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Abstract: In this paper, we establish sufficient conditions for the existence of mild solutions for certain
impulsive evolution differential equations with causal operators in separable Banach spaces. We rely
on the existence of mild solutions for the strongly continuous semigroups theory, the measure of
noncompactness and the Schauder fixed point theorem. We consider the impulsive integro-differential
evolutions equation and impulsive reaction diffusion equations (which could include symmetric
kernels) as applications to illustrate our main results.
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1. Introduction

Let R be the set of real numbers and let R+ be the set of non-negative real numbers. Let E be a real
Banach space endowed with the norm ‖·‖. We denote by C([0, T], E) the Banach space of continuous
functions from [0, T] into E endowed with the norm ‖u(·)‖ = sup

0≤t≤a
‖u (t)‖. The space of all strongly

measurable functions u(·) : [0, T]→ E such that

‖u(·)‖p :=
(∫ T

0
‖u(t)‖p

)1/p

< ∞

for 1 ≤ p < ∞ and ‖u(·)‖∞ := ess sup
t∈[0,T]

‖u(t)‖ < ∞, will be denoted by Lp([0, T], E). This is

a Banach space with respect to the norm ‖u(·)‖p. Let PC([0, T], E) be the set of all functions
u(·) : [0, T] → E such that u(·) is continuous at t 6= tk, left continuous at t = tk and the right
limit u(t+k ) exists for k = 1, 2, ..., N. Then PC([0, T], E) is a Banach space with respect to the norm
||u(·)||PC : = sup{||u(t)||; t ∈ [0, T]}. Moreover, we have that PC([0, T], E) ⊂ Lp([0, T], E) and

‖u (·)‖1 ≤ T1−1/p ‖u (·)‖p ≤ T2−1/p ‖u (·)‖PC .

Let us denote by F1([0, T], X) the space of all the functions from [0, T] into X, and by F2([0, T], Y)
the space of all the functions from [0, T] into Y. Then an operator C : F1([0, T], X) → F2([0, T], Y) is
called a causal operator if for each τ ∈ (0, T) and for all u (·) , v (·) ∈ F1([0, T], X) such that u (t) = v (t)
for t ∈ [0, τ], we have that (Cu) (t) = (Cv) (t) for t ∈ [0, τ], and (C0) (t) = 0 for all t ∈ [0, T].

Symmetry 2020, 12, 48; doi:10.3390/sym12010048 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-4287-2029
http://dx.doi.org/10.3390/sym12010048
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/1/48?type=check_update&version=2


Symmetry 2020, 12, 48 2 of 19

The aim of this paper is to establish existence results for mild solutions of the following impulsive
evolution equation with the causal operator

u′(t) = Au(t) + (Cu)(t) for t ∈ [0, T]\{t1, ..., tN}
u(t+k ) = u(t−k ) + (Iku)(t−k )
u(0) = u0,

(1)

where A : D(A) ⊂ E → E is the infinitesimal generator of a C0-semigroup {T (t); t ≥ 0} and
C : PC([0, T], E) → Lp([0, T], E) is a continuous causal operator; here 1 ≤ p ≤ ∞, N ∈ N, 0 = t0 <

t1 < t2 < ... < tN < tN+1 = T and Ik : PC([0, T], E) → PC([0, T], E) is a continuous causal operator
for each k = 1, 2, ..., N.

The theory of differential equations involving causal operators allows a unified treatment for
general classes of differential equations, such as: Ordinary differential equations, differential equations
with delay, integro-differential equations, Volterra integral equations and so on. The term causal
operator (or Volterra abstract operator) was introduced by Tonelli [1], and the theory of these classes
of operators was developed by Tychonoff [2]. The class of causal operators is quite large and it
includes a number of operators that are used in mathematical modeling of some phenomena in
engineering and physics. An important class of causal operators is the class of superposition operators
or Nemytskij operators (see [3]) C : Lp([0, T], E) → Lp([0, T], E) defined by (Cu)(t) := F(t, u(t)),
where F : [0, T]× E → E is a Caratheodory function. If σ > 0, then C : C([−σ, T], E) → Lp([0, T], E)
defined by (Cu)(t) := F(t, u(t), u(t− σ)) is another example of a causal operator. A more general
example of causal operators is the operator C : C([−σ, T], E)→ Lp([0, T], E) defined by

(Cu)(t) := F
(

t, u(t), u(t− σ),
∫ t

t−σ
K(t, s, u(s))ds

)
.

Several examples of causal operators and their applications can be found in the monograph [4].
Although it does not specifically study the theory of causal operators, several monographs,
such as [5–9], address some aspects of differential equations involving causal operators. Detailed
studies on differential equations with causal operators in finite dimensional spaces can be found in
the monographs [4,10–12]. Applications of differential equations with causal operators in optimal
control, adaptive control or hysteresis phenomena can be found in the papers [13–20]. Theoretical
aspects regarding existence, stability or periodicity of solutions of differential equations with causal
operators in finite or infinite dimensional spaces were presented in a series of works, such as: [21–39].

The study of evolution equations with causal operators was first presented in [40], where an
existence result was obtained and some applications were given, but impulsive evolution differential
equations with causal operators has not yet been studied. In this paper we study the class of impulsive
evolution equations involving causal operators. In Section 2 we recall some results on C0-semigroups
of linear operators and some properties of the Hausdorff measure of noncompactness. In Section 3
we obtain the existence of mild solutions for a class of impulsive evolution equations with causal
operators. Also, we show that a mild solution can be obtained as the limit of a sequence of successive
approximations. In the last section we give some applications.

2. Preliminaries

We denote the space of all bounded linear operators acting on a Banach space E by L(E).
We recall that a family {T (t); t ≥ 0} ⊂ L(E) is called a C0-semigroup if the following three properties
are satisfied:

(a) T (0) = I, the identity operator on E;
(b) T (t)T (s) = T (t + s) for all t, s ≥ 0;
(c) lim

t→0+
T (t)u = u for all u ∈ E.
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The infinitesimal generator of the C0-semigroup {T (t); t ≥ 0} is the operator A : D(A) ⊂ E→ E,
defined by

D(A) = {u ∈ E; lim
h→0+

T (h)u− u
h

exists}

and

Au = lim
h→0+

T (h)u− u
h

, u ∈ D(A).

The generator is always a closed, densely defined operator. For further details on the theory of
the C0-semigroups see [41,42].

We denote by χ(B) the Hausdorff measure of non-compactness of a nonempty bounded set B ⊂ E,
and it is defined by [43]:

χ(B) = inf{ε > 0; B admits a finite cover by balls of radius ≤ ε}.

We recall some properties of χ (see [43]). If A, B are bounded subsets of E, then

(χ1) χ(B) = 0 if and only if B is compact;

(χ2) χ(B) = χ(B) = χ(conv(B));

(χ3) χ(λB) = |λ|χ(B) for every λ ∈ R;

(χ4) χ(B) ≤ χ(C) if B ⊂ C;

(χ5) χ({x} ∪ B) = χ(B) for every x ∈ E;

(χ6) χ(B + C) = χ(B) + χ(C).

(χ7) Generalized Cantor’s intersection property : If {Bn}n≥1 is a decreasing sequence of bounded
closed nonempty subsets of E and lim

n→∞
χ(Bn) = 0, then

⋂∞
n=1 Bn is a nonempty and compact

subset of E (see [44]).

Remark 1. If diam(B) = sup{||x− y||; x, y ∈ B} is the diameter of the bounded set A, then we have that
χ(B) ≤ diam(B) and χ(B) ≤ 2d if supx∈B ||x|| ≤ d.

In the following, we denote by χc the Hausdorff measure of non-compactness in the space
C([0, T], E). Then it is well known that for every bounded set B ⊂ C([0, T], E) we have

χ(B(t)) ≤ χc(B),

for every t ∈ [0, T], where B(t) := {u(t) : u ∈ B}. Moreover, for every bounded and equicontinuous
set B ⊂ C([0, T], E) we have (see [43])

χc(B) = sup
0≤t≤T

χ(B(t)). (2)

For each k = 0, 1, 2, ..., N and u(·) ∈ PC([0, T], E) we set Jk = (tk, tk+1] , Jk = [tk, tk+1] and
introduce the function ũk (·) ∈ C(Jk, E) defined by

ũk (t) =
{

u(t), for t ∈ Jk
u(t+k ), for t = tk.

(3)
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Also, for B ⊂ PC([0, T], E) and k = 0, 1, 2, ..., N, let us set B̃k := {ũk (·) ∈ C(Jk, E); u(·) ∈ B}.
If we denote by χk the Hausdorff measure of noncompactness on C(Jk, E), then

χPC (B) := max
0≤k≤N

χk

(
B̃k
)

, B ⊂ PC([0, T], E)

defines the Hausdorff measure of noncompactness on PC([0, T], E). Moreover, it is easy to see that

χPC (B) = sup
t∈[0,T]

χ (B (t))

for every equicontinuous subset B ⊂ PC([0, T], E).

Lemma 1 ([45], Lemma 2.1). A set B ⊂ PC([0, T], E) is relatively compact in PC([0, T], E) if and only if B̃k

is relatively compact in C(Jk, E) for every k = 0, 1, 2, ..., N.

Lemma 2 ([46], p. 125). If B ⊂ E is a nonempty bounded set, then for every ε > 0 there exists a sequence
{xn}n≥1 in E such that

χ(B) ≤ 2χ ({xn; n ≥ 1}) + ε.

Lemma 3 ([47], Lemma 2.2). Let {un(·); n ≥ 1} be a subset in L1([0, T], E) for which there exists m(·) ∈
L1([0, T],R+) such that ‖un(t)‖ ≤ m(t) for each n ≥ 1 and for a.e. t ∈ [0, T]. Then the function t 7→
χ(t) := χ({un(t); n ≥ 1}) is integrable on [0, T] and, for each t ∈ [0, T], we have

χ

({∫ t

0
un(s)ds; n ≥ 1

})
≤
∫ t

0
χ(s)ds.

3. Existence Result

Consider the following impulsive differential equation
u′(t) = Au(t) + (Cu)(t) for t ∈ [0, T]\{t1, ..., tN}
u(t+k ) = u(t−k ) + (Iku)(t−k )
u(0) = u0,

(4)

where A : D(A) ⊂ E → E is the infinitesimal generator of a C0-semigroup {T (t); t ≥ 0} and
C : PC([0, T], E) → Lp([0, T], E) is a continuous causal operator; here 1 ≤ p ≤ ∞, N ∈ N, 0 = t0 <

t1 < t2 < ... < tN < tN+1 = T and Ik : PC([0, T], E) → PC([0, T], E) is a continuous causal operator
for each k = 1, 2, ..., N.

A function u(·) ∈ PC([0, T], E) is called a mild solution of (4) if it satisfies

u(t) = T (t)u(0) +
∫ t

0
T (t− s)(Cu)(s)ds + ∑

0<tk<t
T (t− tk)Ik(u(tk), t ∈ [0, T].

Let us introduce the following conditions.
(H1) For each k = 1, 2, ..., N, Ik : PC([0, T], E) → PC([0, T], E) is continuous and a compact

operator and there exists ck > 0, with M ∑
0<tk<T

ck < 1, such that for each u(·) ∈ PC([0, T], E) we have

‖(Iku)(t)‖ ≤ ck||u(t)|| for every t ∈ [0, T],

where M := sup
0≤t≤T

‖T (t)‖.
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(H2) (a) There exists a function ξ(·, ·) : [0, T]×R+ → R+ such that ξ(·, η) ∈ L1([0, T],R+) for
every η ∈ R+, ξ(t, ·) is continuous and increasing on R+ for a.e. t ∈ [0, T] such that

lim sup
η→∞

M
η

(
‖u0‖+

∫ T

0
ξ(s, η)ds

)
< 1−M ∑

0<tk<T
ck (5)

and
‖(Cu) (t)‖ ≤ ξ(t, ||u(t)||), for a.e. t ∈ [0, T], (6)

for each u(·) ∈ PC([0, T], E).
(b) For each bounded subsets B ⊂ PC([0,T], E) there exists γB(·) ∈ L1([0, T],R+) such that

∫ T

0
γB(t)dt <

1
2MT

(7)

and

χ((CB)(t)) ≤
∫ t

0
γB(s)χ(B(s))ds for t ∈ [0, T], (8)

where (CB)(t) := {(Cu)(t) : u(·) ∈ B}.

Theorem 1. Let C : PC([0, T], E)→ Lp([0, T], E) be a continuous causal operator such that conditions (H1)
and (H2) hold. If A : D(A) ⊂ E → E is the generator of a C0-semigroup {T (t); t ≥ 0}, then the evolution
Equation (4) has at least one mild solution on [0, T].

Proof. First, we remark that there exists an r > 0 such that

M ‖u0‖+ M
∫ T

0
ξ(s, r)ds + Mr ∑

0<tk<T
ck < r. (9)

Indeed, from (5) it follows that there exists η0 > 0 such that

M
η

(
‖u0‖+

∫ T

0
ξ(s, η)ds

)
< 1−M ∑

0<tk<T
ck,

for every η > η0, so that

M ‖u0‖+ M
∫ T

0
ξ(s, η)ds + Mη ∑

0<tk<T
ck < η,

for every η > η0. Consequently, we can choose a r > η0 such that (9) holds. Now, let

B0 = {u(·) ∈ PC([0, T], E); ‖u(·)‖PC ≤ r}, (10)

and define the operator F : B0 → PC([0, T]), E by

(Fu)(t) := T (t)u0 +
∫ t

0
T (t− s)(Cu)(s)ds + ∑

0<tk<t
T (t− tk)(Iku)(tk), (11)
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for t ∈ [0, T]. Since ξ(t, ·) is increasing on R+ for a.e. t ∈ [0, T] for every u(·) ∈ B0, using (5) we have

‖(Fu)(t)‖ ≤ ‖T (t)u0‖+
∫ t

0 ‖T (t− s)(Cu)(s)‖ ds + ∑
0<tk<t

‖T (t− tk)(Iku)(tk)‖

≤ M ‖u0‖+ M
∫ t

0 ‖(Cu)(s)‖ ds + M ∑
0<tk<t

ck||u(tk)||

≤ M ‖u0‖+ M
∫ t

0 ξ(s, ‖u(s)‖)ds + M ∑
0<tk<t

ck||u(tk)||

≤ M ‖u0‖+ M
∫ T

0 ξ(s, ‖u(s)‖)ds + M ∑
0<tk<T

ck||u(tk)||

≤ M ‖u0‖+ M
∫ T

0 ξ(s, r)ds + Mr ∑
0<tk<T

ck < r,

so that F(B0) ⊂ B0. We notice that ‖(Cu) (t)‖ ≤ ψ(t) for a.e. on [0, T], for every u(·) ∈ B0,
where ψ(·) := ξ(·, r) ∈ L1([0, T],R+). Let B1 := FB0. Next, we will show that B̃k

1 is equicontinuous
on Jk for every k = 1, 2, ..., N. For this, we shall write the operator F as (Fu) (t) = (F1u) (t) +
(F2u) (t), where

(F1u) (t) = T (t)u0 +
∫ t

0
T (t− τ)(Cu)(τ)dτ,

(F2u) (t) = ∑
0<tk<t

T (t− tk)(Iku)(tk)

for t ∈ [0, T].
First, we show that G1 := F1B0 is equicontinuous on [0, T]. Let ε > 0. Since t 7→ T (t)u0 continuous

on [0, T] (see [42], Corollary 2.3), then there exists δ1 = δ1(ε/5) > 0 such that

‖T (t + h)u0 − T (t)u0‖ ≤
ε

5
(12)

for every t ∈ [0, T] and h ∈ R with |h| < δ1 and t + h ∈ [0, T]. On [0, T], the function t 7→
∫ t

0 ψ(s)ds is
uniformly continuous and thus there exists δ2 = δ2(ε/5M) > 0 such that∣∣∣∣∫ t+h

t
ψ(τ)dτ

∣∣∣∣ < ε

5M
(13)

for every t ∈ [0, T] and h ∈ R with |h| < δ2 and t + h ∈ [0, T]. Then for t = 0 we have

‖(F1u)(h)− (F1u)(0)‖ =
∥∥∥T (h)u0 +

∫ h
0 [T (h− τ)(Cu)(τ)dτ − u0

∥∥∥
≤ ‖T (h)u0 − u0‖+

∫ h
0 ‖T (h− τ)(Cu)(τ)‖ dτ ≤ ‖T (h)u0 − u0‖

+M
∫ h

0 ←(τ)dτ < 2ε
5 < ε,

for each u ∈ B0 and h ∈ (0, T] with h < min{δ1, δ2}. It follows that G1 is equicontinuous at t = 0.
Next, take t ∈ (0, T] and let us choose 0 < η < δ2/2 such that t− η ∈ [0, T]. For each u ∈ B0 and h ∈ R
such that t + h ∈ [0, T] we have
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‖(F1u)(t + h)− (F1u)(t)‖ ≤ ‖(F1u)(t)− T (η)[(F1u)(t− η)]‖

+ ‖T (η)[(F1u)(t− η)]− T (η + h)[(F1u)(t− η)]‖

+ ‖T (η + h)[(F1u)(t− η)]− (F1u)(t + h)‖ .

(14)

Since
‖(F1u)(t)− T (η)[(F1u)(t− η)]‖ =

∥∥∥T (t)u0 +
∫ t

0 T (t− τ)(Cu)(τ)dτ

−T (η)
[
T (t− η)u0 +

∫ t−η
0 [T (t− η − τ)(Cu)(τ)dτ

]∥∥∥
=
∥∥∥∫ t

0 T (t− τ)(Cu)(τ)dτ −
∫ t−η

0 T (t− τ)(Cu)(τ)dτ
∥∥∥

=
∥∥∥∫ t

t−η T (t− τ)(Cu)(τ)dτ
∥∥∥ ≤ M

∫ t
t−η ψ(τ)dτ,

it follows that

‖(F1u)(t)− T (η)[(F1u)(t− η)]‖ ≤ M
∫ t

t−η
ψ(τ)dτ <

ε

5
(15)

for each u ∈ B0. By similar reasoning, we obtain

‖T (η + h)[(F1u)(t− η)]− (F1u)(t + h)‖ ≤ M
∫ t+h

t−η
ψ(τ)dτ,

and so, by (13), we conclude that

‖T (η + h)[(F1u)(t− η)]− (F1u)(t + h)‖ ≤ M
∫ t+h

t−η
ψ(τ)dτ <

ε

5
(16)

for each u ∈ B0 and h ∈ R with |h| < η and t + h ∈ [0, T]. Furthermore, we have

‖T (η)[(F1u)(t− η)]− T (η + h)[(F1u)(t− η)]‖ ≤ ‖T (t + h)u0 − T (t)u0‖

+
∫ t−η

0 ‖T (t + h− τ)− T (t− τ)‖ψ(τ)dτ ≤ ‖T (t + h)u0 − T (t)u0‖

+2M
∫ t−η

0 ψ(τ)dτ ≤ 3ε

5
,

(17)

that is,

‖T (η)[(F1u)(t− η)]− T (η + h)[(F1u)(t− η)]‖ ≤ 2ε

5
(18)

for each u ∈ B0 and h ∈ R with |h| < min{η, δ1, δ2} and t + h ∈ [0, T]. Now, using (15), (16) and (18),
from (14) it follows that

‖(F1u)(t + h)− (F1u)(t)‖ < ε

for each u ∈ B0 and h ∈ R with |h| < min{η, δ1, δ2} and t + h ∈ [0, T]. Thus G1 is equicontinuous on
[0, T]. From this it follows that G̃k

1 is equicontinuous on Jk for every k = 1, 2, ..., N. Next, we show that,
for a given ν ∈ {1, 2, ..., N}, the set G̃ν

2 is equicontinuous on Jν, where G2 := F2B0. Since Ik is a compact
operator, IkB0 is a relatively compact set in PC([0, T], E) and so, by Lemma 1 Ik B̃0 is a relatively
compact set in C(Jk, E) for each k = 1, 2, ..., N. Using the Ascoli–Arzela theorem, from the compactness
of Ik B̃0 in C(Jk, E), it follows that (Ik B̃0)(t) is relatively compact in E for every t ∈ Jk and k = 1, 2, ..., N.

In particular, (Ik B̃0)(tk) is relatively compact for every k = 1, 2, ..., N, and thus K :=
N⋃

k=1
(Ik B̃0)(tk) is

relatively compact in E. Since (t, x) 7→ T(t)x is jointly continuous from [0, ∞)× K to E, it follows that
there exists a δ > 0 such that
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‖T(t− tk)x− T(s− tk)x‖ < ε/N, x ∈ K

for every tk, k = 1, 2, ..., N, t, s ∈ Jk with |t− s| < δ. Next, for every u(·) ∈ B0, t, s ∈ Jν with |t− s| < δ,
we have

‖(F2ũν)(t)− (F2ũν)(s)‖ = ‖(F2u)(t)− (F2u)(s)‖

=

∥∥∥∥∥ ∑
0<tk<t

T (t− tk)(Iku)(tk)− ∑
0<tk<t

T (s− tk)(Iku)(tk)

∥∥∥∥∥
≤

ν
∑

k=1
‖T(t− tk)(Iku)(tk)− T (s− tk)(Iku)(tk)‖ < ε,

so that G̃ν
2 is equicontinuous on Jν. Since B̃k

1 = G̃k
1 + G̃k

2, k = 1, 2, ..., N, it follows that B̃k
1 is

equicontinuous on Jk for every k = 1, 2, ..., N. Next, for each n ≥ 1, we define Bn = conv(FBn−1).
Then, for every n ≥ 1, Bn ⊂ PC([0, T], E) is a bounded, closed and convex set. Now, from FB0 ⊂ B0,
it follows that

B1 = conv(FB0) ⊂ conv(B0) = B0.

If we suppose that Bν ⊂ Bν−1 for a given ν > 1, then

Bν+1 = conv(FBν) ⊂ conv(FBν−1) = Bν

and thus, by induction it follows that Bn ⊂ Bn−1 for every n ≥ 1. Moreover, it is easy to see that B̃k
n is

equicontinuous on Jk for each k = 1, 2, ..., N and for every n ≥ 1. Now, we will show that χPC(Bn)→ 0
as n→ ∞. From Lemma 2, it follows that there exists a sequence {vm(·)}m≥1 in FBn−1 such that

χPC(Bn) = χPC(FBn−1) ≤ 2χPC(V) + ε,

where V := {vm(·); m ≥ 1}. From the above inequality it follows that

χPC(Bn) ≤ 2 max
0≤k≤N

χk(V
k
n) + ε.

Since for each k = 1, 2, ..., N, the equicontinuity of Vk
n and Lemma 3 imply χk (V

k
n) = sup

t∈Jk

χ(V(t)),

we obtain

χPC(Bn) ≤ 2 max
0≤k≤N

[
sup
t∈Jk

χ(V(t))

]
+ ε ≤ 2 sup

t∈[0,T]
χ(V(t)) + ε

= 2 sup
t∈[0,T]

χ({vm(t); m ≥ 1}) + ε.

Further, let {um(·)}m≥1 be a sequence in Bn−1 such that vm(·) = (Fum)(·), m ≥ 1. If we put
V := {um(·); m ≥ 1} and V(t) := {um(t); m ≥ 1}, t ∈ [0, T], then from the previous inequality it
follows that
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χPC(Bn) ≤ ε + 2χ

(
T (t− s)u0 +

∫ t

0
T (t− s)(CV)(s)ds

+ ∑
0<tk<t−T/n

T (t− tk)(IkV)(tk)

)
(19)

≤ ε + 2χ

(∫ t

0
T (t− s)(CV)(s)ds

)
+2χ

(
∑

0<tk<t
T (t− tk)(IkV)(tk)

)
. (20)

Let t ∈ [0, T] be fixed. Since

‖T (t− s) (Cum) (s)‖ ≤ Mψ(t) for a.e. s ∈ [0, t],

for all m ≥ 1, and

χ({(Cum) (s); m ≥ 1}) ≤
∫ s

0
γV(τ)χ({um(τ); m ≥ 1})dτ

≤
∫ s

0
γV(τ)χ(Bn−1(τ))dτ ≤ χPC(Bn−1)

∫ s

0
γV(τ)dτ

for a.e. s ∈ [0, t], by Lemma 3 it follows that

χ

(∫ t

0
T (t− s)(CV)(s)ds

)
≤

∫ t

0
χ (T (t− s)(CV)(s)) ds

≤ 2M
∫ t

0
χ ((CV)(s)) ds

≤ 2M
∫ t

0

∫ s

0
γV(τ)χ ((V(τ)) dτds

≤ 2MχPC(Bn−1)
∫ t

0

∫ s

0
γV(τ)dτds (21)

= 2MχPC(Bn−1)
∫ t

0

∫ t

τ
γV(τ)dsdτ

= 2MχPC(Bn−1)
∫ t

0
(t− τ)γV(τ)dτ

≤ 2MTχPC(Bn−1)
∫ T

0
γV(τ)dτ.

Also, by the continuity of the operators T(t) and by the compactness of the operators Ik, it follows
that the set {T (t− tk)(IkV)(tk)} is relatively compact for every t ∈ [0, T]. Therefore, we have that

χ

(
∑

0<tk<t
T (t− tk)(IkV)(tk)

)
≤ ∑

0<tk<t
χ (T (t− tk)(IkV)(tk)) = 0. (22)

From (19), (21), and (22), we obtain

χPC(Bn) ≤ ε + ρχPC (Bn−1) , (23)

where

ρ := 2MT
∫ T

0
γV(s)ds < 1.
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Since ε > 0 is arbitrary, it follows that

χPC(Bn) ≤ ρχPC (Bn−1) .

Also
χPC(Bn) ≤ ρn−1χPC (B1) .

Since the last inequality is true for every n ≥ 1 and 0 < ρ < 1, passing to the limit as n → ∞,
we obtain lim

n→∞
χPC(Bn) = 0. Now, using the generalized Cantor’s intersection property, it follows that

the set B :=
∞⋂

n=1
Bn is a nonempty and compact subset of PC([0, T], E). Since every set Bn is a convex

set, the set B is also a convex set. Next, we verify that FB ⊂ B. Indeed, for every n ≥ 1, we have that

FB ⊂ FBn ⊂ conv (Bn) = Bn+1, so that FB ⊂
∞⋂

n=2
Bn. Also, since Bn ⊂ B1 for every n ≥ 1, it follows

that FB ⊂
∞⋂

n=2
Bn ⊂

∞⋂
n=1

Bn ⊂ B. Now, we show that F is a continuous operator from B into itself.

For this, let un(·)→ u(·) in B. If 1 ≤ p < ∞ and 1/p + 1/q = 1, then by Hölder’s inequality we have

‖(Fun)(t)− (Fu)(t)‖

≤
∫ t

0
[‖T (t− s)[(Cun)(s)− (Cu)(s)]‖ ds

+ ∑
0<tk<t

||T (t− tk)(Ikun)(tk)− (Iku)(tk)||]

≤
∫ t

0
‖T (t− s)‖L(E)‖(Cun)(s)− (Cu)(s)‖ds

+ ∑
0<tk<t

‖T (t− tk)‖L(E) ||(Ikun)(tk)− (Iku)(tk)||]

≤ M
∫ T

0
‖(Cun)(s)− (Cu)(s)‖ds +

M ∑
0<tk<T

||(Ikun)(tk)− (Iku)(tk)||

≤ MT1/q
(∫ T

0
‖(Cun)(s)− (Cu)(s)‖pds

)1/p

+M ∑
0<tk<T

||(Ikun)(tk)− (Iku)(tk)||,

and for p = ∞ we have

‖(Fum)(t)− (Fu)(t)‖

≤
∫ t

0
‖T (t− s)‖‖(Cun)(s)− (Cu)(s)‖ds

+ ∑
0<tk<T

‖T (t− tk)‖ ||(Ikun)(t−k )− (Iku)(t−k )||

≤ MT · ess sup
0≤t≤T

‖(Cun)(t)− (Cu)(t)‖

+M ∑
0<tk<T

||(Ikun)(t−k )− (Iku)(t−k )||.

Using the continuity of the operators C and Ik it follows that for 1 ≤ p ≤ ∞ we have that
‖(Fun)(·) − (Fu)(·)‖PC → 0 as n → ∞, so that F : B → B is a continuous operator. Since B is a
nonempty compact convex set, and F : B → B is a continuous operator, by Schauder’s fixed point
theorem it follows that there exists at least one u(·) ∈ B such that
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u(t) = (Fu)(t) = T (t)u0 +
∫ t

0
T (t− s)(Cu)(s)ds + ∑

0<tk<t
T (t− tk) (Iku) (tk)

for all t ∈ [0, T]; that is, u(·) ∈ B is a mild solution for (4).

Remark 2. It is easy to see that the conclusion Theorem 1 remains true if (6) is replaced by

‖(Cu) (t)‖ ≤ ξ(t, ||u(·)||PC), for a.e. t ∈ [0, T], (24)

and for each u(·) ∈ PC([0, T], E). The conclusion of Theorem 1 remains true if (H2)(b) is replaced by:
(H2) (b′) For each bounded subset B ⊂ PC([0,T], E) there exists γB(·) ∈ L1([0, T],R+) such that (7)

holds and

χ(T (t)(CB)(t)) ≤
∫ t

0
γB(s)χ(B(s))ds for t ∈ [0, T].

If {T (t), t ≥ 0} is a compact C0-semigroup or C is a compact operator, then χ(T (t)(CB)(t)) = 0 for t ∈ [0, T]
and for each bounded set B ⊂ PC([0, T], E) (see [48], Remark 8.2.1). Also, with a slight modification of the
proof, the conclusion of Theorem 1 remains true if the condition (H2)(b) is replaced by:

(H2) (b′′) For each bounded subset B ⊂ PC([0,T], E) there exists γB(·) ∈ L1([0, T],R+) such that (7)
holds and

χ((CB)(t)) ≤ γB(t)χ(B(t)) for a.e. t ∈ [0, T].

Next, suppose that f (·, ·) : [0, T]× E→ E is a function which satisfies the following condition:
(Hf) (a) f : [0, T]× E→ E is a Carathéodory function; that is, t 7→ f (t, u) is strongly measurable for all

u ∈ E, u 7→ f (t, u) is continuous for a.e. t ∈ [0, T], and there exist a > 0 and c (·) ∈ LP([0, T],R+) such that
aMT < 1−M ∑

0<tk<T
ck and

‖ f (t, u)‖ ≤ c(t) + a‖u‖, t ∈ [0, T], u ∈ E,

where p ≥ 1.
(b) For each bounded set B ⊂ E there exist γB (·) ∈ L1([0, T],R+) such that (7) holds and

χ( f (t, B)) ≤ γB(t)χ(B) a.e. on [0, T]. (25)

Then it is known (see [3], Theorem 3.1) that the operator C, defined by (Cu)(t) := f (t, u(t)), t ∈ [0, T], is
a continuous operator from Lp([0, T], E) into Lp([0, T], E), and thus it is continuous from PC([0, T], E) into
Lp([0, T], E). Moreover, C is a causal operator and it satisfies (H2)(a) with ξ(t, η) := c(t) + aη, t ∈ [0, T],
η ∈ R+. Also, it is easy to see that C satisfies (H2)(b′′). We obtain the following result.

Corollary 1. Assume that f : [0, T]× E→ E satisfies (H1) and (Hf). If A : D(A) ⊂ E→ E is the generator
of a C0-semigroup {T (t); t ≥ 0}, then the impulsive evolution equation

u′(t) = Au(t) + f (t, u(t)) for t ∈ [0, T]\{t1, ..., tN}
u(t+k ) = u(t−k ) + (Iku)(t−k )
u(0) = u0,

(26)

has at least one mild solution on [0, T].

In the next result we show that, under the conditions (H1) and (H2), we can construct a sequence
of successive approximations which converges to a mild solution of (4).
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Theorem 2. Assume that C : PC([0, T], E) → Lp([0, T], E) is a continuous causal operator such that the
conditions (H1) and (H2) hold. If A : D(A) ⊂ E → E is the generator of a C0-semigroup {T (t); t ≥ 0},
then there exists a sequence of functions {un(·)}n≥1 in PC([0, T], E) such that ‖un(·)− u(·)‖PC → 0 as
n→ ∞, and u(·) : [0, T]→ E is a mild solution for (4).

Proof. Let r > 0 be such that (9) holds, and let B0 and F : B0 → B0 be given by (10) and (11),
respectively. We construct a sequence {un(·)}n≥1 of functions un(·) ∈ PC([0, T], E) as follows.
Let n ∈ N. For each i ∈ {1, 2, ..., n}, we define

u1
n(t) = T (t)u0, for t ∈ [0, T/n]

and

ui
n(t) =



ui−1
n (t), for t ∈ [0, (i− 1)T/n]

T (t)u0 +
∫ t−T/n

0 T (t− s)(Cui−1
n )(s)ds

+ ∑
0<tk<t− T

n

T (t− tk)(Ikui−1
n )(tk), for t ∈ ((i− 1)T/n, iT/n]

for i > 1. Obviously,
∥∥u1

n(t)
∥∥ ≤ M ‖u0‖ ≤ r for t ∈ [0, T/n]. Let us suppose that ||ui

n(t)|| ≤ r for
t ∈ [0, iT/n] and i ∈ {1, 2, ..., ν} with ν ≤ n− 1. Then we have

||ui+1
n (t)|| ≤ ‖T (t)u0‖+ M

∫ t−T/n

0

∥∥∥(Cui−1
n )(s)

∥∥∥ ds

+ ∑
0<tk<t− T

n

∥∥∥T (t− tk)(Ikui−1
n )(tk)

∥∥∥
≤ M‖u0‖+

∫ t−T/n

0
ξ(s, ‖ui−1

n (s)‖)ds

+M ∑
0<tk<t− T

n

ck‖ui−1
n (tk)‖

≤ M‖u0‖+
∫ t−T/n

0
ξ(s, r)ds + Mr ∑

0<tk<t− T
n

ck

< r

for all t ∈ [0, (i + 1)T/n]. Hence, by induction on i we have that ||ui
n(t)|| < r for all i ∈ {1, 2, ..., n} and

t ∈ [0, iT/n]. In the following, to simplify the notation, we put un(·) = un
n(·), n ≥ 1. By the causality

of C and Ik, the sequence {un(·)}n≥1 can be written as

un(t) =



T (t)u0 if t ∈ [0, T/n]

T (t)u0 +
∫ t−T/n

0 T (t− s)(Cun)(s)ds

+∑0<tk<t−T/n T (t− tk)(Ikun)(t−k ) if t ∈ [T/n, T]

(27)

for every n ≥ 1. Moreover, un(·) ∈ B0 for all n ≥ 1. Next, if 0 ≤ t ≤ T/n, then it is easy to see that

‖(Fun)(t)− un(t)‖ ≤
∫ T/n

0
‖T (t− s)(Cun)(s)‖ds ≤ M

∫ T/n

0
ψ(s)ds.
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If T/n ≤ t ≤ T, then we have

‖(Fun)(t)− un(t)‖ ≤
∥∥∥∫ t

0 T (t− s)(Cun)(s)ds−
∫ t−T/n

0 T (t− s)(Cun)(s)ds
∥∥∥

+

∥∥∥∥∥ ∑
0<tk<t

T (t− tk)(Ikun)(t−k )− ∑
0<tk<t−T/n

T (t− tk)(Ikun)(t−k )

∥∥∥∥∥
≤
∫ t

t−T/n ‖T (t− s)‖L(E) ‖(Cun)(s)‖ ds + ∑
t−T/n<tk<t

‖T (t− tk)(Ikun)(t−k )‖

≤ M
∫ t

t−T/n ‖(Cun)(s)‖ds + M ∑
t−T/n<tk<t

(Ikun)(t−k )

≤ M
∫ t

t−T/n ψ(s)ds + M ∑
t−T/n<tk<t

(Ikun)(t−k ).

Therefore, we obtain that

‖(Fun)(·)− un(·)‖PC → 0 as n→ ∞. (28)

Let V = {un(·); n ≥ 1}. Since

‖un(·)‖PC ≤ ‖un(·)− (Fun)(·)‖PC + ‖(Fun)(·)‖PC ,

by (28) and the equicontinuity of F(V) on [0, T], it follows that V is also equicontinuous on [0, T].
Define V(t) = {un(t); n ≥ 1} for t ∈ [0, T]. Then by the property of the measure of non-compactness
we obtain

χ(V(t)) ≤ χ

(∫ t−T/n
0 T (t− s)(CV)(s)ds + ∑

0<tk<t−T/n
T (t− tk)(IkV)(tk)

)
≤ χ

(∫ t
0 T (t− s)(CV)(s)ds

)
+ χ

(∫ t
t−T/n T (t− s)(CV)(s)ds

)

+χ

(
∑

0<tk<t−T/n
T (t− tk)(IkV)(tk)

)
.

Let t ∈ [0, T] be fixed and let ε > 0. The we can find n(ε) ≥ 1 such that
∫ t

t−T/n ψ(s)ds < ε/2M for
n ≥ n(ε). Since

‖T (t− s)(Cun)(s)‖ ≤ M ‖(Cun)(s)‖ ≤ Mψ(s)

for a.e. s ∈ [0, t] and n ≥ 1, by Remark 1 we conclude that

χ

(∫ t

t−T/n
T (t− s)(CV)(s)ds

)
= χ

({∫ t

t−T/n
T (t− s)(Cun)(s)ds; n ≥ n(ε)

})
≤ 2 sup

n≥n(ε)
M
∫ t

t−T/n
ψ(s)ds < ε.

Using the last inequality and the fact that χ
(

∑0<tk<t−T/n T (t− tk)(IkV)(tk)
)
= 0, we obtain that

χ(V(t)) ≤ χ

(∫ t

0
T (t− s)(CV)(s)ds

)
.
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Since V(t) is bounded, by Lemma 3 and (H2) it follows that

χ(V(t)) ≤
∫ t

0
χ (T (t− s)(CV)(s)) ds

≤
∫ t

0

∫ s

0
MγV(τ)χ (V(τ)) dτds

=
∫ t

0

∫ t

τ
MγV(τ)χ (V(τ)) dsdτ

=
∫ t

0
M(t− τ)γV(τ)χ (V(τ)) dτ

≤
∫ t

0
MTγV(τ)χ (V(τ)) dτ.

Therefore, for each t ∈ [0, T], we have

v(t) ≤
∫ t

0
MTγV(t)v(t)ds

where v(t) := χ(V(t), t ∈ [0, T]. Then, by Gronwall’s lemma, it follows that v(t) = 0 for every t ∈ [0, T],
so that χ(V(t)) = 0 for every t ∈ [0, T]. Moreover, since χPC(V) = sup

0≤t≤T
χ(V(t)), hence χPC(V) = 0.

Therefore, V is a relatively compact subset of B0. Then, by the Arzela–Ascoli theorem, and extracting
a subsequence if necessary, we may assume that the sequence {un(·)}n≥1 converges uniformly on
[0, T] to a continuous function u(·) ∈ B0. Since

‖(Fu)(·)− u(·)‖PC ≤ ‖(Fu)(·)− (Fun)(·)‖PC + ‖(Fun)(·)− un(·)‖PC

+‖un(·)− u(·)‖PC,

by the continuity of F and (28), we get ‖(Fu)(·)− u(·)‖PC = 0. It follows that

u(t) = (Fu)(t) = T (t)u0 +
∫ t

0
T (t− s)(Cu)(s)ds + ∑

0<tk<t
T (t− tk) (Iku) (tk)

for all t ∈ [0, T]; that is, u(·) is a mild solution of the causal evolution Equation (4).

4. Applications

1. Consider the following impulsive integro-differential evolution equation
u′(t) = Au(t) +

∫ t
0 K(t, s) f (s, u(s))ds for a.e. t ∈ [0, T],

u(t+k ) = u(t−k ) + (Iku) (t−k ), k = 1, 2, ..., N,
u(0) = u0,

(29)

where f : [0, T] × E → E satisfies condition (Hf) and K : [0, T] × [0, T] → L(E) is strongly
continuous. Put

(Cu)(t) :=
∫ t

0
K(t, s) f (s, u(s))ds, t ∈ [0, T]. (30)

It is well known that C defines a continuous operator from Lp([0, T], E) into itself (see ([49],
Proposition 9.5.2) or ([50], p. 160)). Then for each u (·) ∈ PC([0, T], E) we have
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‖(Cu) (t)‖ ≤
∫ t

0
‖K(s, τ)‖L(E) ‖ f (τ, u(τ))‖ dτ

≤ M1

∫ t

0
[c(τ) + a‖u(τ)‖] dτ

≤ ξ(t, ‖u(·)‖PC) := M1

∫ t

0
c(τ)dτ + aM1T‖u(·)‖PC,

where M1 := sup{‖K(t, s)‖L(E) ; t, s ∈ [0, T]}. Next, if B is a bounded set in PC([0, T], E), then it is easy
to show that CB is bounded and equicontinuous on [0, T] (as a subset of PC([0, T], E)). Thus, by (25)
and Theorem 1.2.2 in [51], we have

χ((CB) (t)) = χ

(∫ t

0
K(t, s) f (s, B(s))ds

)
≤
∫ t

0
χ (K(t, s) f (s, B(s))) ds

≤
∫ t

0
M1γB(s)χ (B(s)) ds, t ∈ [0, T].

Consequently, the operator C, defined by (30), is a continuous causal operator from PC([0, T], E)
into Lp([0, T], E) and it satisfies (24) and (8). Assume that hypotheses (H1), (Hf) hold,

∫ T
0 M1γB(t)dt <

1
2MT and K : [0, T]× [0, T]→ L(E) is strongly continuous. Then, by Theorem 1, it follows that (29) has
at least one mild solution in PC([0, T], E) provided that (5) holds.

2. Consider the following impulsive reaction diffusion equation
∂z
∂t (t, x) = ∂2z

∂x2 (t, x) +
∫ t

0 k(t, s) f (s, z(s, x))ds, x ∈ (0, π), t ∈ [0, T] \ {t1, .., tN}
z(t+k , x)− z(t−k , x) =

∫ x
0 z(t−k , y)gk(x)dy, x ∈ (0, π), k = 1, ..., N

z(t, 0) = z(t, π) = 0, t ∈ [0, T],
z(0, x) = z0(x), x ∈ (0, π),

(31)

where 0 = t0 < t1 < t2 < ... < tN < tN+1 = T, z(t+k , x) = lim(h,x)→(0− ,x) z(tk + h, x), z(t−k , x) =

lim(h,x)→(0− ,x) z(tk + h, x), f (·, ·) : [0, T]× [0, π]→ R and k(·, ·) : [0, T]× [0, T]→ R are given functions,
z0(·), gk(·) ∈ E := L2[0, π] and k = 1, ..., N. Also, we assume that ‖πhgk − gk‖L2[0,π−h] → 0 as h→ 0+

for k = 1, ..., N, where (πhgk) (t) = gk (t + h). We can show that problem (31) is an abstract formulation
of problem (29). For this, let

u(t)(x) : = z(t, x), (t, x) ∈ [0, T]× [0, π],

((Iku)(t)) (x) : =
∫ x

0
u(t)(y)gk(x)dy, (t, x) ∈ [0, T]× [0, π], k = 1, 2, ..., N,

(Cu)(t) : =
∫ t

0
K(t, s)F(s, u(s))ds, t ∈ [0, T],

where F(·, ·) : [0, T] × E → E is given by F(t, u(·)) (x) := f (t, z(·, x)) for (t, x) ∈ [0, T] × [0, π],
and K(·, ·) : [0, T] × [0, T] → L(E) is given by (K(t, s)u(·))(x) := k(t, s)u(·)(x) = k(t, s)z(·, x) for
t, s ∈ [0, T], x ∈ [0, π]. Next, let t ≥ 0 and let us define T (t) : E→ E by

(T (t)u (·)) (x) :=
∞

∑
n=0

an (u (·)) e−n2t sin nx

for each u (·) ∈ E, where

an (u (·)) =
√

2
π

∫ π

0
u (·) (x) sin nxdx.
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Then it is known (see ([41], Problem 4.2 and Problem 7.8)) that {T (t), t ≥ 0} is a compact
C0-semigroup and its infinitesimal generator A : D(A) ⊂ E→ E is given by

(Au (·)) (x) = −
∞

∑
n=1

n2an (u (·)) sin nx, u (·) ∈ D(A),

where D(A) is the space of all functions u (·) ∈ E such that u (·) , u′ (·) are absolutely continuous,
u′′ (·) ∈ E and u (·) (0) = u (·) (π) = 0. Also, there exists M > 1 such that ‖T (t)‖L(E) ≤ M for
t ∈ [0, T]. From the above it follows that (31) can be written in the abstract form (29). Now, assume that

(f) f (·, ·) : [0, T]× [0, π]→ R is a Carathéodory function; that is, t 7→ f (t, x) is measurable for all
x ∈ [0, π], x 7→ f (t, x) is continuous for a.e. t ∈ [0, T], and there exist a > 0 and c (·) ∈ L2([0, T],R+)

‖ f (t, x)‖ ≤ c(t) + a‖x‖, t ∈ [0, T], x ∈ [0, π].

(k) k(·, ·) : [0, T]× [0, T]→ R is continuous.
Then it is easy to check that F(·, ·) verifies the condition (Hf) and K(·, ·) is strongly continuous.

Since {T (t), t ≥ 0} is a compact C0-semigroup, for any bounded set B ⊂ PC([0,T], E), we have
χ(T (t)(CB)(t)) = 0 for t ∈ [0, T]. It remains to show that Ik is a compact operator for each k = 1, ..., N.
For this, we must show that for any bounded set B ⊂ PC([0,T], E), IkB is equicontinuos and (IkB) (t) ⊂
L2[0, T] is relatively compact for every t ∈ [0, T]. For any u (·) , v (·) ∈ B, using Hölder’s inequality,
we have

‖(Iku) (t)− (Ikv) (t)‖L2[0,T] =
∥∥∫ x

0 u(t)(y)gk(x)dy−
∫ x

0 v(t)(y)gk(x)dy
∥∥

L2[0,T]
≤
∫ x

0 ‖[u(t)(y)− v(t)(y)] gk(x)‖L2[0,T] dy

≤
∫ π

0

(∫ π
0 |u(t)(y)− v(t)(y)|2 |gk(x)|2 dx

)1/2
dy

=
(∫ π

0 |u(t)(y)− v(t)(y)| dy
)
‖gk‖L2[0,T]

≤
(∫ π

0 dy
)1/2

(∫ π
0 |u(t)(y)− v(t)(y)|2 dy

)1/2
‖gk‖L2[0,T]

=
√

π ‖gk‖L2[0,T] ‖u(t)− v(t)‖L2[0,T] ,

that is,
‖(Iku) (t)− (Ikv) (t)‖L2[0,T] ≤ ck ‖u(t)− v(t)‖L2[0,T] , (32)

for every u (·) , v (·) ∈ B, where ck =
√

π ‖gk‖L2[0,T]. From the above inequality it follows that

‖Iku− Ikv‖PC ≤ ck ‖u− v‖PC

for every u (·) , v (·) ∈ B, and so, IkB is equicontinuous. Using the compactness result from ([52], p. 74),
(IkB) (t) ⊂ L2[0, T] is relatively compact if and only if (IkB) (t) is bounded and

‖πh (Iku) (t)− (Iku) (t)‖L2[0,π−h] → 0 as h→ 0+ (33)

for every u (·) ∈ B. The boundedness of (IkB) (t) follows from (32) and the definition of the causal
operator. More exactly, we have that

‖(Iku) (t)‖L2[0,T] ≤ ck ‖u(t)‖L2[0,T] ≤ ck ‖u‖PC < cr

for every u (·) ∈ B, where r := sup
u(·)∈B

‖u‖PC and c :=
N
∑

k=1
ck.
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Using the Hölder inequality it is not difficult to show that

‖πh (Iku) (t)− (Iku) (t)‖L2[0,π−h] =
(∫ π−h

0 |(Iku) (t)(x + h)− (Iku) (t)(x)|2 dx
)1/2

=

[∫ π−h
0

(∫ x+h
0 u(t) (y) gk(x + h)dy−

∫ x
0 u(t) (y) gk(x)dy

)2
dx
]1/2

=

[∫ π−h
0

(∫ x
0 u(t) (y) [gk(x + h)− gk(x)] dy +

∫ x+h
x u(t) (y) gk(x + h)dy

)2
dx
]1/2

≤ 2
√

π ‖u‖PC ‖πhgk − gk‖L2[0,π−h] + 2
(∫ x+h

x u(t) (y) dy
)
‖gk(·+ h)‖L2[0,π−h] .

Using the last estimation and the fact that ‖πhgk − gk‖L2[0,π−h] → 0 as h → 0+, we obtain (33).
Since, for each k = 1, ..., N, we showed that for any bounded set B ⊂ PC([0,T], E), IkB is
equicontinuous and (IkB) (t) ⊂ L2[0, T] is relatively compact for every t ∈ [0, T], it follows that
Ik is a compact operator for each k = 1, ..., N. Consequently, if 2Mc < 1, then all the conditions of
Theorem 1 are satisfied, so that (31) has a solution z (·, ·) on [0, T]× [0, π].

5. Conclusions

The theory of impulsive evolution differential equations with causal operators is an important
one because it covers a large class of different types of impulsive evolution differential equations.
The study of these evolution equations hopefully will be continued with impulsive evolution equations
with nonlinear operators or impulsive evolution differential inclusions involving causal operators.
Another direction of investigation is to study fractional differential equations with causal operators
and their applications.
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