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Abstract: In this paper, we deal with the existence and asymptotic behavior of solutions for a fractional
Kirchhoff type problem involving the electromagnetic fields and critical nonlinearity by using the
classical critical point theorem. Meanwhile, an example is given to illustrate the application of the
main result.
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1. Introduction

The aim of this paper is to investigate the existence of solutions for a magnetic fractional Kirchhoff
equation involving a critical nonlinearity:

M([v]2s,A)(−∆)s
Av = µv + |v|2∗s−2v + g(x, |v|)v in Ω, v = 0 in RN \Ω, (1)

where s ∈ (0, 1), N > 2s, Ω is an open and bounded domain with the Lipschitz boundary,

[v]s,A =
( ∫∫

R2N

|v(x)− ei(x−y)·A(
x+y

2 )v(y)|2
|x− y|N+2s dxdy

) 1
2
,

g is a lower order perturbation of the critical power |v|2∗s−2v; µ > 0 is a real parameter; 2∗s = 2N
N−2s is

the fractional critical Sobolev exponent; the Kirchhoff functionM : R+ → R+
0 is a continuous function;

and (−∆)s
A is the non-local fractional magnetic operator, defined as follows:

(−4)s
Aφ(x) = 2 lim

ε→0+

∫
RN\Bε(x)

φ(x)− ei(x−y)·A(
x+y

2 )φ(y)
|x− y|N+2s dy,

for x ∈ RN , along any complex valued functions φ ∈ C∞
0 (RN ,C), where Bε(x) denotes the open ball in

RN centered at x ∈ RN and of radius ε > 0. We can consider (−∆)s
A as a fractional counterpart of the

magnetic Laplacian (∇− iA)2, with A : RN → RN , being a L∞
loc- vector potential; see Chapter 7 of [1].

For further details about this kind of operator, see [2–6] and the references therein. The equation
with the fractional magnetic operator A and the critical nonlinear term |v|2∗s−2v is called the fractional
critical magnetic problem. For such a critical nonlinear case, Fiscella et al first proposed a bounded
stationary Kirchhoff variational model. The existence and multiplicity of solutions to fractional
Kirchhoff problems are obtained by using the variational method and the principle of concentrated
compactness in [7]. The main difficulty about this problem is the lack of compactness of Sobolev space,
and the magnetic operators in the equation make the problem more complicated. Most scholars deal
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with the known multiplicity, but there are few articles about the asymptotic behavior of solutions.
For instance, in [8], Fiscella et al. studied bifurcation phenomena and the multiplicity of solutions for
a critical magnetic fractional problem by using a classical theorem in critical point theory. Moreover,
Libo et al. obtained infinitely many solutions for the degenerate magnetic fractional Kirchhoff problem
by using the new version of the symmetric mountain pass theorem of Kajikiya in [9].

Clearly, when A ≡ 0 and φ is a smooth real valued function, (−4)s
A becomes classical fractional

Laplacian (−4)s, and Problem (1) becomes the fractional Kirchhoff equations involving a lower order
perturbation term and a critical nonlinearity. This kind of fractional Laplacian operator has different
applications in many fields, such as phase transition phenomena, continuum mechanics, game theory,
and so on, as they are the typical outcome of stochastically stabilization of Lévy processes; see [10].
In particular, asM = 1, Servadei et al. completed the study of elliptic equations with the fractional
critical Sobolev exponent in [11]. For the more general case, in [12], Autuori et al. investigated the
existence of solutions for a class of fractional Kirchhoff problems.

Motivated by the above works, the present paper concerns the existence and asymptotic behavior
of solutions of Problem (1) and covering the degenerate caseM(0) = 0, without any monotonicity
conditions onM. In order to obtain this goal, we assume that

(M1) There exists θ ∈ (0, 1), such that:

θM̃(t) = θ
∫ t

0
M(s)ds ≥M(t)t , ∀ t ∈ R+

0 ;

(M2) for every $ > 0, there exists m = m($) > 0 such thatM(t) ≥ m for all t ≥ $;
(M3) there exists a positive a0 such thatM(t) ≥ a0t for all t ∈ [0, 1].

Remark 1. It is worth mentioning that Kirchhoff in 1883 (see [13]) presented a stationary version of the
differential equation, the so-called Kirchhoff equation:

ρ
∂2v
∂t2 −

( p0

l
+

e
2L

∫ L

0
| ∂v
∂x
|2dx

) ∂2v
∂x2 = 0,

where ρ, l, e, L, p0 are positive constants that represent the corresponding physical meanings. It is a generalization
of the D’Alembert equation.

The Kirchhoff functions M come in many forms, and we can refer to the literature [14–16]. Among
them, in [14,16], the Kirchhoff function was assumed to satisfy certain monotonicity (i.e.,M(t) = a + btτ ,
a, b > 0, τ ≥ 1 for all t ∈ R+

0 ); we adopt the assumption of a more generalized integral form (M1). In [15],
the authors only considered the non-degenerate case, while in this paper, we consider the case including the
degenerate case. Throughout the paper, Conditions (M1)–(M3) are very important. For this reason, we first
make a brief analysis for our later use. As indicated in [17], Condition (M3) means that:

M̃(t) ≥ a0
t2

2
(2)

for any t ∈ [0, 1]. Moreover, by (M1), we get M̃(t) ≥ M̃(1)tθ for all t ∈ [0, 1], and combining with (2) gives
M̃(t) ≥ ctθ for any t ∈ [0, 1]. In the same way, for any κ > 0, there exists γκ = M̃(κ)/κθ > 0 such that:

M̃(t) ≤ γκtθ for any t ≥ κ. (3)

Thus, it follows from (3) that:

lim
t→∞

M̃(t)
t

= 0, (4)

thanks to θ < 1 by (M1).
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The perturbation in problem (1) is a Carathéodory function g : Ω × R+ → R satisfying the
following assumptions:

(g1) There exist ς ∈ (2θ, 2∗s ) and a nonnegative function f (x) ∈ Lτ(Ω) such that |g(x, t)| ≤ f (x)tς−2

for all (x, t) ∈ Ω×R+, where τ = 2∗s
2∗s−ς ;

(g2) 0 < G(x, t) =
∫ t

0 g(x, s)sds ≤ 1
2 g(x, t)t2 a.e. x ∈ Ω, t ∈ R+;

Remark 2. According to (g1), we can get that:

G(x, t) ≤ f (x)tς for any (x, t) ∈ Ω×R+. (5)

By (g2), we have that for some d1, d2 > 0:

G(x, t) ≥ d1t2 − d2 for any (x, t) ∈ Ω×R+. (6)

Now, we give the main result of this paper; our work space X0,A will be introduced in Section 2.

Theorem 1. SetM(0) = 0 and 2s < N < 4s. If (M1)–(M3) and (g1)–(g2) hold, then there exists µ0 > 0,
such that for any µ ≥ µ0, Problem (1) has at least a non-trivial mountain pass solution vµ. Furthermore,
lim

µ→∞
‖ vµ ‖X0,A= 0.

Remark 3. Recently, the fractional magnetic operator problem has attracted the intense interest of many scholars
because of its wide application in various fields. There is a variety of problems involving magnetic operators,
for example fractional magnetic Schrödinger equations, fractional magnetic Kirchhoff-type equations, critical
fractional magnetic degenerate equations, and so on. For their more detailed content, please refer to the relevant
theories [18–24]. To the best of our knowledge, this is the first attempt to study the existence and asymptotic
behavior of solutions for this kind of equation with the critical magnetic operator.

The paper is structured as follows. In Section 2, we recall some properties on the fractional
working spaces involved and discuss the variational formulation. In Section 3, we show the validity
of the structure of the mountain pass lemma and compactness criterion. In Section 4, we adapt the
variational method used by Evans in [25] to prove Theorem 1.

2. Variational Setup

In this section, we first recall the basic variational frameworks. For any v ∈ C, we indicate
withRv its real part and with v its complex conjugate. Moreover, we define the magnetic Gagliardo
semi-norm as:

[v]Hs
A
=
( ∫∫

Ω×Ω

|v(x)− ei(x−y)·A(
x+y

2 )v(y)|2
|x− y|N+2s dxdy

) 1
2
,

according to [21]. The function space Hs
A(Ω,C) is endowed with the norm:

‖v‖Hs
A(Ω,C) :=

(
‖v‖2

L2(Ω,C) + [v]2Hs
A(Ω,C)

) 1
2
, (7)

where we denote by L2(Ω,C) the space of measurable functions v : Ω→ C such that:

‖v‖L2(Ω,C) =
( ∫

Ω
|u(x)|2

) 1
2
= ‖v‖2 < ∞,

where | · | is the Euclidean norm in C.
When A = 0, this definition (7) becomes the usual fractional space Hs(Ω). By Proposition 2.2

in [19], it is easy to see that C∞
0 ⊆ Hs

A(Ω,C).



Symmetry 2020, 12, 76 4 of 11

To obtain weak solutions of Problem (1), we only need to define our workspace as in [26].

X0,A = {v ∈ Hs
A(R

N ,C) : v(x) = 0 a.e. in RN\Ω}.

which extends to the magnetic structure, relative to that space introduced in [12]. We use the method
in [8] to define the inner product on X0,A:

〈v, φ〉X0,A := R
∫∫

R2N

(v(x)− ei(x−y)·A(
x+y

2 )v(y))(φ(x)− ei(x−y)·A(
x+y

2 )φ(y))
|x− y|N+2s dxdy.

The corresponding norm is:

‖v‖X0,A =
( ∫∫

R2N

|v(x)− ei(x−y)·A(
x+y

2 )v(y)|2
|x− y|N+2s dxdy

) 1
2
.

From (Lemma 7, [27]), we know that (X0,A, 〈·, ·〉X0,A) is a Hilbert space and is reflexive.

Lemma 1. (Lemma 2.2, [26]) X0,A ↪→ L2(Ω,C) is continuous and compact.

Remark 4. For any v ∈ X0,A, there exists S > 0, depending on n, s, Ω, such that:

‖v‖2 ≤ S‖v‖X0,A . (8)

We define the best magnetic fractional Sobolev constant given by:

SA := inf
v∈X0,A\{0}

∫∫
R2N

|v(x)−ei(x−y)·A(
x+y

2 )v(y)|2
|x−y|N+2s dxdy( ∫

Ω |v(x)|2∗s dx
) 2

2∗s

. (9)

Definition 1. We say that v ∈ X0,A is a weak solution of Problem (1), if:

M([v]2s,A)〈v, φ〉X0,A = µR
∫

Ω
v(x)φdx +R

∫
Ω
|v(x)|2∗s−2v(x)φdx +R

∫
Ω

g(x, |v(x)|)v(x)φdx

for any φ ∈ X0,A.

Obviously, in order to seek the weak solutions of Problem (1), we look for critical points of the
C1-functional IA,µ : X0,A → R denoted by:

IA,µ(v) =
1
2
M̃([v]2s,A)− µ

1
2

∫
Ω
|v(x)|2dx− 1

2∗s

∫
Ω
|v(x)|2∗s dx−

∫
Ω

G(x, |v(x)|)dx

and:

〈I ′A,µ(v), φ〉 =M([v]2s,A)〈v, φ〉X0,A − µR
∫

Ω v(x)φdx−R
∫

Ω |v(x)|2∗s−2v(x)φdx−R
∫

Ω g(x, |v(x)|)v(x)φdx (10)

for any v, φ ∈ X0,A.
For the convenience of the reader, we introduce the following Palais–Smale condition at suitable

level cµ.

Definition 2. Let IA,µ ∈ C1(X0,A,R); we say that IA,µ satisfies the (PS)cµ condition at the level cµ ∈ R,
if any sequence {vk} ⊂ X0,A such that:

IA,µ(vk)→ cµ, I
′
A,µ(vk)→ 0 as k→ ∞, (11)
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possesses a convergent subsequence in X0,A.

To prove Theorem 1, we apply the following classical critical point theorem for our functional IA,µ.

Theorem 2. [25] Let X0,A be a real Banach space and IA,µ ∈ C1(X0,A,R) with IA,µ(0) = 0. Suppose that
IA,µ fulfills the (PS)cµ condition and

(i) there exist α, ρ > 0 such that IA,µ(v) ≥ α for all v ∈ X0,A, ‖v‖X0,A = ρ;
(ii) there exists ω ∈ X0,A satisfying ‖ω‖X0,A > ρ such that IA,µ(ω) < 0. Define:

Γ = {γ ∈ C1([0, 1], X0,A) : γ(0) = 0, γ(1) = ω}.

Then:
cµ = inf

γ∈Γ
max
t∈[0,1]

IA,µ(γ(t)) ≥ α

is a critical value of IA,µ.

3. Proof of the Main Result

In this section, we first show that the functional IA,µ meets all the structural characteristics of
the mountain pass theorem, and then, we prove that the functional IA,µ satisfies the Palais–Smale
condition at an appropriate level cµ for any µ > µ0, where µ0 > 0 is a threshold. Finally, we give the
proof of Theorem 1.

Lemma 2. If (M1)–(M2) and (g1) hold, then, for any µ > 0, there exist α, ρ > 0 such that IA,µ(v) ≥ α for
all v ∈ X0,A, ‖v‖X0,A = ρ;

Proof. According to (M1), we have

M̃(t) ≥ M̃(1)tθ for all t ∈ [0, 1]. (12)

Fix µ > 0 and let v ∈ X0,A, with ‖v‖X0,A ≤ 1. By Equations (5) and (12), we get that

IA,µ(v) ≥
M̃(1)

2
‖v‖2θ

X0,A
− µ

1
2
‖v‖2

2 −
1
2∗s
‖v‖2∗s

2∗s
−
∫

Ω
f (x)|u|ςdx. (13)

Further, it follows from Equations (8), (9) and (13), there exists C > 0 such that

IA,µ(v) ≥
M̃(1)

2
‖v‖2θ

X0,A
− µ

1
2

S2‖v‖2
X0,A
− 1

2∗s
· 1

S2∗s /2
A

‖v‖2∗s
X0,A
− ‖ f (x)‖τ‖v‖ς

2∗s

≥M̃(1)
2
‖v‖2θ

X0,A
− µ

1
2

S2‖v‖2
X0,A
− 1

2∗s
· 1

S2∗s /2
A

‖v‖2∗s
X0,A
− C

1

Sς/2
A

‖v‖ς
X0,A

.

Thus, choosing ρ small enough, we obtain the result, since 2θ < 2, ς < 2∗s .

Lemma 3. If (M1)–(M2) and (g2) hold, then, for any µ > 0, there exist ω, with ‖ω‖X0,A ≥ 0, such that
IA,µ(ω) < 0. In particular, ‖ω‖X0,A > ρ, where ρ is given in Lemma 2.

Proof. Let µ > 0, and fix v0 ∈ X0,A with ‖v0‖X0,A = 1. According to Equation (4), there exists t0 > 0
such that M̃(t2) ≤ 2t2 for any t ≥ t0. Hence, it follows from Equation (6) that:

IA,µ(tv0) ≤ t2 − µ
1
2

t2‖v0‖2
2 −

1
2∗s

t2∗s ‖v‖2∗s
2∗s
− d1t2‖v0‖2

2 + d2‖v0‖1
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for any t > t0. Thanks to 1 < 2 < 2∗s , we can conclude that IA,µ(tv0) → −∞ as t → ∞. Therefore,
the assertion is true by setting ω = t∗v0, with t∗ > 0 large enough.

Lemma 4. We obtain the following result:
lim

µ→∞
cµ = 0.

Proof. Fix µ > 0, and take ω ∈ X0,A to be given by Lemma 3. There exists tµ > 0 satisfying
IA,µ(tµω) = max

t≥0
IA,µ(tω), since IA,µ fulfills the mountain pass geometry. Thus, 〈I ′A,µ(tµω), ω〉 = 0,

and from Equation (10):

tµ‖ω‖2
X0,A
M(t2

µ‖ω‖2
X0,A

) = µtµ‖ω‖2
2 + t2∗s−1

µ ‖ω‖2∗s
2∗s
+
∫

Ω
g(x, |tµω|)ω2dx ≥ t2∗s−1

µ ‖ω‖2∗s
2∗s

(14)

thanks to the fact that µ > 0. We assert that {tµ}µ>0 is bounded. Indeed, fix ε > 0. From Equation (4),
there exists t0 = t0(ε) > 0 such that M̃(t) ≤ εt for any t ≥ t0. Therefore, denoting by Θ =

{
µ > 0 :

t2
µ‖ω‖2

X0,A
≥ t0

}
, we observe that:

t2
µ‖ω‖2

X0,A
M(t2

µ‖ω‖2
X0,A

) ≤ θM̃(t2
µ‖ω‖2

X0,A
) ≤ εθt2

µ‖ω‖2
X0,A

for any µ ∈ Θ (15)

thanks to (M1). Since ‖ω‖X0,A > ρ, it follows from Equations (14) and (15) that:

εθ‖ω‖2
X0,A
≥ t2∗s−2

µ ‖ω‖2∗s
2∗s

for any µ ∈ Θ,

which means that the boundedness of {tµ}µ∈Θ. Obviously, through the composition of Θ, also
{tµ}µ∈{R\Θ} is bounded. This concludes the proof of the assertion.

Let a sequence {µk}k∈N ⊂ R+ such that µk → ∞ as k→ ∞. Obviously {tµk}k∈N is bounded. Thus,
there exist a constant t0 > 0 and a subsequence of {tµk}k∈N, which we still write as {tµk}k∈N, such that

tµk → t0 as k → ∞. SinceM is a continuous function, then we get that
{
M(t2

µk
‖ω‖2

X0,A
)
}

k∈N
is still

bounded, and so, according to Equation (14), there exists B > 0 such that for any k ∈ N:

µktµk‖ω‖
2
2 + t2∗s−1

µk ‖ω‖2∗s
2∗s
+
∫

Ω
g(x, |tµk ω|)ω2dx ≤ B. (16)

We claim that t0 = 0. Indeed, we can assume that t0 > 0, then from (g1) and the dominate
convergence theorem:∫

Ω
g(x, |tµk ω|)ω2dx →

∫
Ω

g(x, |t0ω|)ω2dx > 0 as k→ ∞

thanks to (g2). Recalling that µk → ∞, we have:

lim
k→∞

(
µktµk‖ω‖

2
2 + t2∗s−1

µk ‖ω‖2∗s
2∗s
+
∫

Ω
g(x, |tµk ω|)ω2dx

)
= ∞,

which contradicts Equation (16). Hence, t0 = 0 and tµ → 0 as µ→ ∞, thanks to the sequence {µk}k∈N
being arbitrary. Consider now the path γ(t) = tω, t ∈ [0, 1], γ(t) ∈ Γ. According to Lemma 2 and (g2):

0 < cµ ≤ max
t∈[0,1]

IA,µ(γ(t)) ≤ IA,µ(tµω) ≤ 1
2
M̃(t2

µ‖ω‖2
X0,A

),

Because M̃ is continuous, thus we get that M̃(t2
µ‖ω‖2

X0,A
) → 0 as µ → 0. This means that the

proof of the lemma is complete.
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Lemma 5. If (M1)–(M3) and (g1)–(g2) hold, then, there exists µ0 > 0 such that for any µ ≥ µ0,
the functional IA,µ fulfills the (PS)cµ condition.

Proof. Let µ > 0 and {vk}k∈N satisfy Equation (11). Thanks to the degenerate nature of Problem (1),
we consider two cases.
Case 1. inf

k∈N
‖vk‖X0,A = hµ > 0. First, we show that the sequence {vk}k∈N is bounded in X0,A. By (M2),

with $ = h2
µ, there exists m = m(h2

µ) > 0 such that:

M(‖vk‖2
X0,A

) ≥ m f or all k ∈ N. (17)

Moreover, according to (M1), Equation (17), and (g2), we get that:

IA,µ(vk)− 1
2 〈I

′
A,µ(vk), vk〉 ≥ 1

2M̃(‖vk‖2
X0,A

)− 1
2M(‖vk‖2

X0,A
)‖vk‖2

X0,A
+

(
1
2 −

1
2∗s

)
‖vk‖

2∗s
2∗s

≥
(

1
2θ −

1
2∗s

)
m‖vk‖2

X0,A
+

(
1
2 −

1
2∗s

)
‖vk‖

2∗s
2∗s

,

(18)

where 2θ < 2∗s and also 2 < 2∗s since N > 2S. Thus, it follows from Equations (11), (17) and (18) that:

cµ + o(1) ≥
(

1
2θ
− 1

2∗s

)
m‖vk‖2

X0,A
≥ σµ‖vk‖2

X0,A
,

σµ =

(
1
2θ
− 1

2∗s

)
m > 0

(19)

as k→ ∞, which implies that {vk}k∈N is bounded in X0,A, and analogously, we obtain that {vk}k∈N is
bounded in L2∗s (Ω,C).

Considering the boundedness of {vk}k∈N, going if necessary to a subsequence, still denoted by
{vk}{k∈N}, by using Lemma 1 and (Theorem 4.9, [28]), there exist vµ ∈ X0,A, such that:

vk ⇀ vµ in X0,A, ‖vk‖X0,A → βµ,

vk ⇀ vµ in L2∗s (Ω,C), ‖vk − vµ‖2∗s → ξµ, (20)

vk → vµ in L2(Ω,C), vj → vµ a.e. in Rn.

Obviously, βµ > 0 since hµ > 0. Moreover, we know that zero is the unique zero ofM by (M2),
as well asM(‖vk‖2

X0,A
)→M(β2

µ) as k→ ∞, thanks to continuity.
First, we claim that:

lim
µ→∞

βµ = 0. (21)

If not, lim sup
µ→∞

βµ = β > 0. Therefore, there exists a sequence, called k 7→ µk ↑ ∞, such that

βµk → β as k→ ∞, and taking k→ ∞, we obtain from the first inequality of Equation (18) along with
(M1) and Lemma 4 that:

0 ≥
(

1
2θ
− 1

2∗s

)
M(β2)β2 > 0

by (M2), which is impossible. Therefore, we get the result (21). Furthermore, ‖vµ‖X0,A ≤
lim

k
‖vk‖X0,A = βµ thanks to vk ⇀ vµ, so according to Equation (21) and the fractional magnetic

Sobolev inequality, we have:
lim

µ→∞
‖vµ‖2∗s = lim

µ→∞
‖vµ‖X0,A = 0. (22)
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By the boundedness of {vk}k∈N in L2(Ω,C), we get that the sequence {|vk|2
∗
s−2vk}k∈N is bounded

in L2∗
′

s (Ω,C). Therefore, by Equation (20), we obtain:

|vk|2
∗
s−2vk ⇀ |vµ|2

∗
s−2vµ in L2∗

′
s (Ω,C), (23)

where 2∗
′

s = 2N/(N + 2S) is the Hölder conjugate of 2∗s . Again, by (20) and (23), and (g1), we get:

M(β2
µ)〈vµ, φ〉X0,A = µR

∫
Ω

vµ(x)φdx +R
∫

Ω
|vµ(x)|2∗s−2vµ(x)φdx +R

∫
Ω

g(x, |vµ(x)|)vµ(x)φdx

for any φ ∈ X0. Therefore, we can easily obtain that vµ is a critical point of the C1(X0,A) functional:

IA,βµ
(v) =

1
2
M(β2

µ)‖v‖2
X0,A
− µ

1
2
‖v‖2

2 −
1
2∗s
‖v‖2∗s

2∗s
−
∫

Ω
G(x, |v(x)|)dx.

In particular, Equations (11), (20) and (23) imply that as k→ ∞:

o(1) = 〈I ′A,µ(vk)− I
′
A,βµ

(vµ), vk − vµ〉

= M(‖vk‖2
X0,A

)‖vk‖2
X0,A

+M(β2
µ)‖vµ‖2

X0,A
− 〈vk, vµ〉X0,A

(
M(‖vk‖2

X0,A
) +M(β2

µ)
)

−R
∫

Ω

(
g(x, |vk(x)|)vk(x)− g(x, |vµ(x)|)vµ(x)

)
(vk(x)− vµ(x))dx

−R
∫

Ω

(
|vk(x)|2∗s−2vk(x)− |vµ(x)|2∗s−2vµ(x)

)
(vk(x)− vµ(x))dx

= M(β2
µ)(β2

µ − ‖vµ‖2
X0,A

)− ‖vk‖
2∗s
2∗s
+ ‖vµ‖2∗s

2∗s
+ o(1)

= M(β2
µ)‖vk − vµ‖2

X0,A
− ‖vk − vµ‖2∗s

2∗s
+ o(1).

(24)

Indeed, again from (g1), we have the following:∫
Ω
| g(x, |vk(x)|)vk(x)(vk(x)− vµ(x) | dx ≤ D

′‖ f (x)‖τ‖vk − vµ‖2∗s ≤ D‖ f (x)‖τ ,

where D, D
′

> 0. According to f (x) ∈ Lτ(Ω), we get that sequence
{| g(x, |vk(x)|)vk(x)(vk(x)− vµ(x) |}k is equi-integrable in L1(Ω). Again, by Equation (20)
and the Vitali convergence theorem, we have that:

lim
k→∞

∫
Ω

g(x, |vk(x)|)vk(x)(vk(x)− vµ(x)dx = 0.

Similarly,

lim
k→∞

∫
Ω

g(x, |vµ(x)|)vµ(x)(vk(x)− vµ(x)dx = 0.

Furthermore, again from Equation (20) and the well known Brézis and Lieb lemma of [29],
we obtain:

‖vk‖2
X0,A

= ‖vk − vµ‖2
X0,A

+ ‖vµ‖2
X0,A

+ o(1), ‖vk‖
2∗s
2∗s

= ‖vk − vµ‖2∗s
2∗s
+ ‖vµ‖2∗s

2∗s
+ o(1)

as k→ ∞. Thus, we have proven the crucial formula:

M(β2
µ) lim

k→∞
‖vk − vµ‖2

X0,A
= lim

k→∞
‖vk − vµ‖2∗s

2∗s
. (25)
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If ξµ = 0 for all µ ≥ µ0, thanks to βµ > 0 and M admitting a unique zero at zero, then
Equation (25) yields at once that vk → vµ in X0,A, concluding the proof. Instead, suppose that there
exists a sequence k 7→ µk ↑ ∞ such that ξµk = ξk > 0. Combining Equations (9), (20) and (25), we have:

ξ
2∗s
µ ≥ SAM(β2

µ)ξ
2
µ. (26)

Observing Equation (24), we can get:

M(β2
µ)(β2

µ − ‖vµ‖2
X0,A

) = ξ
2∗s
µ .

By Equation (26), we obtain along this sequence, denoting βµk = βk, vµk = vk, that:

(ξ
2∗s
k )

2s
N =M(β2

k)
2s
N (β2

k − ‖vk‖2
X0,A

)
2s
N ≥ SAM(β2

k). (27)

Therefore, for all k large enough, it follows from Equation (21) and (M3) that:

β
4s
N
k ≥ (β2

k − ‖vk‖2
X0,A

)
2s
N ≥ SAM(β2

k)
N−2s

N ≥ a
N−2s

N
0 SAβ

2(N−2s)
N

k .

Hence, for all k enough enough, we have:

β
2 4s−N

N
k ≥ a

N−2s
N

0 SA,

thanks to βk > 0 for any k. According to Equation (21), we know that the above inequality is impossible,
thanks to 4s > N by assumption. Therefore, we complete the proof of Lemma 5.

Case 2. inf
k∈N
‖vk‖X0,A = 0. We consider two cases at zero. When zero is an accumulation point of

the real sequence {‖vk‖X0,A}k∈N, so there is a subsequence of {vk}k∈N strongly converging to v = 0.
This means that the trivial solution is a critical point at cµ, which is a contradiction. When zero is
an isolated point of {vk}k∈N, then there is a subsequence, still denoted by {‖vkj

‖X0,A}k∈N, such that
inf
k∈N
‖vkj
‖X0,A = hµ > 0, and we can proceed as before. This completes the proof of the second case and

of the lemma.

Proof of Theorem 1. According to Lemmas 2, 3 and 5, we note that IA,µ fulfills all conditions in
Theorem 2 for any µ ≥ µ0. Thus, for any µ ≥ µ0, there exists a critical point vµ ∈ X0,A for IA,µ at level
cµ. Clearly, vµ 6≡ 0 thanks to the fact that IA,µ(vµ) = cµ > 0 = IA,µ(0). Finally, we also obtain the
asymptotic behavior thanks to Equation (22).

Finally, we give a simple example to show a direct application of our main result.

Example 1. Let N > 1 and 1 > θ > 0. We consider the following problem

(
1 + e

−
∫∫

Ω
|v(x)−ei(x−y)·A(

x+y
2 )v(y)|2

|x−y|N+1 dxdy
)
(−4)

1
2
Av(x) = µv + |v|

2
N−1 v + g(x, |v|)v in Ω, v = 0 in RN \Ω,

where g(x, v) satisfy
g(x, |v|) = b(x)|v|q−2,

where b ∈ L∞(Ω), b(x) ≥ 0 a.e. x ∈ Ω, and q ∈ (2θ, 2∗). Obviously, g satisfying Conditions (g1)–(g2). It is
clearly that (M1)–(M3) hold.

Then, Theorem 1 implies that the above problem admit a non-trivial solution in X0,A.
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4. Conclusions and Further Research

In this article, we combined the fractional magnetic operator with the more generalized Kirchhoff
function to consider the existence and asymptotic behavior of the solution of this new equation, which
plays a fundamental role in quantum mechanics in the description of the dynamics of the particle in
a non-relativistic setting; see [1]. In order to overcome the difficulties caused by the critical situation
and the intervention of magnetic operators, we used special techniques to deal with this problem, and
our result generalized the previous work of Autuori [12] and Servadei [11] in some aspects. In future
research, we will extend multiple equations to include fractional magnetic operators; due to the
operators having a certain physical background and significance, the applicability is more extensive.
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