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Abstract: The extra space paradigm plays a significant role in modern physics and cosmology as
a specific case. In this review, the relation between the main cosmological parameters—the Planck
mass and the Cosmological constants—and a metric of extra space is discussed. Matter distribution
inside extra space and its effect on the 4-dimensional observational parameters is of particular interest.
The ways to solve the fine-tuning problem and the hierarchy problem are analyzed.
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1. Introduction

The Cosmology encompasses physical laws at all distances. The impressive interpenetration
of microphysics and physics at extremely large distances has been noticed some time ago [1] and is
discussed up to now [2]. The origin of the physical parameters like masses and coupling constants is the
matter of future theory, but there are two general facts that are worth discussing. The first one relates
to the smallness of all observable parameters as compared to the Planck mass (hierarchy problem).
The second one is known as the fine-tuning problem [3,4]. The cosmological constant smallness is
its most amazing illustration. An even more serious problem concerns the anthropic observational
fact—the increase of the cosmological constant value several times leads to a serious variation of our
universe structure so that observers would not exist. This is the particular case in the general fact of
the fine-tuning of our universe.

The Planck mass and the cosmological constant seem to be “more fundamental” and important
for different cosmological researches. These two parameters and their dependence on an extra space
structure are used throughout the text as an illustration of the discussion.

The Planck mass is one of the natural units introduced by Max Planck. It is connected to the
Newton constant GN as MP =

√
8π/GN , (h = c = 1). Its value is known with poor accuracy; that is

the reason for a variety of speculation on its origin and time variation. For example, the authors
of Reference [5] consider the Planck mass depending on a scalar field that tends to constant shortly
after inflation. The Planck mass is in many orders of magnitude greater than the electroweak scale.
This puzzle is known as the hierarchy problem and is not clarified yet.

The standard Einstein–Hilbert gravity with the Lambda term Λ is described by the action

S =
∫

d4x
[

1
16πGN

R−Λ
]

, M2
P =

1
8πGN

. (1)

Here, R is the Ricci scalar of our 4-dimensional space and Λ is the cosmological constant.
The Newton constant does not vary with time by definition. There are researches that studied its
possible slow time variation [6], but we do not discuss this direction here.
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The action in Equation (1) is firmly confirmed at the energies lower than ∼10 TeV. A variety of
modified gravitational actions are studied at higher scales [7,8]. The necessary condition for all of
them is the reduction to the standard form in Equation (1) at low energies. We will see how it works
for multidimensional models.

The vacuum energy is connected to the cosmological constant (the Λ term) which is included
now into the Standard Cosmological Model. The substantial review may be found in Reference [9].
A common opinion nowadays is that this energy is positive and extremely small, which leads to
several consequences. First, our universe is expanding with acceleration; second, the modern horizon
is shrinking with time; and third, the large scale structure was formed under the strong influence of
the positive energy density uniformly distributed in the space.

There are two riddles related to the Λ term. One of them is its smallness which cannot be explained
by now. Another one is the coincidence problem: the energy density of usual matter distributed at
large scales is very close to the vacuum energy density nowadays.

A substantial amount of attempts to solve the problems mentioned above is based on the idea of
the extra dimensions [10].

2. The Extra Dimensions

In modern physics, the idea of extra dimensions is used for an explanation of a variety of
phenomena. It is applied for the elaboration of physics beyond the standard model, cosmological
scenarios including inflationary models and the origin of the dark component of the universe
(dark matter and energy), the number of fermion generations, and so on. Gradually, this direction
becomes the main element for a future theory. Sometimes extra dimensions are endowed by scalar
fields and form fields to stabilize their metric. There are models where the Cazimir effect is attracted
for the same reason [11,12]. Our experience indicates that we live in the 4-dimensional world so that a
mechanism to hide the extra dimensions is a necessary element of each model.

Let us describe some models focusing on the Planck mass, the Lambda term, and the two related
problems mentioned at the beginning of the Introduction section.

2.1. From D Dimensions to 4 Dimensions: General Remark

A necessary element of all multidimensional models is a reduction of a D-dimensional action to
an effective 4-dimensional form:∫

dDX
√
|gD|LD(αD, gD)→

∫
d4x
√
|g4|L4(α4, g4) (2)

where αD is a set of D−dimensional parameters and α4 is general notation for the observable
parameters like masses and coupling constants. The Planck mass MP and the cosmological constant
Λ are of particular interest. Fields dependence is assumed but not shown explicitly in Equation (2).
An extra dimensional part gextra of the D−dimensional metric gD is hidden in the 4-dimensional
parameters α4 so that

α4 = α4(αD, gextra). (3)

A variety of observational parameters can be obtained by a variation of the extra space metrics.
This remark is important for further discussion. Evidently, Equation (3) relates to the Planck mass and
the cosmological constant as well.
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2.2. The Planck Mass and the Extra Space Structure

2.2.1. Kaluza–Klein Model

The action for this model has the following form:

Sg =
∫

d4xdny
√
|g|
[

mD−2
D
2

R−Λ

]
. (4)

After integration of the extra dimensional coordinates y, we obtain the effective action in
Equation (1) with the Planck mass related to the D-dimensional Planck mass mD. The relation

M2
P = mD−2

D vn (5)

is the simplest realization of Equation (3). Here, vn stands for an extra space volume and n = D− 4.
Classical behavior of the system is possible if the inequality v1/n

n > 1/mD and hence mD < MP take
place. The latter is usually assumed, but it is optional, as we will see later. It is supposed that the
fluctuations of known fields within the extra dimensions are very massive and cannot be excited in the
course of low energy processes.

2.2.2. Hyperbolic Extra Dimensions

The conclusion on the size of the extra dimensions made above assumed the constant positive
curvature of this extra space. The more encouraging result can be obtained if we attract a constant
negative metric. In this case, there is no rigid connection between the Ricci scalar and a characteristic
size L of a compact hyperbolic space, which is the significant feature of such spaces [13]. The volume
of such manifold is

vn = rn
c eα, α ' (n− 1)L/rc (6)

where rc is the curvature radius and L is the size of extra space which is not a Lagrangian parameter
but an accidental value. The Planck mass exponentially depends on the independent linear size

M2
P = mn+2

D vn ' mn+2
D rn

c e(n−1)L/rc (7)

and hence can be sufficiently large even if the Lagrangian parameters are fixed.

2.2.3. f(R) Theories

Nowadays, the f (R) theories of gravity or more generally the theories with higher derivatives
are widely used as the tool for the theoretical research. The interest in f (R) theories is motivated
by inflationary scenarios starting with the pioneering work of Starobinsky [14]. A number of
viable f (R) models in 4-dimensional space that satisfies the observable constraints are discussed
in References [15–17].

The ΛCDM model successfully explains the main part of the observational data. Nevertheless, it fails
to describe such important phenomena as the dark matter and dark energy. Modern colliders have
not detected the dark matter particles, and there is no way to detect the dark energy density that is
uniformly distributed in the space. The f (R) models are suitable for explaining these two problems,
as well as the phenomena of baryogenesis and inflation. A significant discussion on this subject can be
found in Reference [18,19].

Consider the gravity with higher order derivatives and the action in the following form:

S =
mD−2

D
2

∫
dDZ

√
|gD| f (R) (8)
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The metric is assumed to be the direct product M4 × Vn of the 4-dimensional space M4 and
n-dimensional compact space Vn

ds2 = g6,ABdzAdzB = η4,µνdxµdxµ + gn,ab(y)dyadyb. (9)

where η4,µν is the Minkowski metric of the manifolds M4 and gn,ab(y) is metric of the manifolds Vn.
x and y are the coordinates of the subspaces M4 and Vn. We will refer to 4-dimensional space M4

and n-dimensional compact space Vn as the main space and an extra space, respectively. The metric
has the signature (+ - - - ...), and the Greek indexes µ, ν = 0, 1, 2, 3 refer to 4-dimensional coordinates.
Latin indexes run over a, b = 4, 5, ....

According to Equation (9), the Ricci scalar represents a simple sum of the Ricci scalar of the main
space and the Ricci scalar of extra space:

R = R4 + Rn. (10)

In this subsection, the extra space is assumed to be maximally symmetric so that its Ricci scalar
Rn = const. In the following, natural inequality

R4 � Rn (11)

is assumed. This suggestion looks natural for the extra space size Ln < 10−18 cm if one compares it to
the Schwarzschild radius Ln � rg ∼ 106cm of stellar mass black hole where the largest curvature in
the modern Universe exists. Below, we follow the method developed in Reference [20]

Using the inequality in Equation (11), the Taylor expansion of f (R) in Equation (8) gives

S =
mD−2

D
2

∫
d4xdny

√
|g4(x)|

√
|gn(y)| f (R4 + Rn) (12)

'
mD−2

D
2

∫
d4xdny

√
|g4(x)|

√
|gn(y)|[R4(x) f ′(Rn) + f (Rn)]

The prime denotes the derivation of function on its argument. Thus, f ′(R) stands for d f /dR in
the formula written above. In this paper, a stationary and uniform distribution of the matter fields in
the 4-dimensional part of our universe is assumed. Comparison of the second line in Equation (12)
with the Einstein–Hilbert action

SEH =
M2

P
2

∫
d4x
√
|g(x)|(R− 2Λ) (13)

gives the expression
M2

P = mD−2
D vn f ′(Rn) (14)

for the Planck mass. Here, vn is the volume of the extra space. The term

Λ ≡ −
mD−2

D
2M2

Pl
vn f (Rn) (15)

represents the cosmological Λ term. Both the Planck mass and the Λ term depends on a function
f (R). According to Equation (14), the Planck mass could be smaller than D-dimensional Planck
mass, MP < mD, for specific functions f . This leads to nontrivial consequences. For example,
the classical 4-dimensional observer is limited by the smallest scale lquantum ∼ 1/MP. At high energy
scales, an observer “feels” extra dimensions and, hence, the classical behaviour starts at the scale
lD,quantum ∼ 1/mD, which can be much smaller than 10−43cm, the standard Planck scale. This question
deserves a separate discussion in future.
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2.2.4. Brane Models

The first brane models have appeared two decades ago [7,21–23]; see also the review in
Reference [24], though the very first idea was declared in 1983 [25], where it was proposed that
we are living in the 4-dimensional manifold that is immersed in a manifold of larger dimensions.

A large but compact extra dimension was invented by Nima Arkani-Hamed, Savas Dimopoulos,
and Gia Dvali [21] (the ADD model). In this approach, the fields of the standard model are confined
to a four-dimensional membrane, while gravity propagates in several additional spatial dimensions.
The Planck mass relates to the extra space radius as

MP = (2πR)n/2m
n+2

2
D (16)

The Randall–Sundrum model [22] is based on the 1-dimensional extra space representing S1/Z2

orbifold. Here, S1 is the circle and Z2 is the multiplicative group {−1, 1}. Two 3-dimensional branes
are attached to two fixed points with coordinates y = 0 and y = L. The 5-dimensional action is
described by the following expression:

SRS = Sg −
∫

d4x
∫

dy
√
|g5|σ1δ(y)−

∫
d4x

∫
dy
√
|g5|σ2δ(L− y). (17)

The first term is represented in Equation (4). The second and the third terms describe the branes
with the constant tensions σ1 and σ2.

The metric of the model describes the warped space with interval

ds2 = e−2A(y)ηµνdxµdxν − dy2 (18)

This model solves the hierarchy problem, the price of which is the connection of the Lagrangian
parameters:

σ1 = −σ2 =
√
−6m3

DΛ.(Λ < 0) (19)

The 4-dimensional Planck mass is expressed in terms the model parameters as

M2
P =

1
2k

(1− e−2kL)m3
D, k =

√
−Λ
6m3

D
. (20)

Evidentely, the 4-dimensional Planck mass MP and its 5-dimensional analog mD are of the same
order of magnitude for a not very small value of the parameters k and L.

One can conclude that a solution to the hierarchy problem looks solvable and that the
extra-dimensional paradigm is the important idea allowing progress in this direction. In general,
the brane idea represents a powerful tool to solve deep questions of modern physics. For example,
the large value of the Planck mass as compared to the electro-weak scale can be justified.

The fine-tuning problem remains unsolved yet. The fact of the fine-tuning is supported by a
lot of examples [3,26]. There are many attempts to solve each problem separately. In Reference [27],
warped geometry is used for the solution of the small cosmological constant problem. The hybrid
inflation [28] was developed to avoid smallness of the inflaton mass. Reference [22] describes the way
to solve the smallness of the gravitational constant. Nevertheless, all of them suffer the fine-tuning of
Lagrangian parameters. We devote the following discussion to this subject.

2.3. Brane as a Clump of Matter?

The first brane models postulated the extra space metric and 3-dimensional spaces (branes)
that are attached to their critical points. The modern trend consists of involving thick branes into
consideration, which are soliton-like solutions extended in extra coordinates. To build such solutions,
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the scalar field potential with several vacua states [29] is usually proposed. The one-dimensional kinks
are studied for a long time and represent a substantial ground for the branes construction.

The serious shortage of the approach mentioned above consists of a firm connection of model
parameters and the effective low energy parameters in Equation (3). Even if a model including extra
dimensions is able to solve the hierarchy problem, the fine-tuning enigma is still far from resolution.
The problem is simply translated from the observable parameters to parameters of a specific model.

An important feature of branes is their ability to concentrate the matter nearby. However, what is
the effect of matter on the very structure of brane? This subject is studied below. The encouraging
analogy is that a gravitating substance can experience the Jeans instability, as we know from
four-dimensional physics. One may expect the same effect in the extra space which should lead
to the brane formation.

Here, we discuss the new mechanism of the branes construction which was revealed in
Reference [30]. A complicated form of the scalar field potential is not necessary for it is known that the
scalar field with the potential V(φ) ∝ φ2 experiences the gravitational instability [31]. In analogy with
the 4-dimensional case, the scalar field could form stable clumps within the extra dimensions due to
the gravitational interaction. This subject has been also studied in References [32–34], and we shortly
discuss it in the next section.

The solution describing the brane depends on an initial amount of matter, and hence,
such solutions form a continuous set. This property is extremely important for the discussion of
the fine-tuning problem and the Lambda term problem as a particular case.

3. Matter-Induced Branes

This section is the most important part of the research, and it seems necessary to outline the idea.
There is a well-known fact that fields and the space-time metric experience quantum fluctuations in
the very early universe. According to the ideology of chaotic inflation, space consists of a variety of
causally disconnected domains filled by the scalar field. The energy density of the scalar field within a
volume under the horizon is an accidental value that varies continuously in a wide but uncertain range.
The multiverse is a set of such space domains (universes) within the horizons that were born at the
sub-Planckian scale. The visible universe represents a small subset of such domains. The fluctuations
under the visible horizon are responsible for the observable large scale structure of the universe.

Higher-dimensional inflation is also the subject of interest, see, e.g., Reference [35]. Relying on the
4-dimensional case, we suppose that the quantum fluctuations lead to the same consequences—the
energy density varies accidentally in the D-dimensional world. That is, a scalar field φ(x, y) is different
in different space domains (universes) which form the multiverse. We know that the energy density
evolves into local objects like galaxies and stars under the influence of the gravity in each 4-dimensional
domain. In this paper, we suppose that similar processes proceed also in the extra dimensions described
by the y coordinates. More definitely, it is supposed that the scalar field can be localized within the
extra dimensions under the influence of the gravity. If that is true, the extra space metric is also an
accidental value specific for each space domain. At the same time, the physical parameters at low
energies depend on the extra-dimensional metric; see the discussion in Section 2.1. We come to the
conclusion that the multiverse consists of different universes with accidental physical parameters.

In this article, we examine whether static nontrivial metrics of the extra dimensions do exist. To this
end, we suppose that all fields and metric are static, are uniformly distributed in our 4-dimensional
space, and are heterogeneous in the extra space. This means that we limit ourselves by the scalar fields
φ(y) and its energy density ρscalar(y) ∼ T00(y) depending only on the extra-dimensional coordinates
y. The contribution of the scalar field energy density ρscalar(y) to the Λ term must be compensated
by a term containing the function f (R) to obtain the observed value of the cosmological constant; see
Equation (47). This point is checked at the final step.

There are two questions to be clarified. The first one is how to find energy density within the
extra dimensions. The second one is how to choose additional conditions that are necessary to solve
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the differential equations in Equations (29) and (30) for unknown functions—the scalar field ρscalar(y)
and metric gAB(y). Evidently, these two questions are tightly connected. If we choose appropriate
additional conditions, we can find a solution to Equations (29) and (30), the knowledge of which allows
us to calculate the energy density. This means that there is one-to-one correspondence between them:
choice of additional conditions fixes the energy density and vice versa. Therefore, different energy
density ρscalar(y) in the space domains (universes) means that the additional conditions are also
different there.

According to our numerical calculations, the deformation of the extra space metrics is concentrated
near a critical point θ = 0 forming a brane as can be seen in Figure 1. One can conclude that the form of
the brane varies depending on the additional conditions in Equations (32) and (33). This means that the
branes also are accidental functions for each volume under the horizon and, hence, varies continuously
depending on its position in the multiverse.

Let us study the subject in more detail.

3.1. Matter Distribution within Extra Space

This section discusses extra dimensions filled with an ordinary scalar field, which is accepted as
the representative of matter. It is assumed that its potential has a single minimum. Solutions to the
system of equations will indicate that the distribution of the scalar field has a critical point. As will
be seen, the back reaction of the scalar field significantly affects the extra metric, forming nontrivial
static configurations.

Let us come back to the action in Equation (8) with a scalar field φ

S =
mD−2

D
2

∫
dDz

√
|gD| [ f (R) + Lm] (21)

where the function
f (R) = aR2 + bR + c (22)

is chosen in the simplest but nontrivial form and

Lm =

[
1
2

∂AφgAB
D ∂Bφ−

m2
φ

2
φ2

]
. (23)

The corresponding equations of motion are as follows

RAB f ′ − 1
2

f (R)gAB −∇A∇B fR + gAB� f ′ =
1

mD−2
D

TAB. (24)

where A = (µ, a), µ = 1, 2, 3, 4, a = 5, 6, .., D, � stands by the d’Alembert operator

� = �D =
1√
|gD|

∂A(gD
AB
√
|gD|∂B), A, B = 1, 2, .., D (25)

Evidently, there is a continuum set of solutions to the system in Equation (24) of the differential
equations depending on additional conditions. Maximally symmetric extra spaces represent a small
subset of this continuum set. One of the reasons to choose this particular case has been discussed
in Reference [36]. As was shown there, the entropy outflow from the extra space into the large
3-dimensional space of our universe leads to the maximally symmetric extra space at the final state.

Essentially, a new element changing the situation is the matter (the scalar field) inclusion into the
consideration. The system in Equation (24) contains the equation for the scalar field

�Dφ = −V′(φ) (26)
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Let us consider the class of the homogeneous in 4-dimensional space solutions φ(x, y) = Φ(y)
and suppose that the potential possesses a unique minimum at Φ = 0, i.e., V′(0) = 0. In this case,
the solution Φ = const = 0 looks natural. If Φ > 0, the system radiates waves of different kinds,
thus increasing the entropy of a thermostat. This process lasts until the energy is settled in a minimum,
which is zero in our case. Such a picture is true if the gravity is absent. The latter leads to the
gravitational instability like Jeans instability which is the reason for the large-scale structure formation
in our universe. Scalar field instability in the framework of the Einstein gravity was discussed in
Reference [31], where the instability in the wavenumber range

0 < k2 < k2
J = 4

√
πGNm2a0, (27)

was found. Here, a0 is an initial amplitude of the field and m is its mass. The final state could be
compact objects made from the scalar field [37].

Suppose that such a compact object has been created within the extra dimensions provided
that its density distribution along the x coordinate is uniform (i.e., the scalar field depends only
on the extra coordinates y). Its stability may be supported by general arguments. Indeed, if such
configuration decays, a 4-dimensional observer must detect a final state consisting of point-like defect
of the scalar field distribution and massive scalar particles that have been instantly nucleated from
the homogeneous state. Such a process is forbidden due to energy conservation. This argument for
stability is not absolutely strict but reliable, and we will keep it in mind, postponing thorough study
for the future.

Numerical solutions of the differential equations in Equation (24) depending on additional
conditions and the scalar field acting in the extra space were studied in Reference [30,32], and we
shortly reproduce them here. It was assumed that the metric of our 4-dimensional space is the
Minkowski metric, g4 = diag(1,−1,−1,−1). The compact 2-dimensional manifold is supposed to be
parameterized by the two spherical angles y1 = θ and y2 = φ (0 ≤ θ ≤ π, 0 ≤ φ < 2π). The choice of
the extra space metric in Equation (9) is as follows:

g2,θθ = −r(θ)2; g2,φφ = −r(θ)2 sin2(θ). (28)

The system of equations in Equation (24) for two unknown functions acquires the following form:

∂2
θ R + cot(θ)∂θ R =

1
2

r(θ)2
[
−R2 +

c
a
− m2

a
Y(θ)2

]
, (29)

∂2
θφ(θ) + cot(θ)∂θφ(θ) = m2r(θ)2φ(θ). (30)

All other equations in the system in Equation (24) are reduced to trivial identities that is thoroughly
analysed in Reference [34]. The Ricci scalar is expressed in terms of the radius r(θ)

R =
2

r(θ)4 sin(θ)
(−r′r cos(θ) + r2 sin(θ) + r′2 sin(θ)− sin(θ)rr′′), (31)

where prime means d/dθ.
Let us fix the metric and the scalar field at the point θ = π

R(π) = Rπ , R′(π) = 0, r(π) =
√

2/Rπ , r′(π) = 0. (32)

φ(π) = φπ , φ′(π) = 0. (33)

In the absence of matter, the extra metric is supposed to be the maximally symmetric,
i.e., R(θ, ϕ) = const, r =

√
2/R.

The system of equations in Equations (29) and (30) together with additional conditions in
Equations (32) and (33) completely determine the form of the extra space metric. The horizontal line in
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Figure 1 (the scalar field is absent, r(θ) = const) is the trivial solution to the system, which coincides
with our intuition and hence validates the applied method. Nontrivial results for the extra metric
were obtained for the nonzero value of the scalar field density within the extra space; see Figure 1,
where numerical solutions to Equations (29) and (30) are represented. The more scalar field is inserted
into the extra dimensions the deeper the well is formed. The scalar field density relates to the additional
conditions φπ at point θ = π, which represents a set of the cardinality of the continuum. We conclude
that the extra space metric continuously depends on the scalar field distribution in the extra space.

As was discussed in the beginning of this section, the multiverse is the set of universes with
accidental scalar field values. The latter is the reason of the accidental metrics of extra space in different
parts of the multiverse. Several examples of them are represented in Figure 1.

Figure 1. Dependence of the 2-dimensional extra space radii r(θ) on the azimuthal angle θ:
The parameter values are a = −100; b = 1; c = −2.1 · 10−3; m = 0.01; andmD = 1.
Additional conditions: Rπ = 0.00458, and φπ varies continuously within the interval (0 ÷ 2.28).
Several points of this interval are taken: φπ = 0.57nandn = 0, 1, 2, 3, 4. The more matter is placed in the
extra space, the more metric deviates from the sphere r(θ) = const..

3.2. Matter-Induced Branes and Variation of 4-Dimensional Physical Parameters

In this subsection, the way to obtain effective 4-dimensional action for matter fields is discussed.
To facilitate analysis, a trial scalar field χ is used as an example. Its action is written in the following
standard form:

Sχ =
∫

dDz
√
|gD|

[
1
2

∂AχgAB
D ∂Bχ−

m2
χ

2
χ2

]
. (34)

Let us decompose the field around its classical part:

χ(x, y) = χcl(y) + δχ; δχ ≡
∞

∑
k=1

χk(x)Yk(y)� χcl(y), (35)

where Yk(y) is the orthonormal eigenfunctions of the d’Alembert operator acting in the inhomogeneous
extra space

�nYk(θ) = lkYk(y). (36)
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The term χcl(y) is the solution to the classical equation

�Dχcl(y) = �nχcl(y) = −U′(χcl(y)) (37)

If we take into account the form of the metric in the numerical example discussed above, the trial
scalar field distribution can be written in the following form:

χcl(θ) = C exp{−mχ

∫ θ

0
dθ′r(θ′)} (38)

valid for not very small coordinate θ; see the discussion in Reference [30]. The normalization multiplier
C defines the density of the scalar field distributed over the extra dimensions and relates to an amount
of the field stored in the extra dimensions from the beginning.

Below, we limit ourselves by only the first term in the sum of Equation (35) so that

δχ = χ0(x)Y0(y), �nY0 = 0. (39)

After substitution of Equation (35) into Equation (34), we get the following form of the effective
4-dimensional action for the gravity with the scalar field:

Sχ =
1
2

∫
d4x
√
|g4|

[
1
2

∂µχ0(x)gµν∂νχ0(x)− m2

2
χ0(y)2 − ...−Λχ

]
, (40)

where

m2 =
∫

dny
√
|gn(y)|

[
m2

χY0(y)2 − ∂aY0(y)gab
n (y)∂bY0(y)

]
, (41)

Λχ =
∫

dny
√
|gn(y)|

[
1
2

m2
χχ2

cl −
1
2

∂aχcl(y)gab
n (y)∂bχcl(y)

]
(42)

The effective mass and Λχ term are the functions of the classical field distribution χcl(y) in the
extra dimensions. The latter depends on accidental conditions just after the D-dimensional manifold
was formed. Therefore, the mass of the scalar field χ0 (and the Lambda term) varies depending on
initial conditions that have been realized at the early universe.

The Higgs field is responsible for nonzero masses of the fermions and gauge bosons of the
standard model. Hence, it is worth discussing the parameters of the Higgs potential and their possible
variation. The simplest way is to introduce an interaction of the Higgs field and the field χ in the spirit
of the moduli field approach; see [38] and references therein. To this end, consider D-dimensional
action as an example:

SH =
∫

d4xdny
√

g4gn[∂H+∂H + µ2(χ)H+H − λ(χ)(H+H)2]. (43)

where λ(χ) and µ2(χ) are arbitrary functions of the field χ(y) ' χcl(y). Integration out the extra
coordinates y leads to the standard form of the action for the Higgs field with the following parameters:

µ2
e f f =

∫
dnyµ2(χcl), λe f f =

∫
dnyλ(χcl) (44)

where only zero mode of the Higgs field H = H(x) is taken into account. We have got the
effective action:

SH,e f f =
∫

d4xdny
√

g4gn[∂H+∂H + µ2
e f f H+H − λe f f (H+H)2]. (45)

with 4-dimensional parameters depending on the matter distribution in the extra dimensions.
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The same can be said about the Planck mass and the cosmological constant. Indeed, Equations (2)
and (14) are easily converted to the following expressions

M2
P = mD−2

D

∫
dny
√
|gn(y)| f ′(Rn(y)) (46)

for the Planck mass and

Λ ≡ −
mD−2

D
2M2

P

∫
dny
√
|gn(y)|[ f (Rn(y)) + Lm(y)] (47)

for the cosmological Λ term. Both the Planck mass and the Λ term depend on a stationary geometry
gn,ab(y), which are now functions of not only the Lagrangian parameters but also the accidental value
of the initial scalar field density.

The preliminary conclusion is as follows. The matter uniformly distributed in our 3-dimensional
space can be a reason for the branes formation due to a nontrivial distribution of the matter within the
extra dimensions. The brane properties depend not only on the Lagrangian parameters but also on
the density of the matter (the scalar field φ in our case). The latter is a random value that is formed in
the early universe when the quantum fluctuations were important. One can conclude that a variety
of branes with different properties can be formed in different spatial regions, which could be a basis
for the idea of the multiverse. Therefore, this property could lead to the solution of the fine-tuning
enigma. Below, we discuss this topic, bearing in mind the problem of the cosmological constant.

4. Fine-Tuning of the Lambda Term and Matter-Induced Branes

The situation with the Lambda term remains intriguing [9] despite two decades of discussion.
Cosmological observations indicate that the current acceleration is described by the general relativity
with the extremely small Cosmological Constant (CC). At the same time, the quantum fluctuations lead
to the vacuum energy density, which is in many orders of magnitude higher than the observed
value of the CC. There are many models elaborated to explain the smallness of the Λ term;
see, e.g., References [39,40]. General discussion on the subject can be found in References [9,41–46].

The role of quantum corrections is not clarified up to now. The quantum corrections are of the
order of the cutting parameter which is compatible with a highest energy scale of a specific model.
Hence, natural values of physical parameters defined at this energy scale are of the same order of
magnitude as this highest energy scale and it is not clear how to neutralize them except by a strong
parameter selection. We have to admit that the observed Lambda term value is hardly explained in
terms of the physical parameters determined at low energies. The problem is deepened because if this
value were several times larger, intelligent life would be absent. This represents the particular case of
the fine-tuning problem.

The question “How does the physical parameters acquire the observable values?” divides the
physical community into two groups. The first one does not bother with questions of such kind.
They are interested in the study of physical laws that explain experimental facts. This point of view is
quite firm but slightly inconsistent. Indeed, there is the experimental fact of fine-tuning of the physical
parameters necessary for the existence of intelligent life. The range of the parameter values is very
narrow, and like any observed phenomena, it must be explained. This is the reason for the second
group of physicists to make efforts in answering this question.

The first step has been done decades ago when the Anthropic principle was proclaimed: “there are
a lot of different patches (or universes) with different properties and the life originates in universes with
appropriate conditions”. The immediate question is formulated as follows: What is the mechanism for
the creation of a variety of universes (multiverse) with different properties? As we will see, an attempt
to answer this question consists of several ideas that deserve further development. The Anthropic
principle is not the solution to the fine-tuning problem but the small step forward.
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The string theory is the well-known idea supplying us with the multiverse—the landscape in its
terms [47]. Unfortunately, this approach has a weakness. Indeed, even if a number of final states is
as huge as 10500 in the string theory, they could be distributed nonuniformly in parameter space and
there is no certainty that the necessary physical parameters can be realized. This shortcoming can be
eliminated if the set of low energy parameters has the cardinality of the continuum. This relates to
the discussion made above. The branes induced by matter depend on accidental values of the initial
energy density of matter produced by the quantum fluctuations. Therefore, a set of such branes has
the cardinality of the continuum. Evident logical chain is continuum set of initial metrics→ continuum
set of final metrics→ continuum set of the Λ-terms.

The picture looks as follows. In the spirit of the inflationary scenario, quantum fluctuations at
high energies produce a huge variety of space volumes characterized by different energy density and
hence by branes with different properties. This is the reason for the formation of different cosmological
constants within such volumes.

According to Equation (47), the value of the Lambda depends on the scalar field distribution
along the extra dimensional coordinates. One can see from Figure 2 that the cosmological constant
varies from negative to positive values due to variation of the matter distribution. The latter relates to
the additional condition that fixes the scalar field at the boundary φ(θ = π). The universes differ from
each other due to the initial distribution of the matter along the extra dimensions. The problem of the
Λ-term smallness is reduced now to the question “does this set contain the term Λ = 0?”. Figure 2
gives the positive answer to the question if one keeps in mind that the additional conditions varies
continuously. In particular, there exists a set of universes with such initial matter distributions that
gives the cosmological Λ terms be arbitrarily close to zero.

Figure 2. Dependence of the Λ-term (arbitrary units): see (47) on the discrete set of the additional
conditions φi(θ = π), i = 1, ..., 5. Each point relates to the specific curve in Figure 1. The cosmological
constant varies from negative to positive values. At the same time, their set has the cardinality of the
continuum. Therefore, we sure can find such additional conditions for which the Λ-term is arbitrary
close to zero.

5. Conclusions

There are at least two general problems of the cosmology that are worth discussing—the hierarchy
problem and the fine-tuning one. It seems that a multidimensional paradigm allows us to solve the first
puzzle, while the exact adjustment of the physical parameters remains unresolved. The perspective
way to solve it is an elaboration of mechanism of the multiverse formation containing a continuum set
of different universes. The mechanism of such sort is discussed in this article.

The main point is the use of matter to obtain a nontrivial metric of extra space. The 4-dimensional
analogy can be useful. Indeed, the formation of compact dense objects due to the Jeans instability leads
to the formation of a variety of objects, the mass of which depends on an initial matter distribution.
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The same process could take place in the extra dimensions where compact objects—branes—are formed
under the influence of matter.

Each universe belonging to the multiverse is described by the specific distribution of matter and
hence by specific extra space metric. This leads to the formation of causally disconnected regions
endowed by branes that differ with each other. Therefore, the physical parameters in such volumes are
also different as was discussed above.

Initial conditions form a continuous set. Hence, the extra space metrics also form a set of the
cardinality of the continuum. The low energy physical parameters depend on the extra space metrics
and, hence, represent a continuous set as well. This means that those space areas where the Lambda
term has the observable value do exist, thus providing the basis for the Anthropic argument.

The quantum fluctuations seem to destroy the analysis made on the classical level. This problem
is discussed in Reference [48], where it was shown that the situation looks solvable in the framework
of the effective field theory. Nevertheless, thorough renormgoup analysis has to be performed in
the future.

The discussion in this article shows that the matter distribution within the extra space is a
promising way to describe the fine-tuning of the physical parameters. The thick branes become a
substantial tool for studying a wide class of topical questions. The idea could be applied to explain,
e.g., the number of particle generations, the inflation, the primordial black holes formation, and so on;
see review [49].
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