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Abstract: In this paper, an improved encryption algorithm based on numerical methods and
rotation–translation equation is proposed. We develop the new encryption-decryption algorithm by
using the concept of symmetric key instead of public key. Symmetric key algorithms use the same
key for both encryption and decryption. Most symmetric key encryption algorithms use either block
ciphers or stream ciphers. Our goal in this work is to improve an existing encryption algorithm
by using a faster convergent iterative method, providing secure convergence of the corresponding
numerical scheme, and improved security by a using rotation–translation formula.
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1. Introduction

Cryptography is a practice and study of techniques of hidden data transfer so that only the
intended receivers can extract and read the data [1]. It is the study of mathematical methods related
to different aspects of informational security such as data origin, entity authentication, data integrity
and confidentiality. The source data, which is to be protected by cryptography, is called plaintext.
The procedure of transforming plaintext into an unreadable form termed ciphertext is called encryption.
Decryption is the reverse process, recovering the plaintext back from a ciphertext. A cryptographic
system is a set of algorithms, seeded by key that encrypt given messages into ciphertext and recover
them back into input data. The scheme for a secret key encryption is first proposed by Shannon [2].

There are two categories of key-based cryptographic algorithms: symmetric key (secret key)
cryptography and public key (asymmetric key) cryptography. In the first category, a sender and
recipient share a private key known only to both of them. The same key is used for encryption
and decryption. The most commonly used symmetric algorithms are AES (Advanced Encryption
Standard) [3], Cha Cha [4], Blowfish [5], and IDEA (International Data Encryption Algorithm) [6].
By contrast, for asymmetric key cryptography, two keys are used: the first one is made publicly
available to senders for encrypting plaintext while the second key is kept secret and is used by
the receivers for decrypting the ciphertext. The most ordinarily exploited asymmetric schemes
are the Rivest–Shamir–Adleman (RSA) cryptosystem [7] and ECC (Elliptic-curve cryptography) [8].
Symmetric encryption schemes are usually faster than public key counterparts and thus are preferred
for encrypting big data.

In symmetric key cryptography, either stream ciphers or block ciphers can be used. An example of
stream cipher is the Vigenere Cipher. These types of ciphers encrypt the letters or digits (typically
bytes) of a message one at a time, while block ciphers take a number of bits and encrypt them as a
single unit. Until now, many symmetric data encryption algorithms have been proposed. Some of
them use classical schemes for text encryption. In [9], an extension of a public key cryptographic
scheme to support a private key cryptographic scheme which is a mix of AES and ECC is presented.
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Plain text encryption based on AES, Blowfish, and SALSA20 is designed and experimentally evaluated
in [10].

Some of them use chaotic equations for text encryption. In Reference [11], a novel scheme
for digital image encryption based on a mix of chaos theory and DNA calculation is presented.
In [12], a chaos-based pseudorandom generation scheme based on a six-dimensional chaotic system is
proposed. A text encryption architecture is given. Novel symmetric data encryption algorithms based
on logistic chaotic formula are presented in [13–15]. A chaotic logistic map filtered with binary function
is proposed to text encryption scheme in Reference [16]. In [17], a chaos-based encryption technique
based on logistic, pinchers, and sine-circle maps is proposed. An algorithm of chaotic data encryption
system by using private characteristic of electrocardiogram (ECG) signal and logistic map is designed
in [18]. In [19,20], the chaotic behaviour of a Chua system is used in novel text encryption scheme
designs. A novel pseudorandom bit generation scheme based on rotation equations is proposed in [21].
The technique has good statistical properties measured by test packages. A novel encryption method
based on modified pulsed-coupled spiking neurons circuit is presented in Reference [22]. In [23],
a modified quadratic map for numeric sensor data encryption is proposed.

2. Symmetric Key Encryption Algorithms Based on Numerical Methods

One of the first published works that consider symmetric key encryption algorithm based on numerical
methods is by Ghosh in [24] (see also [25,26]), where it is shown that any nonlinear function with one
variable f (z) can be defined as a key. The encryption process then is defined as finding the solution of
the equation

f (z)− ci = 0, (1)

where ci represents the numerical code of the ith symbol in the plaintext (e.g., the ASCII code).
The function f (z) must be chosen in such a way that the corresponding formula (1) has at least one
real root for any i. Then, the set of roots {z∗i } represents the ciphertext. On the receiver side, each entry
z∗i is decoded by substituting it into f (z) giving rise to the plaintext character ci = f (z∗i ) (the value
f (z∗i ) must be appropriately rounded to recover ci). In [24], as a key function f (z), the authors use a
cubic polynomial and, for the numerical solution of equations f (z)− ci = 0, they use the Newton’s
iterative method. We have to mention that, in solving nonlinear Equation (1), we can use different
iterative methods. Analogous to this algorithm, an example of a public key cryptosystem based on
numerical methods is considered in [27].

It is important to say that the main weaknesses of such algorithms can be summarized in
the following:

1. Lack of rules on how to choose the function f and suitable iterative method so that the convergence
of the process is always guaranteed.

2. Vulnerability to attack because in these types of algorithms the same letter is encoded with the
same real number of each occurrence in the plaintext.

Our aim in the present work is to develop a new algorithm that solves the disadvantages
mentioned above. In order to achieve this, the new scheme will be based on employing numerical
iterative methods and rotation–translation formula.

3. On Numerical Methods and Rotation–Translation Equation

3.1. On Numerical Methods for Solving Nonlinear Equations

Although the Newton’s iterative method

zk+1 = zk −
f (zk)

f ′(zk)
, k = 0, 1, 2, . . . (2)
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is one of the most popular and commonly used methods, numerical analysis offers many iterative
methods that can be used in the stage of solution of Equation (1). In general to calculate the roots of
nonlinear equations (of the type (1)), we have to use approximate (iterative) methods. When studying
an iterative method, two of the most important aspects to consider are:

• the convergence speed of the iteration,
• an interval of convergence and the rules for choosing the initial approximations.

Most of the known iterative algorithms for solving nonlinear equations are only locally convergent,
i.e., before using such a method, we need to locate the unknown root at a sufficiently small interval.
Even if the root sought is located at the appropriate interval, if we do not choose the initial
approximation in a proper way, the process may not be convergent. Usually, iterative methods
of this type require the following convergence conditions:

• need to have an interval [a, b] containing a single root of f , and
• the derivatives f ′ and f ′′ must not have zeros in the interval [a, b].

Then, the corresponding iterative process converges to the sought root for an initial approximation
z0 which is the end of the interval [a, b], where f (z0) f ′′(z0) > 0 (or f (z0) f ′′(z0) < 0).

For some examples of more computationally efficient and higher order iterative methods, we refer
the reader to [28].

In the encryption algorithm that we will introduce later, we will use the following iterative
function

zk+1 = zk −
h(zk)

2

(
3 f ′(uk) + f ′(zk)

3 f ′(uk)− f ′(zk)

)
, k = 0, 1, 2, . . . (3)

where h(zk) =
f (zk)
f ′(zk)

and uk = zk − 3
2 h(zk). This iterative algorithm is explored by Jarrat in [29], and it

is known as Jarrat’s method (see also [30]).
The reason we prefer iteration method (3) over method (2) is its faster convergence. The order

of convergence of Jarrat’s method is four, while the one of Newton’s method is only two (see [30]).
In addition, method (3) has higher computational efficiency, although at each step of the iteration one
value of f and two values of f ′ are calculated (while in the Newton’s method, one value of f and one
value of f ′ are calculated). Thus, if the function f is a polynomial, then calculating the value of the
function f is always more complex than calculating its derivative f ′.

3.2. Base of Rotation–Translation Equation

In order to avoid the vulnerability to statistical attack, we include additional randomness by using
the following space contraction formula based on rotation–translation equation of the form [31]

xk+1 = a + b(xk cos θk − yk sin θk),

yk+1 = b(xk sin θk + yk cos θk),
(4)

where the angle of rotation is

θk = c +
d

x2
k + y2

k
. (5)

The translation value is a = 6, the space contraction value is b = 0.8 < 1, and rotation values are
c = a/2 and d = a. The rotation–translation Equation (4) with initial conditions x0 = 0.233, y0 = −0.67
is presented in Figure 1.
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Figure 1. Space contraction.

4. Proposed Encryption Algorithm Based on Numerical Method and Rotation–Translation
Equation

Here, we describe an encryption algorithm based on space contraction and numerical method.
Any nonlinear function or polynomial f with one variable can be defined as part of a key.

We consider plaintext P with byte length of L. The initial values x0 and y0 from Equation (4),
and an initial iteration number M0, are determined. The rotation–translation formula, Equation (4),
is iterated for M0 times.

The proposed algorithm based on numerical method and space contraction is given below:

1. Read the symbols from the plaintext data and get the ASCII values of the different symbols;
2. Construct a system of L nonlinear equations by subtracting the ASCII values from the function f

and equate with zero;
3. Solve individually the nonlinear equations and put the results αi into an array B;
4. The loop of Equation (4) continues, and as an output, two real numbers xi and yi are generated.

We take the sum of xi and yi to produce the real number di = xi + yi, which is put into an array R.
5. Return to Step 4 until a stream of real numbers R with length L is reached.
6. We get the sum of the two arrays B and R to produce E, the output array of real numbers.

Remark 1. In Step 2 of Encryption algorithm, it is desirable that the function or polynomial f is such that each
equation of the type f (z)− ci = 0 has at least one real root, and it is easy to determine the initial approximation,
which guarantees the convergence of the iterative process.

4.1. Approaches for Choosing a Nonlinear Function

In the following, we consider two example functions that are suitable for selecting in the
above algorithm.

4.1.1. Nonlinear Function

Let f (z) has the following form
f (z) = ez − z2 − p, (6)

where p is a real parameter such that p ≥ 1. For its first derivative,

f ′(z) = ez − 2z,
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we conclude that f ′(z) > 0 for all z ∈ R, i.e., the function f (z) is monotonically increasing for all z ∈ R.
This and the limits

lim
z→−∞

f (z) = −∞ and lim
z→∞

f (z) = ∞

show that the function f (z) has only one real root. From the second derivative of f

f ′′(z) = ez − 2,

and because f ′′(z) > 0 for ∀z > ln 2, it follows that the function f (z) is convex for z ∈ (ln 2, ∞).
Therefore, all these properties are also valid for the functions

gi(z) = f (z)− ci,

where ci is an integer value (the corresponding ASCII code). Then, for any i, the function gi(z) is
monotonous, convex, and has a real root in the interval (ln 2, ∞). Indeed, it can be shown that each
one function gi(z) has a real root in the finite interval (ln 2, 6).

4.1.2. Polynomial Function

We consider a fifth degree monic polynomial having the following form:

f (z) = z5 − z4 + z3 − pz2 + qz− (p + 2q), (7)

where p and q are real parameters such that p, q ∈ [1, 10]. From the fundamental theorem of algebra,
it follows that f (z) has at least one real root. Using the Descartes’ rules of sign, we can prove that f (z)
has no negative real root, hence it has at least one real positive root (see Appendix A). Examining the
first two derivatives of f , it can be shown that the function f (z) is monotonically increasing, convex
and has a real root in the interval

( 9
8 , ∞

)
, for any p, q ∈ [1, 10]. By using the bounding theorems (see

Appendix A), it can be shown that f (z) has a real root in the finite interval
(

9
8 , 2|p + 2q|1/5

)
.

4.2. An Example of Encryption

In order to demonstrate the proposed algorithm, we will use the following example:
The text to be encrypted: “Shumen university”.
As a key function, we use the polynomial

f (z) = z5 − z4 + z3 − z2 + z− 3,

which is obtained by Equation (7) in the case of p = q = 1. During the encryption process (Step 3 of
the Algorithm), we have to solve in series nonlinear equations of the type

f (z)− ci = 0, (8)

where ci represents the ASCII code of the i-th character in the text, i.e., ci ∈ [1, 255]. From the analysis
of the polynomial (7) and using the bounding theorems for the roots of polynomials, we deduce that
Equation (8) has a real root in the interval

( 9
8 , 6
)

for any ci ∈ [1, 255]. Moreover, this interval is such that
the iterative process (3) is convergent to the solution for any initial approximation z0 ∈

( 9
8 , 6
)
. For this

reason, we use the same initial approximation for each Equation (8) obtained during the encryption
process, namely the middle point of the interval: z0 = 6+9/8

2 ≈ 3.56.
We solve all the equations by iterative function (3) and by using the following stopping criteria

• | f (zk)| ≤ ε, and
• |zk − zk+1| ≤ ε,

where ε = 10−15.
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As a result, for all the equations, the stopping criteria are reached after three iterations.
For comparison, if we use the Newton iterative method (2) instead of the Jarrats’ method for solving the
corresponding equations, with the same initial approximation, we get six iterations for each equation,
see Table 1.

Table 1. Number of iterations for Jarrats’method (JM) and Newton method (NM), and generated
arrays.

Letter ASCII NM JM Array B Array R Array E
(Char) Code Iterations Iterations Reached Root (αi) di ei = αi + di

S 83 6 3 2.596938615169214 1.13761418319195 3.73455279836116
h 104 6 3 2.707594514758099 3.83246813052273 6.54006264528082
u 117 6 3 2.767550880788345 2.58986907946370 5.35741996025204
m 109 6 3 2.731316748315844 4.91511042783787 7.64642717615371
e 101 6 3 2.692927857503279 2.09200715087053 4.78493500837380
n 110 6 3 2.735958159508397 7.52948634851868 10.2654445080271

94 6 3 2.657327240630354 0.10782288092075 2.76515012155110
U 85 6 3 2.608365856583876 5.70292778455835 8.31129364114222
n 110 6 3 2.735958159508397 1.30796668243219 4.04392484194058
i 105 6 3 2.712409561369016 7.38162948307289 10.0940390444419
v 118 6 3 2.771941812496392 0.13478345799064 2.90672527048704
e 101 6 3 2.692927857503279 5.23813805178474 7.93106590928801
r 114 6 3 2.754198397484480 1.66157719938621 4.41577559687069
s 115 6 3 2.758679632039476 7.40857522965636 10.1672548616958
i 105 6 3 2.712409561369016 0.16954303210037 2.88195259346938
t 116 6 3 2.763130305077092 6.32301454738480 9.08614485246189
y 121 6 3 2.784941120909602 0.81874887373720 3.60368999464681

The output array of real numbers E is in the last column of Table 1, and this is the encrypted text
that the recipient receives.

4.3. Brute-Force Attack Analysis

The set of all initial values constitutes the key size. The key size of the novel encryption algorithm
has the following initial key values x0, y0, M0 and at least three real coefficients ai of the polynomial
f (for monic polynomial f of degree n ≥ 3). The two seeds x0 and y0 are constructed by randomly
choosing two floating-point values that belonging to the intervals [0.5, 7] and [−0.8, 2], respectively.
The novel encryption algorithm does not propose weak keys. As stated in the IEEE Standard for
floating-point arithmetic [32], the computational precision of the 64-bit floating point variable is about
10−15 ≈ 249. The key size of the novel encryption is (249)5 + 232 > 2248, which is sufficient enough to
defeat brute-force attack [33]. The key space is comparable to state-of-the-art chaos-based encryption
algorithms; for example, [10,13,16].

4.4. Statistical Test Analysis of the Proposed Encryption

In an attempt to evaluate randomness of the improved encryption algorithm, we used NIST [34],
ENT [35], and PractRand [36] statistical test applications. The output numbers ei from array E are
converted to bytes as follows: si = mod(abs(integer(ei × 1015))), 256), where integer(e) calculates the
integer part of e, truncating the value at the decimal point, abs(e) calculates the absolute value of e,
and mod(e, w) calculates the reminder after division. The bytes si are produced. Using the improved
encryption, 103 sequences of 125,000 bytes are produced.

The NIST suite software (version sts-2.1.2) includes 15 statistical tests: monobit, block frequency,
cumulative sums forward and reverse, runs, longest run of ones, rank, Fourier, non-overlapping
templates, overlapping templates, universal, approximate entropy, serial one and two, linear
complexity, random excursion, and random excursion variant.
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The output results of the first 13 tests are in Table 2. The minimum hit rate for each statistical test
with the excluding of the random excursion variant test is approximately 980 for a sample size of 1000
byte stings. The minimum hit rate for the random excursion variant test is approximately 600 for a
sample size of 614 byte strings. The random excursion test outputs 8 p-values which are tabulated in
Table 3. The random excursion variant test calculates 18 randomness probability numbers: p-values,
and they are in Table 4.

The improved encryption algorithm passed successfully all the NIST tests.

Table 2. NIST test suite results.

NIST Test p-Value Success Rate

Monobit 0.556460 992/1000
Block frequency 0.010093 981/1000
Cumulative sums forward 0.399442 993/1000
Cumulative sums reverse 0.299736 993/1000
Runs 0.605916 986/1000
Longest run of ones 0.605916 988/1000
Rank 0.830808 988/1000
Fourier 0.200115 980/1000
Non overlapping templates 0.498222 990/1000
Overlapping templates 0.859637 992/1000
Universal 0.653773 988/1000
Approximate entropy 0.693142 988/1000
Serial one 0.894918 990/1000
Serial two 0.282626 986/1000
Linear complexity 0.051942 995/1000

Table 3. NIST Random excursion test results.

State p-Value Success Rate

−4 0.696617 610/614
−3 0.746463 606/614
−2 0.211467 610/614
−1 0.501472 606/614
+1 0.933509 607/614
+2 0.584363 605/614
+3 0.873629 610/614
+4 0.672912 608/614

Table 4. NIST Random excursion variant test results.

State p-Value Success Rate

−9 0.283657 608/614
−8 0.444875 607/614
−7 0.699986 609/614
−6 0.775401 607/614
−5 0.876173 610/614
−4 0.921867 607/614
−3 0.135745 607/614
−2 0.036332 610/614
−1 0.574229 612/614
+1 0.345203 609/614
+2 0.366645 607/614
+3 0.517714 610/614
+4 0.024235 612/614
+5 0.990938 612/614
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Table 4. Cont.

State p-Value Success Rate

+6 0.447934 610/614
+7 0.232430 609/614
+8 0.193732 611/614
+9 0.659297 611/614

The ENT application includes six tests to bit or byte sequences. We tested a stream of 125,000,000
bytes (1,000,000,000 bits) of the improved encryption and tabulated the output results in Table 5.
The novel encryption passed successfully all the ENT tests.

Table 5. ENT test results.

ENT Test Input of Bits Input of Bytes

Entropy 1.000000 7.999999
Optimum compression Reduce size by 0% Reduce size by 0%
χ2 square 0.16, exceed 68.56 % 242.28, exceed 70.66%
Arithmetic mean value 0.5000 127.5055
Monte Carlo for π 3.141226994 (error 0.01%) 3.141226994 (error 0.01%)
Serial correlation −0.000002 0.000180

The third suite is PractRand. We tested our improved encryption algorithm for strings up to 1 GB
(bytes) in length, passing all statistical tests successfully as shown in Table 6.

Table 6. PractRand test results.

Test Name Raw Processed Evaluation

BCFN(2,13):! R = +0.0 “pass” normal
BCFN(2+0,13−0) R = −0.7 p = 0.608 normal
BCFN(2 + 1,13 − 0) R = +2.3 p = 0.172 normal
BCFN(2 + 2,13 − 1) R = −0.1 p = 0.504 normal
BCFN(2 + 3,13 − 1) R = −2.2 p = 0.812 normal
BCFN(2 + 4,13 − 2) R = −4.4 p = 0.968 normal
BCFN(2 + 5,13 − 3) R = −1.1 p = 0.669 normal
BCFN(2 + 6,13 − 3) R = −4.1 p = 0.960 normal
BCFN(2 + 7,13 − 4) R = +4.8 p = 0.032 normal
BCFN(2 + 8,13 − 5) R = +3.3 p = 0.093 normal
BCFN(2 + 9,13 − 5) R = −0.3 p = 0.524 normal
BCFN(2 + 10,13 − 6) R = −4.3 p = 0.981 normal
BCFN(2 + 11,13 − 6) R = −0.9 p = 0.614 normal
BCFN(2 + 12,13 − 7) R = +1.6 p = 0.219 normal
BCFN(2 + 13,13 − 8) R = −2.7 p = 0.914 normal
DC6-9x1Bytes-1 R = −1.0 p = 0.795 normal
Gap-16:! R = +0.0 “pass” normal
Gap-16:A R = +0.0 p = 0.614 normal
Gap-16:B R = −3.2 p = 0.987 normal
(Low1/8)BCFN(2,13):! R = +0.0 “pass” normal
(Low1/8)BCFN(2+0,13 − 1) R = −1.7 p = 0.754 normal
(Low1/8)BCFN(2+1,13 − 2) R = +1.0 p = 0.336 normal
(Low1/8)BCFN(2+2,13 − 3) R = +1.7 p = 0.243 normal
(Low1/8)BCFN(2+3,13 − 3) R = −0.7 p = 0.605 normal
(Low1/8)BCFN(2+4,13 − 4) R = +2.7 p = 0.138 normal
(Low1/8)BCFN(2+5,13 − 5) R = −0.3 p = 0.528 normal
(Low1/8)BCFN(2+6,13 − 5) R = −0.9 p = 0.626 normal
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Table 6. Cont.

Test Name Raw Processed Evaluation

(Low1/8)BCFN(2+7,13 − 6) R = −2.3 p = 0.838 normal
(Low1/8)BCFN(2+8,13 − 6) R = −2.4 p = 0.853 normal
(Low1/8)BCFN(2+9,13 − 7) R = +1.6 p = 0.223 normal
(Low1/8)BCFN(2+10,13 − 8) R = +3.1 p = 0.096 normal
(Low1/8)DC6-9x1Bytes-1 R = −0.5 p = 0.730 normal
(Low1/8)Gap-16:! R = +0.0 “pass” normal
(Low1/8)Gap-16:A R = −0.1 p = 0.675 normal
(Low1/8)Gap-16:B R = −1.7 p = 0.888 normal

The different statistical tests clearly show the high quality of the proposed algorithm. Table 7
summarizes some of the computed values of our proposed scheme with other algorithms.
The performance test of the novel scheme is based on the average response time with data size
of 1 MB. The execution is done on mobile Dell Inspiron computer i7-3630QM (2.4 GHz, 8GB RAM).

Table 7. Comparison of our improved symmetric key encryption with other algorithms.

Algorithm Key Size Correlation Entropy Arithmetic Mean Performance Evaluation

Proposed 2248 −0.000002 7.999999 127.5055 0.105
[14] Murillo-Escobar 2128 −0.002100 7.994500 - -
[21] Stoyanov 2015 2100 0.000001 7.999998 127.4982 0.19
[37,38] AES-128 2128 −0.002100 7.954880 127.5281 0.12

Based on the good test outputs, we can infer that the novel text encryption based on numerical
method and rotation–translation formula has satisfying statistical characteristics and provides a
reasonable level of security.

5. Conclusions

We have presented an improved encryption algorithm based on numerical method and
rotation–translation formula. The new method uses a faster convergent iterative algorithm and adds
additional randomness by using the space contraction equation. Two exemplary ways of constructing
nonlinear functions or polynomials with corresponding properties are described. In the examples
considered, we demonstrate how to determine the interval containing the desired root and in which
the iterative method is guaranteed to be convergent. Our security analysis shows that the improved
encryption scheme can be successfully used for information security.
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Appendix A

Appendix A.1. Real Roots Counting of Polynomials

Consider a monic polynomial of degree n

f (x) = xn + an−1xn−1 + . . . + a1x + a0 .
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From the fundamental theorem of algebra, it follows that f has n real or complex roots,
counting multiplicities. If the coefficients a0, a1, . . . , an−1 are all real, then the complex roots occur in
conjugate pairs.

Using the following Descartes’ rules of sign, we can count the number of real positive zeros of f .
Descartes’ rules
Let p be the number of variations in the sign of the coefficients an, an−1, . . . , a0 (where an = 1 and

the zero coefficients are ignored). Let m be the number of real positive zeros of f . Then,

• m ≤ p;
• p−m is an even integer.

A negative zero of f (x), if exists, is a positive zero of f (−x).

Appendix A.2. Bounds of Real Roots of Polynomials

The first result in the theory of the location of polynomial zeros is due to Gauss, which is improved
by Cauchy in [39], where he proves the following theorem.

Theorem A1 (Cauchy). Let

f (x) = anxn + an−1xn−1 + . . . + a1x + a0

be a polynomial with complex coefficients, where n ≥ 1 and an 6= 0. Then, all the zeros of f (x) lie inside the
circle of radius

R = 1 + max
0≤k≤n−1

∣∣∣∣ ak
an

∣∣∣∣
about the origin.

Another bound given by Lagrange is:
Let

f (x) = anxn + an−1xn−1 + . . . + a1x + a0

be a polynomial with complex coefficients, where n ≥ 1 and an 6= 0. Then, all the zeros of f (x) lie
inside the circle of radius

R = 2 max

(∣∣∣∣ an−1

an

∣∣∣∣ ,
∣∣∣∣ an−2

an

∣∣∣∣1/2
, . . . ,

∣∣∣∣ a0

an

∣∣∣∣1/n
)

about the origin.
The next theorem is about bounding positive real roots of polynomials with real coefficients due

to Cauchy.

Theorem A2 (Cauchy). Let

f (x) = anxn + an−1xn−1 + . . . + a1x + a0

be a polynomial with real coefficients, where n ≥ 1 and an > 0 and which has s > 0 strictly negative coefficients.
Then, every positive real root of f (x) is no larger than r:

R = max

(∣∣∣∣s an−1

an

∣∣∣∣1/i
: 1 ≤ i ≤ n and an−i < 0

)
.

More recent and sharper results are obtained by Joyal, Labelle, and Rahman [40] by proving.
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Theorem A3. If M = max0≤i<n−1 |ai|, then all the zeros of the monic polynomial

f (x) = xn + an−1xn−1 + . . . + a1x + a0

are contained in the disc

|x| ≤ 1
2

(
1 + |an−1|+

√
(1− |an−1|)2 + 4M

)
.
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