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Abstract: The proper solution of a multi-criteria group decision making (MCGDM) problem usually
involves a series of critical issues that are to be dealt with, among which two are noteworthy,
namely how to assign weights to the (possibly distinct) judgment criteria used by the different
decision makers (DMs) and how to reach a satisfactory level of agreement between their individual
decisions. Here we present a novel methodology to address these issues in an integrated and
robust way, referred to as the canonical multi-criteria group decision making (CMCGDM) approach.
CMCGDM is based on a generalized version of canonical correlation analysis (GCCA), which is
employed for simultaneously computing the criteria weights that are associated with all DMs.
Because the elicited weights maximize the linear correlation between all criteria at once, it is expected
that the consensus measured between the DMs takes place in a more natural way, not necessitating
the creation and combination of separate rankings for the different groups of criteria. CMCGDM also
makes use of an extended version of TOPSIS, a multi-criteria technique that considers the symmetry
of the distances to the positive and negative ideal solutions. The practical usefulness of the proposed
approach is demonstrated through two revisited examples that were taken from the literature as well
as other simulated cases. The achieved results reveal that CMCGDM is indeed a promising approach,
being more robust to the problem of ranking irregularities than the extended version of TOPSIS when
applied without GCCA.

Keywords: multi-criteria group decision-making; generalized canonical correlation analysis;
criteria weights; consensus measuring; TOPSIS; ranking irregularities

1. Introduction

Multi-criteria group decision making (MCGDM) is usually described as the process of selecting
the best alternative(s) from a given set of viable options that are based on the opinions that are provided
by multiple domain experts, frequently referred to as decision makers (DMs), concerning multiple
judgment criteria [1,2]. In recent years, a number of MCGDM techniques have been proposed and
widely applied in many distinct fields, such as sustainable development [3,4], personnel evaluation [5],
social network analysis [6], software selection [7,8], supplier selection [9,10], and economics [11].

Among others, Herrera-Viedma et al. [12] have argued that solving a group decision making
(GDM) problem usually involves the carrying out of two complementary processes: a consensus
reaching process (generally guided by a moderator), which refers to how to obtain, via one or more
stages of negotiation, the maximum degree of agreement between the experts; and, a selection process,
which achieves the final solution via the aggregation of the experts’ individual preferences over the
different alternatives available. Various approaches have been developed so far to help undertaking
these processes, especially the latter, in different circumstances; for instance, by addressing dynamic
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sets of alternatives [13] and criteria [14], changes of preferences [15] and opinions [16,17], as well as
differences in the knowledge level between the accessible DMs [18,19].

Specifically concerning the modelling of the DMs’ preferences, the assignment of weights to
their evaluation criteria turns out to be a crucial task to be accomplished, since the final decision
that is delivered by a given MCGDM method usually depends on such weights to a large extent.
However, properly calibrating criteria weights in multi-criteria decision making is a hard task to
pursue, even when considering the single DM setting [20]. This task becomes even more relevant (and
harder to attempt) when different criteria are adopted by different DMs. In this regard, Fan et al. [21]
recently pointed out that research concerning this more complex scenario is still relatively scarce in the
literature and, thus, developed a method for tackling MCGDM with different evaluation criteria sets.

Based on these considerations, this paper investigates a novel GDM approach that is aimed to
address, in an integrated manner, both the elicitation of the DMs’ preferences and the consensus of
their individual decisions. The approach, which is referred to as canonical multi-criteria group decision
making (CMCGDM, for short), can also deal with MCGDM problems having different criteria sets for
different DMs and makes use of a generalized version of canonical correlation analysis (CCA) [22] to
automatically compute the values of criteria weights.

In a nutshell, the goal of CCA is to maximize the linear correlation between two sets of variables,
so as to yield a novel set of canonical variates, which, in turn, may replace the original ones.
This procedure involves computing the weights for both sets of original variables that result in
the highest possible correlation between the canonical variates [23]. Although the standard CCA only
handles two sets of variables, there are extensions that handle more, such as the generalized CCA
(GCCA) version that was proposed by Kettenring [24].

CMCGDM also adopts the extended version of TOPSIS (technique for order preference by
similarity solution) [25] that was proposed by Shih et al. [26], which is specific for MCGDM.
The practical usefulness of CMCGDM is demonstrated by revisiting two examples, one on a human
resource selection [26] and the other on a machine acquisition [21]. The results achieved in these
examples and other simulated cases reveal that CMCGDM is indeed a promising approach, being more
robust to cope with the ranking irregularity problem [27] than the extended TOPSIS for GDM without
using GCCA.

In short, the main contributions of this paper are: to show that GCCA is a viable approach to
eliciting weights in the MCGDM context; to prove that CMCGDM is more robust for dealing with the
problem of classification irregularity than the extended TOPSIS without using GCCA, and that it does
it in a straightforward way without the need for changes in the extended TOPSIS procedure; and, to be
able to reach the group’s consensus by reconciling the different canonical weights that were provided
by the GCCA.

The rest of this paper is organized as follows. In Sections 2 and 3, we review the main aspects that
are related to standard MCGDM and GCCA. In Section 4, we present the main steps comprising the new
CMCGDM methodology and point out some of its relevant properties. In Sections 5 and 6, we evaluate
CMCGDM on the examples considered by Shih et al. [26] and Fan et al. [21], whereas, in Section 7,
we compare GCCA with other well-known criteria weighting methods on several simulated cases.
Finally, Section 8 concludes the paper and brings some remarks on future work.

2. Multi-Criteria Group Decision Making

Briefly stated, MCGDM refers to the process of making decisions in group when there are multiple
(but a finite list of) alternative solutions that are available to the decision problem in hand. In addition,
the group of DMs assess the pros and cons of these alternatives by taking multiple (usually conflicting)
judgment criteria into account [1,2]. Formally, an MCGDM problem with M alternatives, N criteria,
and K DMs can be formulated by defining K decision matrices of the form:
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Dk = (xk
ij)M×nk =



ck
1 ck

2 ck
nk

A1 xk
11 xk

12 . . . xk
1nk

A2 xk
21 xk

22 . . . xk
2nk

. . . . . . .

. . . . . . .

. . . . . . .

AM xk
M1 xk

M2 . . . xk
Mnk


wk = (wk

1, wk
2, . . . , wk

nk
), k = 1, . . . , K,

(1)

where A = {A1, A2, . . . , AM} denotes the set of feasible alternatives, Ck = {ck
1, ck

2, . . . , ck
nk
} represents

the nk evaluation criteria that are associated with the k-th DM, xk
ij is the performance rating of

alternative Ai under criterion ck
j (j = 1, . . . , nk), and wk

j stands for the weight of this criterion.

Notice that 0 ≤ wk
j ≤ 1 and ∑nk

j=1 wk
j = 1. On the other hand, the K criteria sets may be equal,

partially overlap, or be completely disjoint, in which case ∑k nk = N. Each criterion can be classified
as either a benefit (“the higher, the better”) or cost (“the lower, the better”) criterion.

Several multi-criteria methods have been proposed or extended in order to cope with different
variants of the MCGDM problem. In the sequel, we focus on the extended version of TOPSIS that
was proposed by Shih et al. [26], which was adopted in the development of CMCGDM. Afterwards,
we overview some of the most well-known methods used to compute criteria weights in TOPSIS,
formalizing these methods in the context of GDM.

2.1. Extended TOPSIS for GDM

TOPSIS [25] is a well-known multi-criteria method, which is based on the notion that the chosen
alternative should have the closest distance to a positive ideal solution (PIS) and the farthest distance to
a negative ideal solution (NIS). A crucial assumption of this compensatory method is that the decision
criteria are either monotonically increasing or decreasing [28]. The variant that was conceived by
Shih et al. [26] keeps this assumption, but extends the scope of the method in order to acknowledge
the existence of several DMs.

The main steps of the extended TOPSIS for GDM are:

Step 1: compose the decision matrix Dk for the k-th DM—refer to Equation (1).
Step 2: compute the normalized decision matrix Rk = [rk

ij], i = 1, . . . , M, j = 1, . . . , nk, for the k-th
DM. For this purpose, the vector normalization scheme is usually employed [29]:

rk
ij =

xk
ij√

∑M
i=1(xk

ij)
2

, i = 1, . . . , M; j = 1, . . . , nk. (2)

Step 3: calculate the positive ideal solution Vk+ and the negative ideal solution Vk− for the k-th DM,
as follows:

Vk+ =
{

vk+
1 , . . . , vk+

nk

}
=
{
(max

i
{rk

ij} | j ∈ J1) , (min
i
{rk

ij} | j ∈ J2)
}

, (3)

Vk− =
{

vk−
1 , . . . , vv−

nk

}
=
{
(min

i
{rk

ij} | j ∈ J1) , (max
i
{rk

ij} | j ∈ J2)
}

, (4)

where J1 and J2 are the sets of benefit and cost criteria, respectively.
Step 4: assign a weight vector wk = (wk

1, wk
2, . . . , wk

nk
) to the criteria set of the k-th DM, such that

∑nk
j=1 wk

j = 1.
Step 5: compute the overall separation of a given alternative from the set of positive and negative

ideal solutions. Here, two substeps should be performed. The first considers the PIS and NIS
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that are associated with each DM separately, while the second aggregates the measurements
for the whole group.

Substep 5a: compute the distances Sk+
i and Sk−

i of the i-th alternative, i = 1, . . . , M, to the
pair of PIS and NIS associated with the k-th DM, k = 1, . . . , K. Here, we have
considered the Euclidean distance:

Sk+
i =

√√√√ nk

∑
j=1

wk
j (r

k
ij − vk+

j )2, i = 1, . . . , M, (5)

Sk−
i =

√√√√ nk

∑
j=1

wk
j (r

k
ij − vk−

j )2, i = 1, . . . , M, (6)

where rk
ij, vk+

j and vk−
j are defined in Equations (2), (3) and (4), respectively.

Substep 5b: compute the overall separation measures S+
i and S−i for each alternative.

For this purpose, one should calculate the geometric mean over the K values
of Sk+

i (5) and Sk−
i (6) to yield:

S+
i =

(
K

∏
k=1

Sk+
i

) 1
K

, i = 1, . . . , M, (7)

and

S−i =

(
K

∏
k=1

Sk−
i

) 1
K

, i = 1, . . . , M. (8)

Step 6: compute C∗i , the overall relative closeness of the i-th alternative Ai, i = 1, . . . , M, to the K
positive ideal solutions, which can be expressed as:

C∗i =
S−i

S+
i + S−i

, i = 1, . . . , M, (9)

where 0 ≤ C∗i ≤ 1, and S+
i and S−i are defined, respectively, in Equations (7) and (8). Hence,

the alternatives can be ranked from the best (higher values of closeness) to worst.

2.2. Objective Methods for Criteria Weighting

In the literature, different methods have been proposed in order to ascertain the relevance
of the different decision criteria [30]. In this section, we review the following: Entropy [31],
Statistical Variance, Standard Deviation [32], CRITIC [33], DEMATEL [34], and DEMATEL-based
ANP [35]. However, other promising methods could be considered, such as CSW-DEA [36–38],
nonlinear programming methods [39], and swing-weighting [40], just to name a few.

Weighting methods, in particular, attach cardinal or ordinal values directly to the criteria, so as to
reflect their relative importance. Wang et al. [41] classify the weighting methods into three categories:
subjective, objective, and combination methods. The first determine the weights based on the
subjective preferences of the DMs, whereas the second make use of mathematical models without any
consideration of the DM’s preferences. Combination methods are hybrids of the former, including,
for instance, multiplication and additive synthesis. In the following, we review some of the most
well-known methods of this class because the use of GCCA for computing the criteria weights in the
context of CMCGDM can be regarded as an objective method.
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2.2.1. Entropy Method

In short, entropy is a measure of uncertainty in information, as formulated in probability
theory [31]. Entropy also means that some information cannot be recovered or is lost, like noise
in a message. Accordingly, the higher the entropy E of a system, the lower its information content I.
In fact, E = 1− I, E ∈ [0, 1].

When applied to multi-criteria decision making, this concept can be used to quantitatively measure
the capacity of a given criterion to discriminate the quality of different alternatives. High discrimination
corresponds to low entropy and, thus, better information content. Conversely, low discrimination
corresponds to high entropy and worse information. One particular advantage of using entropy
as a criterion weight measure is that it weakens the bad effects from abnormal values (outliers),
which makes the result of evaluation more accurate and reasonable.

When this procedure is applied to all criteria at once, it is possible to rank them according to their
significance: the higher the information content I of a criterion, the more relevant it is comparatively.
It is worthy noticing that these weights can be used for the assessment of alternatives, since they are
built based on the dispersion (discrimination) of the alternatives’ performance values. Consequently,
they are totally objective (unbiased), not depending upon the specific DM doing the analysis.

When considering the GDM context, in order to calculate the criteria weights wk
j via the entropy

method, the decision matrix Dk (1) should be first normalized to yield the probabilities pk
ij, as given by

pk
ij =

xk
ij

∑M
i=1 xk

ij
, i = 1, . . . , M, j = 1, . . . , nk, (10)

and then the following equations should be calculated:

Ek
j = −

(
M

∑
i=1

pk
ij log(pk

ij)/ log(M)

)
, j = 1, . . . , nk, (11)

wk
j =

1− Ek
j

∑nk
j′=1(1− Ek

j′)
, j = 1, . . . , nk, (12)

where log(·) denotes the logarithm function, and Ek
j and wk

j are, respectively, the entropy and weight
values that are associated with the j-th criterion of the k-th DM. As discussed above, the higher the
value of Ek

j , the lower is the value of wk
j .

2.2.2. Statistical Variance Method

In statistics, variance is defined as the expectation of the squared deviation of a random variable
from its mean. In other words, it measures how far a set of quantitative observations are spread out
from their average value. Studying variance allows for one to quantify how much variability is in
a probability distribution. If the outcomes of the distribution vary wildly, then it will have a large
variance. Otherwise, if the variance is null (it is always non-negative), then the random variable takes
a single constant value, which is exactly its expected value.

Based on the above considerations, statistical variance can be used in multi-criteria decision
making in order to assess the capability of the judgment criteria to discriminate between the different
alternatives available. The larger the variance of a given criterion (viewed as a random variable),
the more dispersed are the performance values of the alternatives, which allows the DM to have better
judgement on their good/bad characteristics. In this way, the higher the variance, the higher should
be the relative weight of a criterion.
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In this method, the statistical variance of information is first calculated for the j-th criterion of the
k-th DM based on the original score values:

Vk
j =

1
M− 1

M

∑
i=1

(xk
ij − xk

j )
2, (13)

where Vk
j is the statistical variance of the j-th criterion of the k-th DM and xk

j is the average value of

the original score values xk
ij.

Subsequently, the weights are obtained via a simple normalization, so that they lie in [0, 1]:

wk
j =

Vk
j

∑nk
j′=1 Vk

j′
, j = 1, . . . , nk. (14)

2.2.3. Standard Deviation Method

Because the standard deviation (SD) is defined as the positive square root of the statistical
variance, it can also be regarded as a measure of dispersion around the mean of a data set. However,
calculating the variance involves squaring deviations, so it does not have the same unit of measurement
as the original observations. This negative feature is not shared by SD, whose values are in the same
unit of the original scale. On the other hand, both variance and SD can be greatly affected if the mean
gives a poor measure of central tendency, which can happen due to the presence of outliers. A single
outlier can raise the standard deviation and, thus, distort the picture of spread.

In the context of multi-criteria decision making, the SD measure can be used to assign a small
weight to a criterion if it shows similar values across the alternatives; otherwise, the criteria with larger
deviations should be assigned the larger weights. If all available alternatives score almost equally with
respect to a given criterion, then such a criterion will be regarded as unimportant by most experts and,
thus, could be removed from the analysis.

Formally, the SD method determines the weights of the criteria in terms of their SDs, according to
the following equations [32]:

σk
j =

√√√√∑M
i=1(xk

ij − xk
j )

2

M− 1
, j = 1, . . . , nk, (15)

wk
j =

σk
j

∑nk
j′=1 σk

j′
, j = 1, . . . , nk, (16)

where xk
j and σk

j are, respectively, the mean and SD values that are associated with the j-th criterion of
the k-th DM.

Although the computation of variance and SD is similar, their differences are rather significant.
By employing squared deviations, variance gives more weight to those criteria whose performance
values are more spread around their average. Besides, the sum of square root values used in
the denominator of Equation (16) yields a different normalization factor than the one adopted in
Equation (14), which, in turn, is based on a sum of squared values. As a result, the rankings of
alternatives that are produced by these measures need not be the same. In any case, both statistical
measures are sensitive to a wide variation between the measurement scales of the different criteria.
Of course, such a drawback is more aggravated in variance, due to the squared deviations. Entropy,
in contrast, is robust to criteria scaling.
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2.2.4. Criteria Importance through Inter-Criteria Correlation

The CRITIC (criteria importance through intercriteria correlation) method, as proposed by
Diakoulaki et al. [33], uses correlation analysis to detect contrasts and dependencies between the criteria.
Contrary to the other methods discussed so far, CRITIC was specifically conceived for the multi-criteria
decision making domain, performing a detailed investigation of the decision matrix for extracting
judicious information that is available in the evaluation criteria as well as their mutual/contrastive
relationships. According to this method, objective weights are derived in order to quantify the intrinsic
information of each evaluation criterion, while using both its standard deviation and its correlation
(as calculated by Pearson correlation) with the other criteria. This way, both contrast and conflict
intensity contained in the structure of the decision problem are captured by this method.

Consider the decision matrix of the k-th DM, as given in Equation (1). In order to calculate
each weight wk

j , the following symbols are used: rk
ij is the normalized performance measure of the

i-th alternative with respect to the j-th criterion, ck
j denotes the quantity of contrastive information

contained in the j-th criterion, σk
j stands for the standard deviation of the j-th criterion, and ρk

jj′ denotes
the value of the Pearson correlation coefficient between the j-th and j′-th criteria. Based on these
notations, the steps of the CRITIC method are given as follows [32]:

Step 1: the score values associated with benefit/cost criteria are first normalized using Equations (17)
and (18), respectively.

rk
ij =

xk
ij −min(xk

ij)

max(xk
ij)−min(xk

ij)
, i = 1, . . . , M; j = 1, . . . , nk, (benefit criteria) (17)

rk
ij =

max(xk
ij)− xk

ij

max(xk
ij)−min(xk

ij)
, i = 1, . . . , M; j = 1, . . . , nk, (cost criteria) (18)

Step 2: the correlation between each pair of criteria is calculated via Equation (19).

ρk
jj′ =

M
∑

i=1
(rk

ij − rk
j )(r

k
ij′ − rk

j′)√
M
∑

i=1
(rij − rk

j )
2 ·
√

M
∑

i=1
(rk

ij′ − rk
j′)

2

, j, j′ = 1, . . . , nk (19)

Step 3: finally, Equations (20) and (21) are employed for producing the weights.

wk
j =

ck
j

nk
∑

j′=1
cj′

, j = 1, . . . , nk, (20)

ck
j = σk

j

nk

∑
j=1

(1− ρk
jk), j = 1, . . . , nk. (21)

2.3. DEMATEL

Decision Making Trial and Evaluation Laboratory (DEMATEL) was elaborated as a procedure
for solving problems of identifying cause-and-effect relationships [34]. With time, this method has
been well adapted for use in multi-criteria decision making. This way, some authors discuss the use
of DEMATEL in order to determine the significance of the criteria [42–44]. This section describes the
approach that was proposed by Kobryń [42], whose formulation was adapted for several DMs.

First, the direct-influence matrix is created for each DM, which is a square matrix whose size is
equal to the number of alternatives/criteria. For this purpose, we have adopted a four-degree scale
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to express the influence of the i-th criterion on the j-th criterion, where: 0—no influence, 1—medium
influence, . . ., 4—maximum influence [45]. Besides, in the direct-influence matrix Bk of the k-th DM,
k = 1, . . . , K, the elements on the main diagonal are null, while non-zero elements bk

ij(i 6= j) reflect the
impact of the i-th criterion on the j-th criterion:

Bk =


0 bk

12 . . . bk
1nk

bk
21 0 . . . bk

2nk

. . . . . . . . . . . .
bk

nk1 bk
nk2 . . . 0

 . (22)

Matrix (22) is then normalized, as follows:

B̂k = Bk 1

max
i

(
nk
∑

j=1
bk

ij

) . (23)

From (23), we calculate the total-influence matrix (Tk), as described by

Tk = B̂k(I− B̂k)−1, (24)

where I is the nk × nk identity matrix.
Subsequently, two vectors of indicators are determined based on Tk to express a relation between

the criteria, covering both direct and indirect influences. They are defined as importance indicator
vector (tk+) and relation indicator vector (tk−), whose components are given as follows:

tk+
i =

nk

∑
j=1

tk
ij +

nk

∑
j=1

tk
ji, (25)

tk−
i =

nk

∑
j=1

tk
ij −

nk

∑
j=1

tk
ji. (26)

From Equations (25) and (26), the weights are determined as proportional to the average value
(tkav

i ) of the appropriate pair of indicators tk+
i and tk−

i , given as follows:

tkav
i =

1
2
(tk+

i + tk−
i ). (27)

Next, the equation below can be used to calculate each normalized weight:

wk
i =

tkav
i

nk
∑

j=1
tkav

j

. (28)

It is necessary to correct the weight values calculated from Equation (28), as no criterion can be
assigned to zero weight. The key issue is to determine the correction value δ, and the final decision
should belong to the decision-maker [42]. The value δ should be as small as possible and as such
Kobryń [42] suggests setting δ ≤ min

i
wk

i , if wk
i > 0. The values wkcor

i and wknorm
i are given as follows:

wkcor
i = wk

i + δ, (29)
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wknorm
i =

wkcor
i

nk
∑

j=1
wkcor

j

. (30)

2.4. DEMATEL-Based ANP (DANP)

The DANP method was proposed by Yang et al. [35]. It consists in forming a matrix Sk, which is
similar to the Analytic of Network Process (ANP) [46], on the basis of the modified total-influence
matrix Tk (24), representing the outcome of the application of DEMATEL [47]. The components of Sk

should be given as:

sk
ij =

tk
ji

nk
∑

w=1
tk

jw

, ∀i, j = 1, 2, . . . , nk, (31)

where nk is the number of interrelated criteria adopted by the k-th DM, tk
ji denotes the element of the

matrix Tk depicting the total influence of the j-th criterion on the i-th criterion, and sk
ij represents a

component of the matrix Sk.
Next, the matrix Sk

lim is determined based on matrix Sk, while using the procedure characteristic
for ANP, as follows:

Sk
lim = lim

w→∞
Sw. (32)

The matrix Sk
lim consists of nk identical columns. The elements of the individual columns depict

the normalized weights of the criteria.

3. Generalized Canonical Correlation Analysis

In multivariate statistical analysis, data usually consist of multiple variables measured on a set of
observations [48]. In this context, CCA comprises a family of statistical techniques that model the linear
relationships between two (or more) sets of variables [22,49]. More specifically, in CCA, the variables
of an observation can be partitioned into two or more sets, with each one regarded as a view of the
data [22].

Like principal component analysis (PCA) and linear discriminant analysis (LDA) [48,49], CCA can
reduce the dimensionality of the original variables, since only a few factor pairs are normally needed
to represent the relevant information. Besides, CCA is invariant to any affine transformation of the
input variables [50]. Another appealing property is that CCA does not assume a priori the direction
of the relationship between the variable sets. This is in contrast to regression methods, which have
to designate an independent and a dependent data set [51]. Finally, CCA characterizes relationships
between data sets in an interpretable way, a property that is not displayed by other common correlation
methods, which simply quantify the similarity between data sets [51].

Formally, given two zero-mean data sets X = (x1, x2, . . . , xn) ∈ Rd×n and Y = (y1, y2, . . . , ym) ∈
Rd×m, with xi and yi denoting d-dimensional column vectors, standard CCA finds a canonical
coordinate space that maximizes correlations between the projections of the two variable sets onto that
space [51]. Associated with the j-th dimension of this new space, there is a pair of projection weight
vectors, aj = (a1j, a2j, . . . , anj) and bj = (b1j, b2j, . . . , bmj), named canonical weights. The resulting
projections of variable sets X and Y onto the j-th dimension of the canonical space comprise a pair
of d-dimensional vectors, uj = 〈aj, X〉 and vj = 〈bj, Y〉, which are called canonical variates. Here,
〈·, ·〉 denotes the inner (projection) product operator. CCA maximizes the linear correlations between
each pair of canonical variates, as given by

ρj = max

{
〈uj, vj〉
‖uj‖ · ‖vj‖

}
, (33)
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where ‖uj‖ denotes the norm of vector uj.
More precisely, r = min(n, m) pairs of projection vectors are generated, so that the correlation

ρ1 between u1 and v1 is maximum, the correlation ρ2 between u2 and v2 is maximum, subject to the
constraint that the canonical variates u2 and v2 are orthogonal to u1 and v1, respectively, and so on
and so forth, up to the point that the correlation ρr between ur and vr is maximum, provided that
they correlate with neither u1, u2, . . . , ur−1 nor v1, v2, . . . , vr−1, respectively. The symmetry of the
correlation matrices guarantees orthogonality.

To accomplish this, CCA solves the following optimization problem [51]:

ρ = max

{
aTCXYb√

‖aTCXXa‖ · ‖bTCYYb‖

}
, (34)

where ρ represents the maximum value of the canonical correlation vector, CXY denotes the sample
covariance of the two variable sets, X and Y, and CXX and CYY are their autocovariances.

The objective function (34) has infinite solutions if no restriction is imposed on weights a and
b. However, the size of the canonical weights can be constrained, such that aTCXXa = 1 and
bTCYYb = 1 [49]. This leads to the following Lagrangian [22,51]:

L(λ, a, b) = aTCXYb− λX
2
(aTCXXa− 1)− λY

2
(bTCYYb− 1), (35)

which, in turn, can be formulated as the following generalized eigenvalue problem:(
0 CXY

CYX 0

)(
a
b

)
= ρ2

(
CXX 0

0 CYY

)
. (36)

Several variants of CCA have been proposed along the years, among which those that extend the
correlation analysis to encompass more than two sets of variables [22]. These extensions, which are
typically referred to as GCCA, aim at generating a series of components (variates) that maximize the
association between the multiple variable sets. For instance, when considering the availability of three
views on the data, the generalized eigenvalue problem that is defined in (36) can be simply extended,
as follows [24,51]:  0 CXY CXZ

CYX 0 CYZ
CZX CZY 0


a

b
c

 = ρ2

CXX 0 0
0 CYY 0
0 0 CZZ

 . (37)

The fact that the sets of variables may differ significantly is an interesting property of this extended
formulation. Hence, the number of variables in each set does not need to be the same. We argue that
this feature is interesting for the MCGDM context, particularly in those circumstances when the DMs
make use of different judgment criteria.

4. A Canonical Multi-Criteria Group Decision Making Approach

By drawing a parallel between GCCA and MCGDM, one can note that methods pertaining to
both areas operate on numerical values arranged in two-dimensional (data/decision) matrices. While,
in GCCA, there is a set of data instances (rows) represented by two or more variable sets (columns),
in MCGDM one has a set of solution alternatives (rows), each assessed in accordance with two or more
sets of criteria (columns). By establishing this correspondence, it is possible to make use of GCCA’s
functionalities to automatically compute the values of the criteria weights used in MCGDM.

Assume that K decision matrices are available, with Dk pertaining to the k-th DM, k = 1, . . . , K.
GCCA is directly applied to all K matrices at once, yielding the criteria weights wk that are related
to each matrix (refer to Figure 1). These weights are the canonical weights that are associated with
the first dimension of the canonical space. To bring about the consensus decision between the DMs,
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CMCGDM employs the same steps of the extended TOPSIS variant proposed by Shih et al. [26]
(see Section 2.1), with some minor modifications. More specifically, while the computation of Vk+ and
Vk− (Equations (3) and (4)) in the third step now takes into account the positive/negative signs of
the canonical weights as calculated by GCCA (i.e., before they are normalized), in the fifth step the
computation of Sk+

i and Sk−
i (Equations (5) and (6)) makes use of the normalized weights.

DM1 DMk

D1 c1 ... cn1

A1 x11 ... x1n1

. . . .

. . . .

AM xM1 xMn1

Dk c1 ... cnK

A1 x11 ... x1nK

. . . .

. . . .

AM xM1 xMnK

...

GCCA

w1 w1, w2, ..., wn1

w2 w1, w2, ..., wn2

. ...

wK w1, w2, ..., wnK

Figure 1. Steps of the proposed canonical multi-criteria group decision making (CMCGDM) approach.

We claim that the above methodology is useful for capturing the intrinsic relationships between
the DMs’ beliefs regarding the relative performance of the different alternatives. Usually, the weights
of the criteria adopted by all DMs are separately calculated for each DM (sometimes via an unrelated
methodology, such as in [52]) and, then, the group consensus is achieved by somehow reconciling
the different weights adopted by the different DMs. In the case of CMCGDM, because the canonical
weights maximize the correlation between the different decision matrices simultaneously, it is expected
that the consensus between the experts can be captured more naturally and effectively, bringing about
a more reliable ranking of the available alternatives. In this case, the canonical correlation index can be
interpreted as a sort of consensus indicator between the DMs’ opinions.

When considering the more complicated setting where different groups of criteria are used by
different DMs, our method can work well, even when the sets of criteria are completely disjoint (that
is, with no overlap). Moreover, instead of generating separate rankings of alternatives for all criteria
subsets, which are then aggregated to compose the final ranking by solving a specific optimization
problem, such as in the approach that was proposed by Fan et al. [21], our methodology seems to be
more straightforward, not demanding intermediary rankings for different criteria sets.

Another good property of CMCGDM is that it allows for one to interpret each criterion according
to the sign of its associated canonical weight, taking the role played by the other criteria as reference.
While positively weighted criteria can be considered as benefit ones, those with negative weights can
be regarded as cost criteria.

In order to further clarify this important property, consider a fictitious MCGDM problem that
involves four DMs and eight alternatives, each of which is evaluated via five judgment criteria,
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shared by all DMs. Tables 1 and 2 show the criteria weights as elicited by GCCA, either before or after
normalization is applied. As one can notice, for the first and second DMs, all criteria, except the last
one, should be interpreted as of the cost type, since their weights are negative. For the fourth DM,
in contrast, the number of benefit criteria is larger. Therefore, the interpretation is contextualized for
each DM. Although the non-normalized weights are small in magnitude, they were induced by GCCA
so as to maximize the correlation between the DMs’ decision matrices (not shown in this example).
After normalization is applied, the magnitude of the criteria weights is rescaled, so that the more
relevant ones are more noticeable (they are highlighted in Table 2).

Another good property of CMCGDM is that GCCA is invariant to any affine transformation of
the input variables (criteria values), as mentioned before. Besides, like entropy, GCCA is robust against
the problem of criteria scaling. By another perspective, the use of GCCA renders our approach flexible
enough to allow the dynamic (re)calibration of the criteria weights once the sets of alternatives or
criteria change over time. GCCA could be used without modification, even when the number of DMs
is allowed to change. However, this important property will not be further explored in this paper and
it should be investigated in future work.

We argue that these fine properties are not shared by other popular criteria weighting methods,
such as those that are reviewed in Section 2.2. In fact, these methods were not conceived to
elicit the weights of different groups of criteria based on the intrinsic relations between the DMs’
preferences (decision matrices). Moreover, as we will show in Section 7, the adopted MCGDM method
becomes more resilient to the problem of ranking irregularity [27] when using GCCA in place of the
aforementioned criteria weighting methods.

Table 1. Fictitious multi-criteria group decision making (MCGDM) problem—non-normalized
generalized version of canonical correlation analysis (GCCA) weights.

Criteria DM1 DM2 DM3 DM4

C1 −0.0116 −0.0081 −0.0105 0.0071
C2 −0.0122 −0.0063 0.0037 0.0033
C3 −0.0049 −0.0123 −0.0053 −0.0184
C4 −0.0123 −0.0132 0.0015 −0.0167
C5 0.0148 0.0157 −0.0229 0.0004

Table 2. Fictitious MCGDM problem—normalized GCCA weights.

Criteria DM1 DM2 DM3 DM4
C1 0.0218 0.1227 0.1528 0.3769
C2 0.0025 0.1652 0.3284 0.3201
C3 0.2107 0.0206 0.2173 0.0000
C4 0.0000 0.0000 0.3014 0.0250
C5 0.7650 0.6915 0.0000 0.2780

5. Example on Human Resource Selection

To demonstrate the utility of the proposed CMCGDM approach (our implementation uses the
Python package Pyrcca [51] for GCCA, which is hosted in http://github.com/gallantlab/pyrcca),
we first present in this section the same example considered by Shih et al. [26], which is about the
recruitment of an on-line manager by a firm. Subsequently, we compare the performance displayed by
the CMCGDM approach with that delivered by the extended TOPSIS version, as originally proposed
by Shih et al. [26] (that is, without using GCCA to generate the criteria weights). This is done by
considering how resilient each method is to the ranking irregularity problem.

According to the example, the human resource department of the firm coordinates some
knowledge tests (namely, language, professional, and safety rule tests), skill tests (namely,
professional and computer tests), and interviews (namely, panel and one-on-one interviews) with the

http://github.com/gallantlab/pyrcca
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candidates. In all, 17 qualified candidates are on the list, whereas four recruiters (DMs) are responsible
for conducting the selection. The decision matrix that was used for the decision process is split in
Tables 3 and 4, according to the type of judgment criteria (objective vs subjective). Notice that the K = 4
criteria sets are the same for all DMs, and all criteria are regarded as of the benefit type. Moreover,
all of the DMs share the same score values for the objective criteria, only changing their assessment on
the two subjective criteria. In addition, the normalized criteria weights elicited by the DMs themselves
(as originally used in [26]) are shown in Table 5, whereas the canonical weights that are generated by
GCCA (normalized or not) are displayed in Table 6.

Table 3. Decision matrix (objective criteria) for the first example, adapted from ([26] [Table 6a]).

No. Candidates

Objective Criteria

Knowledge Tests Skill Tests

Language Test Professional Test Safety Rule Test Professional Skills Computer Skills

1 James B. Wang 80 70 87 77 76
2 Carol L. Lee 85 65 76 80 75
3 Kenney C. Wu 78 90 72 80 75
4 Robert M. Liang 75 84 69 85 65
5 Sophia M. Cheng 84 67 60 75 85
6 Lily M. Pai 85 78 82 81 79
7 Abon C. Hsieh 77 83 74 70 71
8 Frank K. Yang 78 82 72 80 78
9 Ted C. Yang 85 90 80 88 90

10 Sue B. Ho 89 75 79 67 77
11 Vincent C. Chen 65 55 68 62 70
12 Rosemary I. Lin 70 64 65 65 60
13 Ruby J. Huang 95 80 70 75 70
14 George K. Wu 70 80 79 80 85
15 Philip C. Tsai 60 78 87 70 66
16 Michael S. Liao 92 85 88 90 85
17 Michelle C. Lin 86 87 80 70 72

Table 4. Decision matrix (subjective criteria) for the first example, adapted from ([26] [Table 6b]).

No.

Subjective Criteria

DM #1 DM #2 DM #3 DM #4

Panel
Interview

1-on-1
Interview

Panel
Interview

1-on-1
Interview

Panel
Interview

1-on-1
Interview

Panel
Interview

1-on-1
Interview

1 80 75 85 80 75 70 90 85
2 65 75 60 70 70 77 60 70
3 90 85 80 85 80 90 90 95
4 65 70 55 60 68 72 62 72
5 75 80 75 80 50 55 70 75
6 80 80 75 85 77 82 75 75
7 65 70 70 60 65 72 67 75
8 70 60 75 65 75 67 82 85
9 80 85 95 85 90 85 90 92
10 70 75 75 80 68 78 65 70
11 50 60 62 65 60 65 65 70
12 60 65 65 75 50 60 45 50
13 75 75 80 80 65 75 70 75
14 80 70 75 72 80 70 75 75
15 70 65 75 70 65 70 60 65
16 90 95 92 90 85 80 88 90
17 80 85 70 75 75 80 70 75

Table 5. Original criteria weights for the first example, adapted from ([26] [Table 6b]).

No. Criteria The Weights of the Group

DM #1 DM #2 DM #3 DM #4

Knowledge tests
1 Language test 0.066 0.042 0.060 0.047
2 Professional test 0.196 0.112 0.134 0.109
3 Safety rule test 0.066 0.082 0.051 0.037
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Table 5. Cont.

No. Criteria The Weights of the Group

DM #1 DM #2 DM #3 DM #4

Skill tests
4 Professional skills 0.130 0.176 0.167 0.133
5 Computer skills 0.130 0.118 0.100 0.081

Interviews
6 Panel interview 0.216 0.215 0.203 0.267
7 1-on-1 interview 0.196 0.215 0.285 0.326

Sum 1 1 1 1

Table 6. Criteria weights (non-normalized values in parentheses) for the first example, as elicited
by GCCA.

No. Criteria The Weights of the Group

DM #1 DM #2 DM #3 DM #4

Knowledge tests
1 Language test 0.2665 (0.0003) 0.1661 (−0.0001) 0.1668 (0.0014) 0.1251 (0.0005)
2 Professional test 0.0000 (−0.0119) 0.0383 (−0.0092) 0.0156 (−0.0107) 0.0104 (−0.0109)
3 Safety rule test 0.2368 (−0.0011) 0.0626 (−0.0075) 0.1927 (0.0035) 0.1827 (0.0062)

Skill tests
4 Professional skills 0.2057 (−0.0025) 0.1885 (0.0015) 0.0875 (−0.0049) 0.1470 (0.0027)
5 Computer skills 0.0503 (−0.0096) 0.2984 (0.0093) 0.0798 (−0.0056) 0.2033 (0.0083)

Interviews
6 Panel interview 0.1266 (−0.0061) 0.2101 (0.0030) 0.2985 (0.0119) 0.2157 (0.0095)
7 1-on-1 interview 0.1142 (−0.0067) 0.0360 (−0.0094) 0.1590 (0.0008) 0.1158 (−0.0004)

Sum 1 1 1 1

According to Wang and Triantaphyllou [27], an intriguing problem that may happen with different
decision-making methods is that of generating disparate outcomes (rankings) when submitted to the
same decision problem instance. Consequently, it is natural to raise the question of how to properly
assess the performance of such methods. Because it is practically impossible to know which is the
best alternative solution for a given decision problem, in [53] some tests capturing different ranking
irregularities are discussed as a way for assessing the performance of multi-criteria methods in general:

Test #1: the best alternative selected should not alter when a non-optimal alternative is added or
removed from the problem (assuming that the relative importance of each criterion remains
unchanged) [54].

Test #2: the best alternative selected should not change if a non-optimal alternative is replaced by a
worse one [27,55].

Test #3: the final ranking of the alternatives should not violate the transitivity property if a
non-optimal alternative is added to (or removed from) the problem [27,55].

Table 7 brings the ranking of the alternatives delivered by the extended TOPSIS, as reported
in [26], as well as the results of the application of the three ranking irregularity tests that are described
above. Table 8 follows the same layout, but it relates to the extended TOPSIS with criteria weights
estimated by GCCA (i.e., CMCGDM approach). In both tables, the second and third columns show the
new rankings of the alternatives (and their associated scores) that result when an irrelevant alternative
is added or removed, respectively, to the alternative set, whereas the last column exhibits the ranking
that results from the replacement of a non-optimal alternative by a worse one. Those cases where the
transitivity property is violated (Test #3) are indicated by shadowed alternatives.
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The extended TOPSIS, using the weights given in Table 5, could pass well Tests #1 and #2,
but failed to respect the transitivity requirement, since there is a ranking position change between
alternatives A14 and A17 (A4 and A7) when an irrelevant alternative (namely, A1) is duplicated
(removed) during the application of Test #1, as one can readily observe from Table 7. On the other
hand, the proposed CMCGDM approach could get through all of the three ranking irregularity tests
without generating any ranking inconsistencies.

Table 7. Assessment of the extended TOPSIS [26] on the ranking irregularity tests—first example.

Extended TOPSIS Test #1–Addition Test #1–Removal Test #2

Rank Score Rank Score Rank Score Rank Score

A16 0.8960 A16 0.8956 A16 0.8963 A16 0.8960
A9 0.8797 A9 0.8797 A9 0.8797 A9 0.8797
A3 0.7860 A3 0.7862 A3 0.7859 A3 0.7860
A6 0.6611 A6 0.6611 A6 0.6611 A6 0.6611
A1 0.6272 A1 0.6259 A14 0.5925 A14 0.5924

A14 0.5924 A1 0.6259 A17 0.5915 A17 0.5919
A17 0.5920 A17 0.5925 A8 0.5700 A8 0.5701
A8 0.5701 A14 0.5924 A13 0.5565 A13 0.5568

A13 0.5568 A8 0.5701 A10 0.5079 A10 0.5080
A10 0.5080 A13 0.5571 A5 0.4660 A5 0.4660
A5 0.4660 A10 0.5082 A7 0.4516 A4 0.4524
A4 0.4527 A5 0.4659 A4 0.4514 A7 0.4522
A7 0.4523 A4 0.4538 A2 0.4401 A2 0.4404
A2 0.4404 A7 0.4530 A15 0.4092 A1 0.4224

A15 0.4091 A2 0.4406 A11 0.2101 A15 0.4091
A11 0.2097 A15 0.4091 A12 0.1673 A11 0.2097
A12 0.1678 A11 0.2093 ---- ---- A12 0.1677
---- ---- A12 0.1682 ---- ---- ---- ----

Table 8. Assessment of the CMCGDM approach on the ranking irregularity tests–first example.

CMCGDM Test #1–Addition Test #1–Removal Test #2

Rank Score Rank Score Rank Score Rank Score

A16 0.9016 A16 0.9013 A16 0.9018 A16 0.9016
A9 0.8797 A9 0.8799 A9 0.8794 A9 0.8796
A3 0.7230 A3 0.7231 A3 0.7228 A3 0.7230
A6 0.6720 A6 0.6719 A6 0.6722 A6 0.6721
A14 0.6608 A14 0.6608 A14 0.6608 A14 0.6608
A1 0.5964 A1 0.5954 A8 0.5854 A8 0.5855
A8 0.5855 A1 0.5954 A5 0.5491 A5 0.5495
A5 0.5495 A8 0.5855 A2 0.5170 A2 0.5173
A2 0.5173 A5 0.5499 A17 0.4813 A17 0.4811
A17 0.4811 A2 0.5176 A13 0.4778 A13 0.4779
A13 0.4779 A17 0.4810 A4 0.4699 A4 0.4705
A4 0.4706 A13 0.4781 A10 0.4634 A10 0.4632
A10 0.4632 A4 0.4713 A7 0.3956 A7 0.3957
A7 0.3957 A10 0.4630 A15 0.3627 A1 0.3627
A15 0.3620 A7 0.3958 A11 0.2259 A15 0.3621
A11 0.2254 A15 0.3615 A12 0.1408 A11 0.2255
A12 0.1409 A11 0.2250 ---- ---- A12 0.1409
---- ---- A12 0.1410 ---- ---- ---- ----

6. Example on Machine Acquisition

In this section, we conduct the same previous analysis on a second example, taken from [21].
In this example, there are different criteria sets that are associated with different DMs. The decision
problem relates to the acquisition of a novel machine by a given manufacturing company. There are
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seven products (alternatives) under analysis by the manufacture department (DM #1) and the financial
department (DM #2). The last alternative was introduced by us in order to turn the decision problem
a bit more complex. The criteria concerned by DM #1 include C1: positioning accuracy (mm),
C2: maximum load (kg), C3: mean time to failure (h), C4: degree of standardization of parts, C5: reliable
service life (h), and C6: delivery time (month). The criteria concerned by DM #2 include C7: price ($)
and C8: down payment ratio (percent), as well as C5 and C6.

The second, sixth, seventh, and eighth are cost criteria, while the others are benefit criteria.
The weights of the criteria that are concerned by DM #1 are (0.3, 0.2, 0.1, 0.05, 0.2, 0.15, 0, 0),
whereas those of the criteria concerned by DM #2 are (0, 0, 0, 0, 0.25, 0.15, 0.45, 0.15). The example,
as proposed by Fan et al. [21], assumes that such weights were somehow calculated by the DMs
themselves.

Tables 9 and 10 bring the decision matrices that are associated with each DM, respectively,
whereas Tables 11 and 12 bring the results of the application of the three ranking irregularity tests
described in the previous section. The layouts of these tables are the same of Tables 7 and 8. As before,
the extended TOPSIS could not keep up well with the transitivity requisite when a mid-ranked
alternative (namely, A2) is duplicated. CMCGDM, in turn, could produce rankings showing no
inconsistencies according to all ranking irregularity tests.

Table 9. Decision matrix associated with DM #1 for the second example, adapted from ([21] [Table 2]).

C1 C2 C3 C4 C5 C6

A1 0.05 500 850 8.6 30,500 1.5
A2 0.01 550 925 8.2 26,500 2.0
A3 0.008 600 960 9.0 28,500 3.0
A4 0.008 450 720 9.2 25,800 2.0
A5 0.015 400 650 8.0 24,000 1.5
A6 0.012 480 710 8.4 23,500 1.0
A7 0.017 505 691 8.0 30,100 1.3

Table 10. Decision matrix associated with DM #2 for the second example, adapted from ([21] [Table 2]).

C5 C6 C7 C8

A1 30,500 1.5 530,000 50
A2 26,500 2.0 420,000 40
A3 28,500 3.0 450,000 35
A4 25,800 2.0 480,000 40
A5 24,000 1.5 380,000 30
A6 23,500 1.0 40,000 60
A7 30,100 1.3 392,000 57

Table 11. Assessment of the extended TOPSIS [26] on the ranking irregularity tests—second example.

Extended TOPSIS Test #1–Addition Test #1–Removal Test #2

Rank Score Rank Score Rank Score Rank Score

A1 1.0000 A1 1.0000 A1 1.0000 A1 1.0000
A3 0.5892 A3 0.5816 A3 0.5984 A3 0.5908
A4 0.5265 A4 0.5189 A4 0.5357 A4 0.5281
A2 0.4741 A7 0.4682 A7 0.4704 A7 0.4694
A7 0.4691 A2 0.4667 A5 0.4011 A5 0.4004
A5 0.4002 A2 0.4667 A6 0.0000 A2 0.3748
A6 0.0000 A5 0.3996 ---- ---- A6 0.0000
---- ---- A6 0.0000 ---- ---- ---- ----
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Table 12. Assessment of the CMCGDM approach on the ranking irregularity tests–second example.

CMCGDM Test #1–Addition Test #1–Removal Test #2

Rank Score Rank Score Rank Score Rank Score

A3 0.8455 A3 0.8425 A3 0.8521 A3 0.8478
A4 0.5798 A4 0.5784 A4 0.5800 A4 0.5798
A2 0.5582 A2 0.5581 A1 0.4529 A2 0.4631
A1 0.4578 A2 0.5581 A5 0.3574 A1 0.4577
A5 0.3600 A1 0.4627 A7 0.2919 A5 0.3581
A7 0.2965 A5 0.3581 A6 0.0000 A7 0.2936
A6 0.0000 A7 0.2942 ---- ---- A6 0.0000
---- ---- A6 0.0000 ---- ---- ---- ----

7. Simulated Cases

In the previous sections, the criteria weights that were used in the comparative analysis were
set up either by the DMs themselves or via GCCA. In this section, we enlarge the assessment by also
considering the objective criteria weighting methods that are discussed in Section 2.2. The idea is to
study, via several simulated cases, how the choice of the weighting method affects the behavior of the
extended TOPSIS that was proposed by Shih et al. [26] with respect to the ranking irregularity problem.

The simulations were performed by following the guidelines that were provided in [27,53,56].
According to these authors, the simulations comprise a reasonable expedient to conduct controllable
and reproducible experiments in order to have a better understanding of the pros and cons of different
multi-criteria decision making methods. By this means, these methods can be deeply assessed by
considering different samples and amounts of parameters, numbers of criteria and alternatives, as well
as distinct ways to assign weights to the criteria and scores to the alternatives. In our investigation,
the main parameters considered along the simulations were the following:

1. number of DMs: {5, 7, 10};
2. number of criteria: 7;
3. number of alternatives: {17, 19, 21, 23, 25, 27, 30};
4. scores of the alternatives: randomly generated by a uniform distribution in the range [0–100];
5. criteria weighting approach: GCCA and the methods described in Section 2.2;
6. number of trials: 100 for each parameter configuration, thereby yielding 6300 different decision

problem instances; and,
7. performance criteria: the three irregularity tests described in Section 5.

Table 13 shows the results that were delivered by extended TOPSIS when configured with the
different criteria weighting methods (it is worthy reminding that extended TOPSIS using GCCA refers
to the CMCGDM approach). The third and fourth columns of this table indicate the number of problem
instances (out of 6300) for which the transitivity requirement was violated when an unimportant
alternative was inserted or removed, respectively. The fifth column does the same transitivity test,
but it refers to those simulation trials where a non-optimal alternative was replaced by a worse one.
Conversely, the sixth and seventh columns express the number of cases where the best alternative
solution was altered either by adding/removing an irrelevant alternative or by replacing a non-optimal
alternative by a worse one. Finally, the last column indicates the aggregated sum of the values in
the third, fourth, and fifth columns. As one can notice, using GCCA to elicit the criteria weights
has usually achieved better performance than the other contestant methods, lagging behind the
statistical variance procedure and CRITIC when the best alternative solutions were altered after adding
irrelevant alternatives.
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Table 13. Assessment of the different criteria weighting methods on the ranking irregularity
tests—simulated cases.

Test #3 Test #3 Test #3

Dist. Method Addition Removal Replacement Test #1 Test #2 Total Test #3
uniform GCCA 11,737 13,226 2727 231 11 27,690

Entropy 12,504 12,753 2640 246 31 27,897
Std 12,504 12,753 2640 246 31 27,897

DEMATEL 12,741 12,837 2626 252 17 28,204
DEMATEL-ANP 12,145 13,592 2766 283 25 28,503

CRITIC 12,411 13,276 2869 218 16 28,556
VarProc 12,366 13,313 3059 183 23 28,738

Note: VarProc refers to the statistical variance procedure; Std refers to the standard deviation method.

Figures 2–4 show how the number of failure cases varied for each type of irregularity test when the
number of alternatives increased from 17 (minimum) to 30 (maximum) in order to better understand the
performance of the different criteria weighting methods across the simulations. Considering Figure 2
(Test #1), one can notice that GCCA’s overall performance falls short of CRITIC and VarProc, although,
after the 25 mark, it is only surpassed by VarProc. While the number of test failures caused by DANP
grew up steadily, the increase of this number for GCCA is less accentuated in the range of 25 to
30 alternatives. Regarding Figure 3 (Test #2), the overall performance of GCCA is much better than all
other methods and its stability from the 21 mark is remarkable. In general, all methods (except DANP)
show a reasonable resilience to the conditions imposed by this test. Finally, Figure 4 informs how
the different methods handled the transitivity requirement (Test #3). The values correspond to
the aggregated cases, as shown in the last column of Table 13. All methods displayed a similar
monotonically increasing behavior in terms of number of failed trials; however, the performance of
GCCA was usually better, regardless of the number of alternatives.
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Figure 2. Performance of the different criteria weighting methods on Test #1.
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Figure 3. Performance of the different criteria weighting methods on Test #2.
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Figure 4. Performance of the different criteria weighting methods on Test #3.

8. Final Remarks

In this paper, we introduced a novel GDM approach, CMCGDM, which adopts GCCA
to automatically elicit the weights of the (possibly distinct) criteria used by the different DMs.
By maximizing the correlation between the DMs’ decision matrices, we argue that the elicited weights
can better reflect the consensus between the DMs’ preferences regarding the various alternatives.
CMCGDM also makes use of the extended version of TOPSIS conceived by Shih et al. [26], which is
specific for MCGDM. We revisited two examples taken from the literature and performed a series
of simulations considering popular criteria weighting methods to demonstrate the usefulness of
CMCGDM. Overall, the results revealed that CMCGDM is a promising approach, being more resilient
to the ranking irregularity problem than the extended TOPSIS without using GCCA.
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As future work, we plan to extend CMCGDM to work with other GDM methods available in
the literature as well as with uncertain criteria, such as those that involve fuzzy, interval, incomplete,
or random values [1,14,57]. We also plan to compare CMCGDM with other methods for eliciting criteria
weights, such as CSW-DEA [36,37], nonlinear programming methods [39], and swing-weighting [40].
We shall also investigate the use of GCCA to recalibrate the criteria weights in dynamic settings,
particularly in those circumstances where the sets of alternatives or criteria are allowed to change over
time [58]. Finally, the use of non-linear versions of CCA (such as those that employ kernels [22]) seems
to be a good theme to explore.
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