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Abstract: We propose several improvements of the Hermite–Hadamard inequality in the form of
linear combination of its end-points and establish best possible constants. Improvements of a second
order for the class Φ(I) with applications in Analysis and Theory of Means are also given.
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1. Introduction

A function h : I ⊂ R→ R is said to be convex on a non-empty interval I if the inequality

h(
x + y

2
) ≤ h(x) + h(y)

2
(1)

holds for all x, y ∈ I.
If the inequality (1) reverses, then h is said to be concave on I [1].

Let h : I ⊂ R→ R be a convex function on an interval I and a, b ∈ I with a < b. Then

h(
a + b

2
) ≤ 1

b− a

∫ b

a
h(t)dt ≤ h(a) + h(b)

2
. (2)

This double inequality is well known in the literature as the Hermite–Hadamard (HH) integral
inequality for convex functions. It has a plenty of applications in different parts of Mathematics;
see [2,3] and references therein.

If h is a concave function on I then both inequalities in (2) hold in the reversed direction.

Our task in this paper is to improve the inequality (2) in a simple manner, i.e., to find some
constants p, q; p + q = 1 such that the relations

1
b− a

∫ b

a
h(t)dt ≶ p

h(a) + h(b)
2

+ qh(
a + b

2
), (3)

hold for any convex h.

It can be easily seen that the condition

p + q = 1, (4)

is necessary for (3) to hold for an arbitrary convex function.
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Take, for example, f (t) = Ct, C ∈ R.

Since

p(
h(a) + h(b)

2
) + qh(

a + b
2

) ≤ max{ h(a) + h(b)
2

, h(
a + b

2
)} = h(a) + h(b)

2
,

and, analogously,

p(
h(a) + h(b)

2
) + qh(

a + b
2

) ≥ min{h(a) + h(b)
2

, h(
a + b

2
)} = h(

a + b
2

),

it follows that the inequality of the form (3) represents a refinement of Hermite–Hadamard inequality (2)
for each p, q > 0, p + q = 1.

Note also that the linear form p h(a)+h(b)
2 + qh( a+b

2 ) is monotone increasing in p. Therefore,
if the inequality

1
b− a

∫ b

a
h(t)dt ≤ p

h(a) + h(b)
2

+ qh(
a + b

2
),

holds for some p = p0, then it also holds for each p ∈ [p0, 1].

In the sequel we shall prove that the value p0 = 1/2 is best possible for above inequality to hold
for an arbitrary convex function on I.

Also, it will be shown that convexity/concavity of the second derivative is a proper condition for
inequalities of the form (3) to hold (see Proposition 5 below).

This condition enables us to give refinements of second order and to increase interval of validity to
p0 = 1/3 as the best possible constant. In this case, coefficients p0 = 1/3, q0 = 2/3 are involved in the
well-known form of Simpson’s rule, which is of great importance in Numerical Analysis. Our results
sharply improve Simpson’s rule for this class of functions (Proposition 4).

Finally, we give some applications in Analysis and Numerical Analysis. Also, new and precise
inequalities between generalized arithmetic means and power-difference means will be proved.

2. Results and Proofs

We shall begin with the basic contribution to the problem defined above.

Theorem 1. Let h : I ⊂ R→ R be a convex function on an interval I and a, b ∈ I. Then

1
b− a

∫ b

a
h(t)dt ≤ 1

2
h(a) + h(b)

2
+

1
2

h(
a + b

2
). (5)

The constants p0 = q0 = 1/2 are best possible.

If h is a concave function on I then the inequality is reversed.

Proof. We shall derive the proof by Hermite–Hadamard inequality itself. Indeed, applying twice the
right part of this inequality, we get

2
b− a

∫ a+b
2

a
h(t)dt ≤ 1

2
(h(a) + h(

a + b
2

)),

and
2

b− a

∫ b

a+b
2

h(t)dt ≤ 1
2
(h(

a + b
2

) + h(b)).
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Summing up those inequalities the result appears. Therefore, HH inequality has this
self-improving property.

That the constants p0 = q0 = 1/2 are best possible becomes evident by the example f (t) =

|t|, t ∈ [−a, a].
For the second part, note that concavity of f implies convexity of − f on I. Hence, applying (5)

we get the result.

For the sake of further refinements, we shall consider in the sequel functions from the class
C(m)(I), m ∈ N i.e., functions which are continuously differentiable up to m-th order on an
interval I ⊂ R.

Of utmost importance here is the class Φ(I) of functions which second derivative is convex on I.
For this class we have the following

Theorem 2. Let φ ∈ Φ(I) and the inequality

1
b− a

∫ b

a
φ(t)dt ≤ p

φ(a) + φ(b)
2

+ qφ(
a + b

2
), (6)

holds for a, b ∈ I. Then p ≥ p0 = 1/3.

Proof. From (6) we have

p ≥
1

b−a

∫ b
a φ(t)dt− φ( a+b

2 )

φ(a)+φ(b)
2 − φ( a+b

2 )
=: Dφ(a, b).

Since this inequality should be valid for each a, b ∈ I, a < b, let b → a. We obtain that
limb→a Dφ(a, b) = 1/3 almost everywhere on I i.e, whenever φ′′(a) 6= 0 or φ′′(a) = 0, φ′′′(a) 6= 0.

Indeed, applying L’Hospital’s rule 3 and 4 times to the above quotient, we get

lim
b→a

Dφ(a, b) = lim
b→a

φ′′(b)− 3
4 φ′′( a+b

2 )− b−a
8 φ′′′( a+b

2 )
3
2 φ′′(b)− 3

4 φ′′( a+b
2 ) + (b− a)( 1

2 φ′′′(b)− 1
8 φ′′′( a+b

2 ))
,

and

lim
b→a

Dφ(a, b) = lim
b→a

φ′′′(b)− 1
2 φ′′′( a+b

2 )− b−a
16 φ(4)( a+b

2 )

2φ′′′(b)− 1
2 φ′′′( a+b

2 ) + (b− a)( 1
2 φ(4)(b)− 1

16 φ(4)( a+b
2 ))

.

Therefore, the result follows.

In the sequel we shall give sharp two-sided bounds of second order for inequalities of the type (3)
involving functions from the class Φ with p ≥ 1/3.

Main tool in all proofs will be the following relation.

Lemma 1. For an integrable function φ : I → R and arbitrary real numbers p, q; p + q = 1, we have
the identity

p
φ(a) + φ(b)

2
+ qφ(

a + b
2

)− 1
b− a

∫ b

a
φ(t)dt =

(b− a)2

16

∫ 1

0
t(2p− t)(φ′′(x) + φ′′(y))dt,

where x := a t
2 + b(1− t

2 ), y := b t
2 + a(1− t

2 ).

Proof. It is not difficult to prove this identity by double partial integration of its right-hand side.
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For t ∈ [0, 1]; a, b ∈ I, a < b, denote

ξ(a, b; t) := φ′′(a
t
2
+ b(1− t

2
)) + φ′′(b

t
2
+ a(1− t

2
))

= φ′′(x) + φ′′(y).

Lemma 2. If φ ∈ Φ then the function ξ(a, b; t) is monotone decreasing in t.
Hence,

2φ′′(
a + b

2
) ≤ φ′′(x) + φ′′(y) ≤ φ′′(a) + φ′′(b), (7)

for all t ∈ [0, 1].

Proof. Since φ′′(·) is convex, it follows that φ′′′(·) is increasing on I.
Also, x ≥ y for t ∈ [0, 1] because x− y = (b− a)(1− t) ≥ 0.
Hence,

ξ ′(a, b; t) = − b− a
2

(φ′′′(x)− φ′′′(y)) ≤ 0,

and ξ(a, b; t) is decreasing in t ∈ [0, 1].

Therefore,

2φ′′(
a + b

2
) = ξ(a, b; 1) ≤ ξ(a, b; t) ≤ ξ(a, b; 0) = φ′′(a) + φ′′(b),

which is equivalent with (7).

Note that, if φ is concave on I, then the function ξ(a, b; t) is monotone increasing and the
inequality (7) is reversed.

Remark 1. More general assertion than (7) is contained in [4].

Main results of this paper are given in the next two assertions.

Theorem 3. Let φ ∈ Φ(I). Then

p
φ(a) + φ(b)

2
+ qφ(

a + b
2

)− 1
b− a

∫ b

a
φ(t)dt ≤ (b− a)2

16
Tφ(a, b; p),

where

Tφ(a, b; p) =

{
4
3 p3(φ′′(a) + φ′′(b))− 2

3 (1 + p)(2p− 1)2φ′′( a+b
2 ) , 1

3 ≤ p ≤ 1
2 ;

(p− 1
3 )(φ

′′(a) + φ′′(b)) , p ≥ 1
2 .

Also, if p ≤ 0, we have

p
φ(a) + φ(b)

2
+ qφ(

a + b
2

)− 1
b− a

∫ b

a
φ(t)dt ≤ (p− 1

3
)
(b− a)2

8
φ′′(

a + b
2

).

Proof. If p ≥ 1/2 we have that 2p− t ≥ 0. Therefore, applying Lemma 1 and the second part of
Lemma 2, we obtain

p
φ(a) + φ(b)

2
+ qφ(

a + b
2

)− 1
b− a

∫ b

a
φ(t)dt =

(b− a)2

16

∫ 1

0
t(2p− t)(φ′′(x) + φ′′(y))dt

≤ (b− a)2

16
(φ′′(a) + φ′′(b))

∫ 1

0
t(2p− t)dt = (p− 1/3)

(b− a)2

16
(φ′′(a) + φ′′(b)).
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In the case 1/3 ≤ p < 1/2, write

∫ 1

0
t(2p− t)(φ′′(x) + φ′′(y))dt =

∫ 2p

0
t(2p− t)(·)dt−

∫ 1

2p
t(t− 2p)(·)dt,

and apply Lemma 2 to each integral separately.

It follows that∫ 1

0
t(2p− t)(φ′′(x) + φ′′(y))dt ≤ (φ′′(a) + φ′′(b))

∫ 2p

0
t(2p− t)dt− 2φ′′(

a + b
2

)
∫ 1

2p
t(t− 2p)dt

=
4p3

3
(φ′′(a) + φ′′(b))− 2(

1
3
− p +

4p3

3
)φ′′(

a + b
2

),

which is equivalent to the stated assertion.

For p ≤ 0 we have that 2p− t ≤ 0 and the proof develops in the same manner.

Theorem 4. If φ ∈ Φ(I), then for p ≥ 1/3 we get

p
φ(a) + φ(b)

2
+ qφ(

a + b
2

)− 1
b− a

∫ b

a
φ(t)dt ≥ (p− 1/3)

(b− a)2

8
φ′′(

a + b
2

),

and

p
φ(a) + φ(b)

2
+ qφ(

a + b
2

)− 1
b− a

∫ b

a
φ(t)dt ≥ (p− 1/3)

(b− a)2

16
(φ′′(a) + φ′′(b)),

for p ≤ 0.

Proof. By Lemma 1, in terms of Lemma 2, we have

p
φ(a) + φ(b)

2
+ qφ(

a + b
2

)− 1
b− a

∫ b

a
φ(t)dt =

(b− a)2

16

∫ 1

0
t(2p− t)ξ(a, b; t)dt.

By partial integration, we obtain

∫ 1

0
t(2p− t)ξ(a, b; t)dt = (pt2 − t3/3)ξ(a, b; t)|10 −

∫ 1

0
t2(p− t/3)ξ ′(a, b; t)dt

≥ 2(p− 1/3)φ′′(
a + b

2
),

since p− t/3 ≥ 0 for p ≥ 1/3 and, by Lemma 2, ξ ′(a, b; t) ≤ 0 for t ∈ [0, 1].

If p ≤ 0 then 2p− t ≤ 0 and, applying Lemmas 1 and 2, the result follows.

Above theorems are the source of a plenty of important inequalities which sharply refine
Hermite–Hadamard inequality for this class of functions.

Some of them are listed in the sequel.

Proposition 1. Let φ ∈ Φ(I). Then

(b− a)2

24
φ′′(

a + b
2

) ≤ 1
b− a

∫ b

a
φ(t)dt− φ(

a + b
2

) ≤ (b− a)2

24
φ′′(a) + φ′′(b)

2
.

Proof. Put p = 0 in the above theorems.
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Proposition 2. Let φ ∈ Φ(I). Then

(b− a)2

12
φ′′(

a + b
2

) ≤ φ(a) + φ(b)
2

− 1
b− a

∫ b

a
φ(t)dt ≤ (b− a)2

12
φ′′(a) + φ′′(b)

2
.

Proof. This proposition is obtained for p = 1.

The next assertion represents a refinement of Theorem 1 in the case of convex functions.

Proposition 3. Let φ ∈ Φ(I). Then for each a, b ∈ I, a < b,

(b− a)2

48
φ′′(

a + b
2

) ≤ 1
2

φ(a) + φ(b)
2

+
1
2

φ(
a + b

2
)− 1

b− a

∫ b

a
φ(t)dt ≤ (b− a)2

48
φ′′(a) + φ′′(b)

2
.

If φ′′ is concave on I, then

(b− a)2

48
φ′′(a) + φ′′(b)

2
≤ 1

2
φ(a) + φ(b)

2
+

1
2

φ(
a + b

2
)− 1

b− a

∫ b

a
φ(t)dt ≤ (b− a)2

48
φ′′(

a + b
2

).

Proof. Put p = 1/2 in Theorems 3 and 4.
The second part follows from a variant of Lemma 2 for concave functions.

Note that the coefficients p = 1/3 and q = 2/3 are involved in well-known Simpson’s rule which
is of importance in numerical integration [5].

The next assertion sharply refines Simpson’s rule for this class of functions.

Proposition 4. For φ ∈ Φ(I), we have

0 ≤ 1
3

φ(a) + φ(b)
2

+
2
3

φ(
a + b

2
)− 1

b− a

∫ b

a
φ(t)dt

≤ (b− a)2

162
[
φ′′(a) + φ′′(b)

2
− φ′′(

a + b
2

)].

If φ′′ is concave on I, then

0 ≤ 1
b− a

∫ b

a
φ(t)dt− 1

6
[φ(a) + φ(b) + 4φ(

a + b
2

)]

≤ (b− a)2

162
[φ′′(

a + b
2

)− φ′′(a) + φ′′(b)
2

].

Proof. Applying Theorems 3 and 4 with both parts of Lemma 2 for p = 1/3, the proof follows.

The next assertion gives a proper answer to the problem posed in Introduction.

Proposition 5. If φ is a convex and φ′′ is a concave function on I, then

1
3

φ(a) + φ(b)
2

+
2
3

φ(
a + b

2
) ≤ 1

b− a

∫ b

a
φ(t)dt ≤ 1

2
φ(a) + φ(b)

2
+

1
2

φ(
a + b

2
).

Analogously, let φ be concave and φ′′ a convex function on I, then

1
2

φ(a) + φ(b)
2

+
1
2

φ(
a + b

2
) ≤ 1

b− a

∫ b

a
φ(t)dt ≤ 1

3
φ(a) + φ(b)

2
+

2
3

φ(
a + b

2
).

Proof. Combining Proposition 4 with the results of Theorem 1, we obtain the proof.
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3. Applications in Analysis

Theorems proved above are the source of interesting inequalities from Classical Analysis. As an
illustration we shall give here a couple of Cusa-type inequalities.

Theorem 5. The inequality
1
2

cos x +
1
2
≤ sin x

x
≤ 1

3
cos x +

2
3

,

holds for |x| ≤ π/2.
Also,

1
4

cosh x +
3
4
≤ sinh x

x
≤ 1

3
cosh x +

2
3

,

holds for |x| ≤ (3/2)3/2.

Proof. For the first part one should apply Proposition 5 to the function φ(t) = cos t on a symmetric
interval t ∈ [−x, x] ⊂ [−π/2, π/2].

For the second part, applying Proposition 4 with φ(t) = et, t ∈ [−x, x], we get

0 ≤ 1
3

cosh x +
2
3
− sinh x

x
≤ 2x2

81
(cosh x− 1).

Hence,
sinh x

x
≤ 1

3
cosh x +

2
3

,

and
sinh x

x
≥ 1

3
cosh x +

2
3
− 2x2

81
(cosh x− 1)

= (
1

12
− 2x2

81
) cosh x +

1
4

cosh x +
2
3
+

2x2

81
≥ 1

4
cosh x +

3
4

,

since cosh x ≥ 1 and 1/12− 2x2/81 ≥ 0 for |x| ≤ (3/2)3/2 ≈ 1.8371.

We give now some numerical examples of the above inequality

1
2

cos x +
1
2
≤ sin x

x
≤ 1

3
cos x +

2
3

, |x| ≤ π/2. (8)

Namely, using known formulae

sin
π

2
= 1; sin

π

4
=

√
2

2
; sin

π

6
=

1
2

; sin
π

12
=

√
2

4
(
√

3− 1) ≈ 0.25882;

sin
π

24
=

1
2

√
2−

√
2 +
√

3 ≈ 0.13053; sin
π

60
=

1
16

[
√

2(
√

3 + 1)(
√

5− 1)− 2(
√

3− 1)
√

5 +
√

5] ≈ 0.052336,

and applying inequalities (8), we obtain bounds for the transcendental number π, as follows

x =
π

2
: 3 < π < 4; x =

π

4
: 3.1344 < π < 3.3137; x =

π

6
: 3.1402 < π < 3.2154;

x =
π

12
: 3.1415 < π < 3.1597; x =

π

24
: 3.1416 < π < 3.1461; x =

π

60
: 3.1416 < π < 3.1423.

Another application can be obtained by integrating both sides of (8) on the range x ∈ [0, a], 0 <

a < π/2.
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We get
1
2

sin a +
1
2

a ≤
∫ a

0

sin x
x

dx ≤ 1
3

sin a +
2
3

a,

that is,
a− sin a

3
≤ a−

∫ a

0

sin x
x

dx ≤ a− sin a
2

.

By the power series expansion, we know that

a− sin a =
a3

3!
− a5

5!
+

a7

7!
− · · · .

Hence,

a3

18
− a5

360
≤ a−

∫ a

0

sin x
x

dx ≤ a3

12
.

This estimation is effective for small values of a.
For example,

5.5528× 10−5 ≤ 1
10
−
∫ 1/10

0

sin x
x

dx ≤ 8.3333× 10−5.

4. Applications in Theory of Means

A mean M(a, b) is a map M : R+ ×R+ → R+, with the property

min{a, b} ≤ M(a, b) ≤ max{a, b},

for each a, b ∈ R+.

Some refinements of HH inequality by arbitrary means is given in [6].

An ordered set of elementary means is the following family,

H ≤ G ≤ L ≤ I ≤ A ≤ S,

where

H = H(a, b) =: 2(1/a + 1/b)−1; G = G(a, b) =:
√

ab; L = L(a, b) =:
b− a

log b− log a
;

I = I(a, b) =:
1
e
(bb/aa)1/(b−a); A = A(a, b) =:

a + b
2

; S = S(a, b) =: a
a

a+b b
b

a+b ,

are the harmonic, geometric, logarithmic, identric, arithmetic and Gini mean, respectively.

Generalized arithmetic mean Aα is defined by

Aα = Aα(a, b) =:


(

aα+bα

2

)1/α
, α 6= 0;

A0 = G.
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Power-difference mean Kα is defined by

Kα = Kα(a, b) =:


α

α+1
aα+1−bα+1

aα−bα , α 6= 0,−1;

K0(a, b) = L(a, b);

K−1(a, b) = ab/L(a, b).

It is well known that both means are monotone increasing with α and, evidently,

A−1 = H, A1 = A, K−2 = H, K−1/2 = G, K1 = A.

As an illustration of our results, we shall give firstly some sharp bounds of power-difference
means in terms of the generalized arithmetic mean.

Theorem 6. For a, b ∈ R+ and α ≥ 1, we have

1
2
(A(a, b) + Aα(a, b)) ≤ Kα(a, b) ≤ Aα(a, b). (9)

For α < 1 the inequality (9) is reversed.

Proof. Let gα(t) = t1/α, α 6= 0. Since gα is concave for α ≥ 1, Theorem 1 combined with the HH
inequality gives

1
2

( x + y
2

)1/α
+

1
4
(x1/α + y1/α)

≤ α

α + 1
x1+1/α − y1+1/α

x− y
≤
( x + y

2

)1/α
.

Now, simple change of variables x = aα, y = bα yields the result.
For the second part, note that gα is convex for α < 1 and repeat the procedure.

The above inequality is refined by the following

Theorem 7. We have,

Aα ≤ Kα ≤
1
3
(A + 2Aα), α ∈ (−∞, 1/3) ∪ (1/2, 1);

1
3
(A + 2Aα) ≤ Kα ≤ Aα, α ∈ [1, ∞);

1
3
(A + 2Aα) ≤ Kα ≤

1
2
(A + Aα), α ∈ [1/3, 1/2].

Proof. Observe that g′′α is convex for α ∈ (−∞, 1/3)∪ (1/2, 1) and concave for α ∈ (1/3, 1/2)∪ (1, ∞).
Hence, applying Proposition 5 together with the HH inequality, we obtain the result.

Remark 2. Note that the above inequalities are so precise that in critical points for α = 1/3, 1/2, 1 we have
equality sign.

An inequality for the reciprocals follows.

Theorem 8. For β ≥ −2 we have

1
Aβ+1

≤ 1
Kβ
≤ 1

2

( 1
H

+
1

Aβ+1

)
.

For β < −2 the inequality is reversed.
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Proof. This is a consequence of Theorem 6. Indeed, putting there α = −β− 1 and using identities

Kα =
ab
Kβ

, Aα =
ab

Aβ+1
, A =

ab
H

,

the proof appears.

Finally, we give a new and precise double inequality for the identric mean I(a, b).

Theorem 9. For arbitrary positive a, b we have

A4/3S−1/3 exp
(
− 4

81
(A− H)2

AH
)
≤ I ≤ A4/3S−1/3.

Proof. We need firstly an auxiliary result.

Lemma 3. For a, b ∈ R+, we have

A4/3(a, b)S2/3(a, b) exp
(
− 4

81
(A(a, b)− H(a, b))2

A(a, b)H(a, b)
)
≤ I(a2, b2) ≤ A4/3(a, b)S2/3(a, b).

Proof. Indeed, for φ(t) = t log t we get

1
b− a

∫ b

a
φ(t)dt =

1
4
(

b2 log b2 − a2 log a2

b− a
− (a + b)) =

a + b
4

log I(a2, b2).

Since φ′′(t) = 1/t, Proposition 5 yields

1
6
(a log a + b log b) +

2
3

A log A− (b− a)2

324
(

1
a
+

1
b
− 2

A
)

≤ a + b
4

log I(a2, b2) ≤ 1
6
(a log a + b log b) +

2
3

A log A,

and the proof follows by dividing the last expression with (a + b)/4 = A/2.

Now, combining this assertion with the identity I(a2, b2) = I(a, b)S(a, b), we obtain the desired
inequality.

Remark 3. An equivalent form of the above result is

I3/4S1/4 ≤ A ≤ I3/4S1/4 exp
( (A− H)2

27AH

)
,

which refines well-known inequality I ≤ A ≤ S.
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