have 1 ≤ i ≤ 2 where e1 = 1
and e2 = 3. Note again that f1 = q ≥ 3 and f2 = r ≥ 3. Calculations for b(1) and b(2) are as follows:

b(1) =
e1

lcm{d : d | e1, d ≤ f1}
, f1 ≥ 3

=
1

lcm{d : d | 1, d ≤ f1}
, f1 ≥ 3

=
1

lcm{1}
= 1

b(2) =
e2

lcm{d : d | e2, d ≤ f2}
, f2 ≥ 3

=
3

lcm{d : d | 3, d ≤ f2}
, f2 ≥ 3

=
3

lcm{1, 3}

=
3
3

= 1

Furthermore; gcd {b(i) : 1 ≤ i ≤ 2} = gcd {b(1), b(2)} = gcd {1, 1} = 1. Hence, Theorem 2 (2) is
satisfied.

Condition 3. Note again (1, 2) is the only edge of Γ. Now, by employing the definition given in the Introduction,
(1, 2) is an exact edge if h1 = f1 and h2 = f2 are the only possibility to get the following equality:

1h1 = 3h2. (3)

Indeed, we can get the equality in (3) with many choices of h1 and h2 (but the minimum is 1(3) = 3(1)).
Hence, (1, 2) is not an exact edge and Theorem 2 (3) is satisfied.

Condition 4. To observe this condition, let us first say that the set of vertices of Γ is of the form E ∪Y, provided
that there is no intersection between E and Y, and E and Y are not empty sets. Without loss of generality, set the
vertex 1 ∈ E and vertex 2 ∈ Y.

(a) Since there is only one vertex in E, we can join any two vertices neither by an exact edge nor by a non-exact
edge.

(b) Note that (1, 2) is the only edge of Γ and it is not a special edge with source 2 since b(2) = 1 6= e2. Thus,
Theorem 2 (4)(b) is not satisfied.

This is a contradiction (we still get the contradiction here even if we assume the vertex 2 ∈ E and vertex
1 ∈ Y since (1, 2) is also not a special edge with source 1 because e2 f2 = 3 f2 ≥ 9 6= e1). Therefore, this verifies
that V(Γ) 6= E ∪Y and, hence, Theorem 2 (4) is satisfied.

Thus, by Theorem 2, C(G, X) is connected when n = 3r + q; r ≥ 3 and q ≥ 3. We can use the same
way to prove that C(G, X) is also connected for the cases r = 1 and q ≥ 4, and, r = 2 and q ≥ 4.

Note that C(G, X) is disconnected when n = 3r + q; r = 1 and q = 3 since Theorem 2 (3) is not
satisfied. This is because (1, 2) as the only edge in Γ is an exact edge.

C(G, X) is also disconnected when n = 3r + q; r = 2 and q = 3 because Theorem 2 (4) is not
satisfied. This means, without loss of generality by putting the vertex 1 ∈ E and vertex 2 ∈ Y, the vertex
set of Γ can be written as union of E and Y, no intersection between E and Y, and both are not empty
sets and it fulfills all four conditions in Theorem 2 (4). Conditions (a) and (c) are met since there is
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only one vertex in each E and Y. Condition (b) is satisfied because (1, 2) is a special edge with source 2
whilst Condition (d) is also satisfied since gcd {b(i) : i ∈ Y} = gcd {b(2)} = gcd {3} = 3 = e2.

3. Disconnected Commuting Graph and Its Connected Components

In Section 2, there are certain cases where C(G, X) is disconnected. Consequently, when C(G, X)

is not connected, we are concerned with the number of connected components and also the size or
diameter of the connected components. In this paper, a connected component is denoted by Ci where
i ranges from 1 to the number of connected components in some disconnected C(G, X) and r is the
number of 3-cycles in an element t ∈ G. Two examples of the calculations are as follows:

Example 1. Let t = (1, 2, 3) ∈ G where G = Sym(6). Note that t has cycle type 1331 (r = 1). Since
|CG(t)| = 18, then |X| = |tG| = 40 where X is the set of all elements of G with cycle type 1331. Suppose
C1, . . . , C10 are the connected components of C(G, X). Then,

C1 = {(1, 2, 3), (1, 3, 2), (4, 5, 6), (4, 6, 5)}
C2 = {(1, 2, 4), (1, 4, 2), (3, 5, 6), (3, 6, 5)}
C3 = {(1, 2, 5), (1, 5, 2), (3, 4, 6), (3, 6, 4)}
C4 = {(1, 2, 6), (1, 6, 2), (3, 4, 5), (3, 5, 4)}
C5 = {(1, 3, 4), (1, 4, 3), (2, 5, 6), (2, 6, 5)}
C6 = {(1, 3, 5), (1, 5, 3), (2, 4, 6), (2, 6, 4)}
C7 = {(1, 3, 6), (1, 6, 3), (2, 4, 5), (2, 5, 4)}
C8 = {(1, 4, 5), (1, 5, 4), (2, 3, 6), (2, 6, 3)}
C9 = {(1, 4, 6), (1, 6, 4), (2, 3, 5), (2, 5, 3)}
C10 = {(1, 5, 6), (1, 6, 5)(2, 3, 4), (2, 4, 3)}

Therefore, when n = 6 and r = 1, C(G, X) consists of ten connected components each of size four.

Proposition 1. Let G = Sym(6) and t = (1, 2, 3) ∈ G. Then, every connected component of disconnected
C(G, X) is isomorphic to the complete graph of order 4, K4, as shown in Figure 1.

(1, 2, 3) (1, 3, 2)

(4, 5, 6)(4, 6, 5)

Figure 1. Connected component C1 of disconnected C(G, X) when G = Sym(6) and X = (1, 2, 3)G.

Example 2. Let t = (1, 2, 3)(4, 5, 6) ∈ G where G = Sym(6). Note that t has cycle type 32 (r = 2). Since
|CG(t)| = 18, |X| = |tG| = 40 where X is the set of all elements of G with cycle type 32. Suppose C1, . . . , C10

are the connected components of C(G, X). Then,

C1 = {(1, 2, 3)(4, 5, 6), (1, 3, 2)(4, 5, 6), (1, 2, 3)(4, 6, 5), (1, 3, 2)(4, 6, 5)}
C2 = {(1, 5, 2)(3, 4, 6), (1, 2, 5)(3, 4, 6), (1, 5, 2)(3, 6, 4), (1, 2, 5)(3, 6, 4)}
C3 = {(1, 2, 4)(3, 6, 5), (1, 4, 2)(3, 6, 5), (1, 2, 4)(3, 5, 6), (1, 4, 2)(3, 5, 6)}
C4 = {(1, 2, 6)(3, 5, 4), (1, 6, 2)(3, 5, 4), (1, 2, 6)(3, 4, 5), (1, 6, 2)(3, 4, 5)}
C5 = {(1, 6, 5)(2, 4, 3), (1, 5, 6)(2, 4, 3), (1, 6, 5)(2, 3, 4), (1, 5, 6)(2, 3, 4)}
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C6 = {(1, 3, 6)(2, 5, 4), (1, 6, 3)(2, 5, 4), (1, 3, 6)(2, 4, 5), (1, 6, 3)(2, 4, 5)}
C7 = {(1, 5, 4)(2, 6, 3), (1, 4, 5)(2, 6, 3), (1, 5, 4)(2, 3, 6), (1, 4, 5)(2, 3, 6)}
C8 = {(1, 4, 6)(2, 5, 3), (1, 6, 4)(2, 5, 3), (1, 4, 6)(2, 3, 5), (1, 6, 4)(2, 3, 5)}
C9 = {(1, 5, 3)(2, 4, 6), (1, 3, 5)(2, 4, 6), (1, 5, 3)(2, 6, 4), (1, 3, 5)(2, 6, 4)}
C10 = {(1, 4, 3)(2, 6, 5), (1, 3, 4)(2, 6, 5), (1, 4, 3)(2, 5, 6), (1, 3, 4)(2, 5, 6)}

Therefore, when n = 6 and r = 2, C(G, X) consists of ten connected components each of size four.

Proposition 2. Let G = Sym(6) and t = (1, 2, 3)(4, 5, 6) ∈ G. Then, every connected component of
disconnected C(G, X) is isomorphic to the complete graph of order 4, K4, as shown in Figure 2.

(1, 2, 3)(4, 5, 6) (1, 3, 2)(4, 5, 6)

(1, 2, 3)(4, 6, 5)(1, 3, 2)(4, 6, 5)

Figure 2. Connected component C1 of disconnected C(G, X) when G = Sym(6) and X =

(1, 2, 3)(4, 5, 6)G.

Based on the calculations carried out by hand and also with the help of MAGMA [13], we give a
general formula of size and number of connected components for some disconnected C(G, X).

Theorem 4. If t has cycle type 3r and n = 3r + 1 or n = 3r + 2, then the size of each connected components is
2r. Moreover, the number of connected components is |X|2r .

Proof of Theorem 4. We need to count the number of permutations in X = tG (where G is either
Sym(3r + 1) or Sym(3r + 2)),which commute with each other and are in the same connected
component. For each element in X, we have r 3-cycles and each 3-cycle has only two possibilities,
either being inverted or left alone. This gives 2r possible permutations. Consequently, it follows
immediately that in this case the number of connected components is |X|2r .

In view of Propositions 1 and 2 and Theorem 4, we have the following theorem.

Theorem 5. Every connected component of disconnected C(G, X) in Theorem 3 is isomorphic to the complete
graph of order 2r, K2r.

Proof of Theorem 5. All elements in each connected component commute with each other and
consequently they are of distance 1 from one vertex to another vertex. In other words, one vertex is
adjacent to another vertex in this component and this shows that the resulting graph is a complete
graph of order 2r since the size of each connected components is 2r.

Table 1 gives information about the number of connected components of some specific
disconnected graphs of symmetric groups and also the size of each connected components.



Symmetry 2019, 11, 1178 7 of 8

Table 1. Number of connected components, Ci and its size of some disconnected C(G, X).

t n |CG(t)| |X| No. of Ci Size of Each Ci

(1, 2, 3)
4 3 8 4 2
5 6 20 10 2
6 18 40 10 4

(1, 2, 3)(4, 5, 6)

6 18 40 10 4
7 18 280 70 4
8 36 1120 280 4
9 108 3360 280 12

(1, 2, 3)(4, 5, 6)(7, 8, 9) 10 162 22,400 2800 8
11 324 123,200 15,400 8

(1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12) 13 1944 3,203,200 200,200 16
14 3888 22,422,400 1,401,400 16

Clearly, if the commuting graph C(G, X) is disconnected when G is a symmetric group of degree
n, Sym(n), and X is a conjugacy class of elements of order three in G, the connected components
have the same order, the same size and even the same edge connectivity, in other words they are
isomorphics. The results obtained can be extended to find the adjacency matrices of each connected
components of C(G, X), their eigen values and hence giving the input for the graph energy.
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Abbreviations

The following abbreviations are used in this manuscript:

C(G, X) Commuting graph
CG(t) Centralizer of an element t in group G
Ci i-th connected components
Sym(n) Symmetric group of degree n
lcm Lowest common multiple
gcd Greatest common divisor
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