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Abstract: In accordance with the theme of this special issue, we present a model that indirectly
discovers symmetries and asymmetries between past and present assessments within continuous
sequences. More specifically, we present an alternative use of a latent variable version of the Mixture
Transition Distribution (MTD) model, which allows for clustering of continuous longitudinal data,
called the Hidden MTD (HMTD) model. We compare the HMTD and its clustering performance to
the popular Growth Mixture Model (GMM), as well as to the recently introduced GMM based
on individual case residuals (ICR-GMM). The GMM and the ICR-GMM contrast with HMTD,
because they are based on an explicit change function describing the individual sequences on the
dependent variable (here, we implement a non-linear exponential change function). This paper has
three objectives. First, it introduces the HMTD. Second, we present the GMM and the ICR-GMM
and compare them to the HMTD. Finally, we apply the three models and comment on how the
conclusions differ depending on the clustering model, when using a specific dataset in psychology,
which is characterized by a small number of sequences (n = 102), but that are relatively long (for the
domains of psychology and social sciences: t = 20). We use data from a learning experiment, in which
healthy adults (19–80 years old) were asked to perform a perceptual–motor skills over 20 trials.

Keywords: longitudinal data; clustering; HMTD; residual-based clustering; GMM; mixture transition
distribution; non-linear trajectory; small data; time series

1. Introduction

A major goal of developmental science is to describe how individuals change in time, similarly to
or differently from each other [1]. Because of natural heterogeneity in many samples, clustering
methods aim at revealing groups of individuals with similar characteristics within a given cluster,
but that differ from those in other clusters. Thus, clustering methods are of major importance in the
study of change.

In behavioral sciences, change phenomena are often studied with growth models and similar
techniques. These consist of statistical models for describing both within-person change and between-person
differences that are based on mathematical change functions with interpretable parameters [2].
The parameters should allow for describing the individual trajectorie and understanding why some
individuals cluster together. Individuals within the same cluster share similar, if not identical, parameter
values, whereas those in different clusters are characterized by different values. The main advantage
of this approach is that the nature of the parameters across the clusters can help for the substantive
interpretation of the change phenomenon under investigation. Nevertheless, this approach can also
yield problems, such as the overextraction of clusters [3].
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Another approach to study clusters of individuals observed repeatedly consists in studying how
the mathematical distribution of the dependent variable under scrutiny at a given time point depends
on those at previous time points. Markovian models are typically used in this approach, because of
their flexibility in terms of adjustment. In addition, Markov models have also been proposed at the
latent level, where the distributional characteristics that are used for clustering are not those of the
dependent variable under scrutiny, but of a latent variable thought to drive the indicator [4,5].

In this paper, we describe three different strategies to cluster longitudinal data, two of which
stem from the growth model tradition and one from the Markovian approach, based on MTD model
with a latent variable. The MTD model plays an important role by capturing the symmetries and
asymmetries between past and present when assessing continuous sequences. We illustrate the three
methods with data from a learning experiment and discuss their similarities and differences with
respect to this application.

2. Data

We use a data set that was originally collected by Kennedy et al. [6] and also presented
in Ghisletta et al. [7] and Ghisletta et al. [8]. The original study aimed at assessing so-called
perceptual-motor skills in healthy adults with a task that requires carefully observing a visual stimulus
(the perceptual component) and performing a controlled movement that follows the visual stimulus
(the motor component).

2.1. Participants

The sample consisted of 102 healthy adults (19–80 years old) living in the Memphis, TN, USA,
metropolitan area. The participants with sensory deficiencies and important health issues (neurological,
psychiatric, and medical conditions, but also arthritis) were not included. There were 60 women vs.
42 men, and 14 African American vs. 88 Caucasians. All of the participants were right-handed and
native English speakers. None were affected by dementia or by clinical depression. Concerning formal
education, all attended at least high school and on average had four years of college.

2.2. Perceptual-Motor Skills

The participants underwent the Pursuit-Rotor (PR) tasks, a classical task that requires coordinating
visual and motor information. The participants are seated by a rotating disk (similar to a turntable)
with a hole, through which a light is vertically projected while the disk rotates. The participants hold a
J-shaped wand and they are asked to keep its tip above the light as long as possible, during a 15-s trial.
Twenty trials were presented with a 10-s inter-trial pause, and the apparatus measures the duration
(in seconds) during which the wand is correctly kept over the light. An illustration of the entire sample
of observations is provided in Figure 1, where the light lines correspond to individual trajectories,
the thick black line to the average sample performance, and the red line corresponds to the expected
sample trajectory according to the exponential model that we discuss below.

2.3. Other Covariates

Besides the main PR task, the participants were also assessed on a series of covariates that were
thought to be potentially related to perceptual-motor skills. These include working memory tasks,
which assess how well we can keep some information in mind while focusing on other information,
and the capacity of cognitive adaptation. Two working memory tasks were verbal: Listening Span
(LS; participants listened to simple sentences, were asked a question about their content, and finally,
were asked to recall the last word of each) and Computation Span (CS; participants were to solve
simple arithmetic problems and to remember the last digit of each). The two remaining working
memory tasks were non-verbal: Size-Judgment Span (SJS; participants listened to a list of objects
or animals and had to recall them in ascending size order) and Spatial Relations (SR; participants
are presented with a whole shape as well as with a series of six disjointed shapes, from which they
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are asked to choose a correct combination. The complexity and degree of abstraction of the shapes
augment according to participants’ capacities). The total number of correct responses was analyzed
for all working memory tasks.
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Figure 1. Entire sample of 102 sequences: the black curve links the mean values across all time periods
and the red curve represents a fitted exponential form growth model.

The Wisconsin Card Sorting (WCS) task was used to assess cognitive adaptation. In this task,
the participants start by observing stimulus cards on a screen and are then shown additional cards
to be singularly matched to the stimulus cards. Although no matching rules are provided, feedback
about correct vs. incorrect match is provided for each card. The feedback is provided according to an
existing rule, which changes during the tasks. Thus, the participants not only have to figure out the
rule to correctly match cards, but they also have to adapt to a new rule, without persevering with the
old one. Typically, this task is scored by counting the perseverative errors, which is, the number of
matches performed by following an old rule that no longer is used for feedback. For a fuller discussion
of all covariates, see Ghisletta et al. [7].

In this application, we will use these covariates to validate or invalidate our clustering solution.
That is, besides discussing the interpretation of each clustering method based on the number of clusters
and parameter values of each cluster, we will also investigate how the existence of the different clusters
is reflected by different values in the covariates (later in Section 4).

2.4. Data Characteristics and Change Functions

Before applying any clustering method, it is important to consider the data characteristics.
First, this data set includes sequences that are considered to be rather long in the behavioral sciences
(t = 20 trials), but on a rather small sample (n = 102). Any clustering method to be used on these data
needs to account for these characteristics.

When we cluster sequences according to their average trajectory, it is very important to use
a mathematical change function that adequately describes the relation between the data and time.
The choice of a linear vs. non-linear function within such clustering methods has a large impact on the
final results.

In Figure 1, the trajectory going through the mean values clearly suggests a non-linear time
pattern for these data. The average time on target on the PR tasks has a steep slope, which corresponds
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to a strong learning rate, during the first 6–7 trials, and a shallower slope thereafter. The choice of an
appropriate change function has been investigated in detail in Ghisletta et al. [8], who compared and
tested multiple nonlinear change functions, and finally concluded that a three-parameter exponential
function describes the trajectories well, as illustrated in this plot. Moreover, the exponential function
is composed of parameters that are easily interpretable in terms of the learning process during the
PR task. Hence, in this work, if a clustering method requires the specification of a change function,
we apply the three-parameter exponential function, as specified in the following equation:

yi,t = βi − (βi − αi) exp−(xi,t−1)γi +εi,t, (1)

where the parameter αi represents the initial score (on the first trial), βi represents the final score
(on trial 20), γi denotes the rate of change (learning rate) for an individual i, and xi,t indicates the time
period at each wave t (ranging from 1 to 20). εi,t represents the deviation from a person’s observed
score at a given time point and the model’s prediction for that score.

This model estimates a total of 10 parameters: three fixed parameters, which is, average values
that describe the mean sample trajectory (α, β, γ), six random parameters, which represent individual
differences from the fixed parameters (the variance of each fixed parameter and their three covariances),
and the error variance, which denotes variance of the εi,t and it is typically kept constant at each time
point. Thus, the rather low number of parameters makes for a change function that should not require
enormous sample sizes to be estimated.

While the exponential function appears to be quite well suited to the learning-type data that
we discuss here, it obviously cannot adequately describe individual trajectories stemming from any
change process. The free-basis growth model is a flexible specification of the growth model that, in a
spline-like manner, describes at best trajectories generated from any change process [2]. It can be
written by the following equation:

yi,t = β0,i + β1,i · αt + εi,t (2)

Here, β0,i represents the initial value for participant i at time 0, β1,i represents the slope, thought
to be constant in time, and αt reflects the effect of the time-invariant slope at time t. If αt is equal to
1 at every time point, then we obtain the linear growth model, by which the individual trajectories
are straight lines with constant slopes. The advantages of the free-basis model is that it is able to
describe well any average linear or nonlinear trajectory. However, its main drawback is the very
high number of parameters, because of the αt parameters. In our application, this model estimates
24 parameters (two fixed and three random effects of β0 and β1, the error variance, and 18 αt values—for
two time points αt needs to be fixed for identification purposes, cf. Ghisletta and McArdle [9]).
Thus, the free-basis model requires large sample sizes to yield stable solutions.

The choice of a change function needs to be thorough, because, once we include a change function
in a clustering method, the parameters to be estimated quickly increase. For instance, if we choose
the free-basis growth model to dictate the clustering method within a GMM, then for each cluster we
may have to estimate all parameters. In our case, with 20 time points, to extract two clusters we would
have to estimate 2× 24 = 48 parameters. However, if we opt for the exponential function, as described
in (1), we would have to estimate 2× 10 = 20 parameters to extract two clusters. Moreover, we could
also choose to apply GMM with respect to only some parameters of the exponential function. If we
were to let only fixed effects drive the clustering method, we would have to estimate 10 + 3 = 13
parameters for two clusters.

To cope with this issue, we need to minimize the number of parameters by fitting the simplest
possible models to the data. However, the apparent non-linearity of the data, combines with the second
particularity: the relatively large number of periods (length of the sequences), which makes some more
flexible models (like the free-basis growth model or high-order polynomials) very difficult to estimate
with more than two clusters.
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To summarize, this type of data, which is quite common in the social sciences, requires using
clustering methods that are based on change functions with few parameters, but that are also able to fit
well its non-linear shape. The number of parameters to estimate should also not grow considerably with
the number of clusters (ex: avoid complex variance-covariance structure between clusters, over time
etc.) in order to be able to include small but distinct clusters within the final partition. Flexible change
functions (like the free-basis growth model or high-order polynomials) are very difficult to estimate
with more than two clusters with such data.

3. Clustering Models

In this paper, we test three different methods for clustering longitudinal data: the Growth Mixture
Model (GMM), a recent residual-based clustering method from Marcoulides and Trinchera [10] and the
Hidden Mixture Transition Distribution (HMTD) from Berchtold and Raftery [11].

3.1. Growth Models and the Growth Mixture Model (Gmm)

Growth modeling aims to discover the patterns of (and model) individual change in a longitudinal
data framework. Basic growth models assume that all trajectories belong to the same population and
they may be approximated by a single average growth trajectory while using a single set of parameters.
However, there exist several models, with similar assumptions, which take into account the presence
of underlying (latent) groups. Such is the latent class growth analysis LCGA, which assumes null
variance-covariance for the growth trajectory within each class [12], and the heterogeneity model,
which imposes the same variance-covariance structure within each group of subjects. The more flexible
GMM relaxes these assumptions and it will be used in our analysis.

The Growth Mixture Model (GMM) model has become a reference in the continuous longitudinal
data modeling, with various applications in criminology [13], health and medicine [14,15], psychology
and social sciences [16–18], among others (see [19]). The GMM [14,20] is a model designed to discover
and describe the unknown groups of sequences that share a similar pattern. This method may be
represented as a mixture of mixed-effects models, where each of the unknown sub-populations follows
a distinct linear mixed effect model. Its main advantage over previous similar models is that it allows
for the estimation of a specific variance-covariance structure within each class [13]. Within-class
inter-individual variation is allowed for the latent variables via distinct intercept and slope variances,
which are represented by a class-specific fixed effects and random effects distribution. In other words,
the variation around the group-specific expected trajectory is distinct for each group, which implies
heterogeneity in the growth trajectories.

In its very general form, the equation of the model for a subject i being part of class k (ci is a
variable indicating to which cluster k the observation i is assigned) at time t is:

yi,t|ci=k = X1i(t)T β + X2i(t)Tδ(k) + Vi(t)Tu(k)
i + wi(t) + εi,t, (3)

where X1i is vector of covariates with common fixed effects β, X2i is vector of covariates with
class-specific fixed effects δ(k), Vi is a set of covariates with individual class-specific random effects
u(k)

i . Finally, wi(t) is an auto-correlated Gaussian process with null mean and covariance equal to
cov(wi(t)wi(s)) = σ2

w exp(−ρ|t− s|).
Initially, we attempted to use a linear change function in our example for the sake of simplicity.

Thus, only time was present as random effect, no other covariate was used, and the model was
estimated with the R package lcmm of Proust-Lima et al. [21]. The use of the linear function is not
adapted to the data and, as expected, the results were not interpretable, as shown previously. Therefore,
the focus was on the non-linear implementation of GMM, by testing the three-parameter exponential
change function.



Symmetry 2020, 12, 1618 6 of 21

When adapted to the purpose of clustering, the coefficients of the exponential Equation (1) become
specific to each cluster instead of different for every unit. Therefore, for each individual i that is assigned
to cluster k, the equation of the estimated non-linear GMM with exponential trajectory becomes:

yi,t|ci=k = β(k) − (β(k) − α(k)) exp−(xi,t−1)γ(k)
+εi,t, (4)

where α(k),β(k), and γ(k) are the cluster-specific coefficients indicating the initial score, final score,
and rate of increase. The time period Xi,t is the only variable in the equation and it appears in a
non-linear way (X ∈ [1, ..., T], where T is the last period in the data).

These coefficients follow a multivariate Gaussian distribution:α(k)

β(k)

γ(k)

 ∼ N

a(k)

b(k)

g(k)

 ,

 σa . .
σab σb .
σag σbg σg


 , (5)

where the means a(k), b(k) and g(k) are specific to each cluster k. However, the variance-covariance
matrix is constrained to be the same over all classes, for identification purposes. Finally, the residuals
are also Gaussian and their standard deviation σe is also constrained to be the same for all of the clusters:

εi,t ∼ N (0, σe) (6)

We also attempted to relax the constraints on the variance-covariance matrix by allowing the
model to have different residual standard deviations for each cluster, i.e., σ

(k)
e . This led to an increase in

the number of parameters to be estimated, and it resulted in computational issues that we encountered
when estimating the model with the software Mplus [22].

In the end, the exponential GMM remains inexpensive in terms of number of parameters:
one residual variance σe and six variance-covariance parameters for the coefficients from Equation (5)
that are common for all groups, and three parameters for the means a(k),b(k),g(k) that are specific to
each cluster. In other words, clusters are defined as a function of the fixed effects only of Equation (1).

3.2. Residual-Based Approach (Marcoulides and Trinchera)

Recently, Marcoulides and Trinchera [10] presented another approach to clustering longitudinal
data, which was based on the individual residuals from a common growth model. Their procedure
is initiated with one global growth model for the entire sample, followed by an estimation of a
“local” model for each cluster separately. The idea is that, if a latent class exists in the sample,
then the trajectories of the individuals belonging to that class will share similar residuals with respect
to the global model and will have minimal residuals with respect to a local model estimated only
within this class.

The method that is described by Marcoulides and Trinchera [10] is executed by the following
steps (cf. Table 1 in Marcoulides and Trinchera [10], p. 394):

1. a common growth model is fitted to the entire sample;
2. individual case residuals from the common growth model are calculated;
3. these residuals are clustered using a hierarchical algorithm;
4. the user determines the number k of latent classes based on the hierarchical clustering dendrogram

and related output;
5. the individuals are assigned to one of the k latent classes;
6. the k latent classes are treated separately and a common growth model is fitted to each;
7. the distances between each individual sequence and each of the k local growth models are

computed and compared;
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8. each individual is assigned to its closest local growth model (cluster);
Steps 6 to 8 are iterated until convergence criterion is met (i.e., no more cluster switching or a
maximal number of iterations); and,

9. an average growth trajectory (and its parameters) for each cluster is computed.

An Euclidean type measure is used to calculate the distance between each individual and each
model. It is based on the sum over time of all errors between the sequence and average pattern,
predicted by the model of each cluster (individual case residuals εi,t = Yi,t − Ŷi,t). A drawback
of this distance metric is that it only accounts for the average error, which means that sequences
with completely different trends and patterns, but equal errors, end up with the same individual
case residual.

Originally this method was presented using linear or free-base growth models. However, we needed
to adapt the algorithm to an exponential growth model according to Equation (1), as discussed previously.
Section 4 will provide the results.

Within their algorithm, the growth model is the free basis of Equation (2), and clusters are defined
with respect to all of the estimated parameters. Hence, as discussed before, this approach necessitates
the estimation of many parameters, which increase linearly as a function of the number of clusters to
be extracted. In our application, the free-basis estimates 24 parameters per cluster, so that, for instance,
the extraction of three clusters would estimate 3× 24 = 72 parameters.

We initially implemented the free-basis growth model, but, as expected, it failed to converge with
more than two clusters, because of the excessively large number of parameters compared to the size
of the sample. We also implemented the linear growth model, but, as expected, the solutions were
not interpretable because the linear change function was not adequate. In the end, we adapted the
algorithm to estimate the three-parameter exponential model of Equation (1), by allowing clusters to
be extracted as a function of the fixed parameters α, β, and γ. This approach was relatively successful,
as discussed below.

3.3. HMTD

The third model we will use is the Hidden Mixture Transition Distribution model (HMTD),
which has already been applied in health and social sciences [19,23]. The HMTD is a specific class of
Markovian Models, which combines a latent and an observed (visible) level Bolano and Berchtold [4].
The visible level is a Mixture Transition Distribution (MTD) model, which was first introduced
by Raftery in 1985 as an approximation of high-order Markov chains [24] and then developed by
Berchtold [25] and Berchtold and Raftery [11]. Here, we use a Gaussian version of the MTD model,
where the mean of the Gaussian distribution of the variable analyzed is a function of past observations.
We tested several dependence orders for the mean of the Gaussian distributions of each component
and, in the end we fixed at one, which simplifies the estimation of the means:

µk,t = φk,0 + φk,1 yt−1,

where φk,0 is the constant for the mean of component k and φk,1 is the auto-regressive parameter
indicating the dependence from the previous observation yt−1. Note that, for our example, we do not
include any covariates directly in the clustering model, but this could be done. We chose not to use
the covariates for external validation purpose. Similarly, the variance of each component could be
specified as a function of the past periods variability: σ2

k,t = θk,0 + ∑S
s=1 θk,s y2

t−s. Here, additionally,
we tested several dependence orders for the variance and, in the end, it appeared to be sufficient
to treat the variance as constant over time: σ2

k,t = θk,0. Of importance, the dependence of the mean,
its value, and the value of the variance vary across clusters k. Finally, the latent part of the HMTD
model is a homogeneous Markov chain, where each state is associated with a different Gaussian
distribution (component) at the observed level.
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To use the HMTD model as a clustering tool, here we assume the hidden transition matrix to
be the identity matrix, which means that an individual cannot change classes over time. However,
various other specifications of the HMTD model are possible. More details regarding the specifications
and the various algorithms used in the estimation of the model are provided in [5,26,27].

The advantages of this model are the small number of parameters to be estimated (only three per
cluster: φk,0 and φk,1 for the mean, and θk,0 for the variance), but also the lack of particular assumption
(linear or non-liner) for the shape of the trajectory: the model only assumes that at each time t the
data are Gaussian with parameter(s) dependent on the past. What distinguishes the clusters, in this
particular specification, is how the mean depends on the past and how dispersed the observations are
within each cluster, with respect to their expectations.

3.4. Underlying Assumptions and Distinction between the 3 Models

Small sample size (n) and a large number of periods (t) can result in a clustering problem for
GMMs based on nonlinear change functions, because of the difficulty in estimation. For instance,
in a free-basis growth model (cf. Equation (2)), there is an excessively large number of parameters
to estimate as t increases (at least one parameter for each period and for each cluster). Combined
with a small sample size, the available information may not be sufficient to reach a valid solution.
However, if the data follow a specified change function (linear or not, such as exponential), the change
function can be specified with a fixed-basis growth model (e.g., Equation (1)), and GMM may then be
very useful.

HMTD, on the other hand, does not assume any growth trajectory, and thus does not require the
user to specify an adequate change function. It only separates the sequences in terms of dependence of
the past, level, and variability. This may be particularly useful in clearly non-liner data, when t is large
and n is small, and where the focus of the application is not on uncovering and understanding how
latent groups come about based on their trajectories.

Therefore, we can summarize the difference between these models as “trajectory-based”
(all versions of GMM) vs. “distribution-based” (HMTD) clustering. In the following section, we will
evaluate their performance and discuss their results.

4. Results

The residual-based method ICR-GMM was first presented by Marcoulides and Trinchera [10]
using a free-basis growth model. With our data set, this model only converged with up to two clusters,
because of the large number of parameters (48) needed to be estimated. Any additional cluster to be
extracted would have required 24 additional parameters to be estimated, which was too many for our
sample size. Even the simpler linear version of ICR-GMM, which is not adapted to the data, provides
results with no more than three clusters. Therefore, the results of ICR-GMM based on free and linear
basis change functions are only provided in the Supplementary Material.

Thus, below, we show the results of the ICR-GMM and of GMM based on the three-parameter
exponential change function presented in Equation (1). These are the “trajectory-based” clustering
methods. We also present the only “distribution-based” clustering method that we discuss here,
the HMTD. For each method, we choose the optimal number of clusters using standard statistical
criteria, such as AIC, BIC, adjusted BIC, and entropy (Table 1). We also focus on the interpretability of
each solution, in terms of parameter values. We first interpret the resulting clusters alone, and then
also with respect to their relations with the additional covariates using Tukey’s pairwise comparison
tests (Honest Significant Difference) between the clusters.

4.1. Gmm Clustering with Exponential Trajectory

With the exponential GMM method, we could estimate up to five clusters using Mplus.
The optimal number of clusters according to BIC is two. However, the AIC and the adjusted BIC
suggest five clusters, which is also our choice in terms of interpretability. The resulting trajectories
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are displayed on Figure 2. We can observe that all of the coefficients play a role in the separation of
the groups: the initial αk and the final βk scores, as well as the rates of change γk differ across the five
clusters. These differences can more easily be appreciated when we draw the average trajectory for
each cluster, shown in red on Figure 2. The parameter values of the fixed effects of each cluster are
shown in Table 2.

Table 1. Fitting citeria for the results of all three models, as provided by the corresponding packages.
The partitions that could not be estimated are marked with “-”. The best model according to each
criterion is marked in bold.

2 cl 3cl 4cl 5cl 6cl.

HMTD
AIC 6052.044 5921.18 5889.645 5822.483 5822.184
BIC 6073.044 5952.679 5931.644 5874.983 5885.184
nb. estimted parameters 6 9 12 15 18

GMM (exp.)
AIC 6058.933 6063.217 6053.86 6048.243 -
BIC 6095.683 6110.467 6111.616 6116.492 -
adjusted BIC 6051.462 6053.611 6042.126 6034.367 -
nb. estimted parameters 14 18 22 26 -

ICR-GMM (exp.)
AIC 6084.298 6071.239 6037.246 - -
BIC 6136.797 6149.988 6142.245 - -
BIC2 6073.625 6055.229 6015.9 - -
nb. estimted parameters 20 30 40 - -
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Figure 2. Growth Mixture Model (GMM) with exponential trajectories, 5 cluster solution.

Clusters 1, 3, and 4 have a rather steep initial increase, but only 1 and 3 reached high final
scores. In contrast, groups 2 and 5 increased more gradually, and the latter started very high to
end up with even better scores. If we interpret more, group 1 started rather low, but then adapted
well and very quickly to the task; group 2 also started low, adapted slowly to the task, and then
reached average performance; group 3 also started low, learned quickly, and eventually achieved a
good final performance; group 4 started low, learned very little, and ended up with the worst final
performance; and, group 5 started very high, improved even further, and ended up with the highest
final performance. Groups 2 and 5 were the smallest, whereas group 3 was the largest.
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Table 2. Estimated coefficients of the exponential trajectories for GMM (five cluster solution, top) and
GMM based on individual case residuals (ICR-GMM) (four cluster partition on the bottom).

GMM cl.1 cl.2 cl.3 cl.4 cl.5

cluster size 28 6 39 23 6
α̂k 3.39 2.53 2.65 1.58 7.12
β̂k 7.41 5.55 5.72 3.37 9.36
γ̂k 0.58 0.14 0.37 0.50 0.17

ICR-GMM cl.1 cl.2 cl.3 cl.4

cluster size 8 39 44 11
α̂k 3.37 2.56 2.14 3.25
β̂k 6.18 5.53 4.95 5.69
γ̂k 0.17 0.69 0.47 0.42

Next, we analyze the groups with respect to their relations to the six external covariates.
Several Tukey tests of differences between the groups are shown in Table 3 (for the linear version of
GMM please see Table A1). Surprisingly only two differences are significant, both stemming from the
variable SR, leading to the conclusion that group 4 has lower values than groups 1 and 5. The size of
the groups may be a reason for the scarcity of significant results, although the important differences in
scores led us to expect clearer differences. Ghisletta et al. [7] discuss the relevance of the SR covariate in
the PR task. Given the spatial component of the PR task, the SR working memory, which is especially
high in spatial components, is unsurprisingly associated to the learning tasks, whereas verbal or
flexibility tasks are not very relevant to the task performance.

We must note that, as mentioned before, only the means of the coefficients (fixed effects) are
different among the classes. Models with cluster-specific residual variances or variance-covariance
matrices for the coefficients (random effects) could not be estimated because of computational issues
using Mplus (probably caused by the size of the sample). This represents a limitation of the GMM
approach for this type of data.

4.2. Icr-Gmm Clustering with Exponential Trajectory

We adopted the approach of Marcoulides and Trinchera [10] to fit the three-parameter exponential
model, and obtained, at most, four clusters. Although BIC suggested two groups, the AIC and the
BIC2, provided by the package lavaan [28], which is used in the R function provided by Marcoulides
and Trinchera [10], chose the four cluster solution on which we focus. The two- and three-cluster
solutions are provided in the Supplementary Material.

The partition on Figure 3 regroups four trajectories, although the differences in trajectories appear
a little less important than shown by the estimated coefficients on Table 2. Clusters 1 and 4 are rather
small in size (8 and 11 sequences, respectively) and they both start and finish with higher scores and a
rather progressive increase. The groups 2 and 3 also share some common characteristics, such as low
initial values and steeper progression. Despite these statements, we must note that the within-group
variability appears rather high and the difference between groups is not as striking as it was in the
previous GMM clustering.

This impression also holds when we observe the results of the Tukey tests on the covariates on
Table 4. There is no significant difference between the clusters on any of the covariates, which is not
theoretically expected [7]. Although the average age appears higher for the group with lowest scores,
the results are far from significant. Thus, it appears that, in our application, the ICR-GMM approach is
not well-suited, although we adapted it with an appropriate change function.
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Table 3. Tukey tests for the difference in covariate mean levels between each pair of clusters. GMM with exponential trajectories: solutions with 2, 3, and 4 classes;
p-values < 0.05 are in bold.

GMM 2 cl. 3 Clusters 4 Clusters 5 Clusters
Exponential 2-1 2-1 3-1 3-2 2-1 3-1 4-1 3-2 4-2 4-3 2-1 3-1 4-1 5-1 3-2 4-2 5-2 4-3 5-3 5-4

Age −8.040 4.200 8.783 4.583 9.003 6.755 −8.969 −2.248 −17.972 −15.724 16.060 9.649 6.654 −1.940 −6.410 −9.406 −18.000 −2.996 −11.590 −8.594
p-value 0.143 0.741 0.452 0.659 0.117 0.380 0.667 0.946 0.108 0.204 0.202 0.135 0.604 0.999 0.899 0.722 0.328 0.957 0.496 0.784
LS 4.216 0.105 −2.645 −2.751 −6.304 −8.683 3.213 −2.380 9.517 11.896 −15.778 −7.778 −9.778 −2.111 8.000 6.000 13.667 −2.000 5.667 7.667
p-value 0.342 1.000 0.898 0.808 0.216 0.068 0.957 0.893 0.435 0.257 0.067 0.132 0.085 0.996 0.629 0.856 0.372 0.979 0.858 0.709
CS 6.729 −1.415 −3.589 −2.174 −5.269 −4.787 15.065 0.481 20.333 19.852 −16.481 −7.037 −6.434 6.852 9.444 10.048 23.333 0.603 13.889 13.286
p-value 0.238 0.969 0.889 0.923 0.572 0.682 0.313 0.999 0.097 0.116 0.176 0.441 0.655 0.908 0.681 0.670 0.136 1.000 0.388 0.476
SJS 0.321 0.291 0.273 −0.018 −0.616 −1.267 −0.039 −0.651 0.578 1.229 −2.000 −0.744 −1.364 −0.500 1.256 0.636 1.500 −0.620 0.244 0.864
p-value 0.581 0.880 0.936 0.999 0.470 0.032 1.000 0.447 0.897 0.465 0.084 0.420 0.054 0.967 0.457 0.928 0.555 0.656 0.998 0.808
SR 0.189 −1.035 −2.411 −1.376 −1.764 −3.740 1.125 −1.976 2.889 4.865 −3.583 −1.776 −4.100 0.850 1.808 −0.517 4.433 −2.324 2.626 4.950
p-value 0.882 0.709 0.340 0.515 0.156 0.000 0.925 0.121 0.384 0.048 0.147 0.231 0.001 0.986 0.746 0.998 0.213 0.108 0.489 0.039
WCST 1.823 −5.444 0.465 5.909 11.649 10.501 2.760 −1.148 −8.889 −7.741 8.900 13.141 14.455 18.000 4.241 5.555 9.100 1.314 4.859 3.545
p-value 0.793 0.729 0.999 0.642 0.081 0.185 0.996 0.996 0.876 0.917 0.881 0.063 0.083 0.427 0.991 0.978 0.957 0.999 0.989 0.997

Table 4. Tukey tests for the difference in covariate mean levels between each pair of clusters. ICR-GMM method with exponential trajectories: solutions with two,
three and four classes; p-values < 0.05 are in bold.

ICR-GMM 2 cl. 3 Clusters 4 Clusters
Exponential 2-1 2-1 3-1 3-2 2-1 3-1 4-1 3-2 4-2 4-3

Age −3.333 −4.254 −4.976 −0.723 1.240 1.648 0.625 0.407 −0.615 −1.023
p-value 0.329 0.648 0.418 0.985 0.998 0.994 1.000 1.000 1.000 0.998
LS 6.564 0.877 0.969 0.093 5.083 4.068 8.841 −1.015 3.758 4.773
p-value 0.017 0.973 0.953 1.000 0.776 0.865 0.506 0.987 0.854 0.727
CS 6.298 3.614 −0.844 −4.459 −0.868 0.655 5.614 1.522 6.481 4.959
p-value 0.071 0.749 0.977 0.591 0.999 1.000 0.891 0.980 0.687 0.822
SJS 0.040 0.234 −0.489 −0.723 0.385 0.636 0.795 0.251 0.410 0.159
p-value 0.913 0.890 0.478 0.264 0.946 0.792 0.775 0.922 0.909 0.994
SR 0.795 1.412 1.064 −0.348 1.014 1.195 2.307 0.181 1.293 1.112
p-value 0.299 0.392 0.454 0.933 0.899 0.839 0.547 0.996 0.746 0.814
WCST −4.531 −7.583 −12.908 −5.325 10.139 9.919 5.227 −0.220 −4.912 −4.691
p-value 0.279 0.390 0.018 0.577 0.583 0.588 0.946 1.000 0.897 0.904
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Figure 3. Residual-based method with exponential trajectories, four cluster solution.

4.3. HMTD Clustering

The last results we present in this article are those from the HMTD model (package HMTD
available at https://github.com/ztau/HMTD-v0.0.1), which, in our application, focuses on the
dependence of the mean scores on their past observations. Probably because of its greater
computational simplicity, as compared to the GMM and ICR-GMM methods, this model allowed
for the estimation of the largest number of clusters (6). The optimal number according to BIC is five,
whereas AIC gives a very slight advantage to the six-group partition (Table 1). Both partitions appear
very similar, with the only difference that the additional 6th cluster in the more complex solution takes
its observations from clusters 2 and 5 from the five-group solution (which correspond to classes 2 and
1 in the six-cluster solution). On the correspondence matrix on Figure 4, we can see the similarity of
these two partitions.

Figures 4 and 5 display the trajectories of the five- and, respectively, six-cluster solution. We report
the parameters for all clusters of these solutions on Table 5. We have the constant of the standard
deviation θk,0 within each cluster, the constant for the mean φk,0, and the auto-regressive part for
the mean φk,1 (Remark: θk,0 does not measure the variability between the sequences within each
cluster, but the one of the Gaussian distribution component, i.e., the one around the expected mean
for each period within each sequence. Here, this variability is constant over time but different across
the clusters).

4.3.1. Five-Group Solution

The five- and the six-cluster solutions share three clusters, in which the same individuals were
classified. Thus, we start by discussing these three groups. Cluster 3 (in both solutions) is characterized
by the smallest constant for the mean, the largest auto-correlation, and the smallest standard deviation
of all clusters. This indicates that the participants started with low scores and maintained them
throughout the entire task. We call this the “lowest and stable” cluster. Cluster 4 (in both solutions)
also obtained a low mean constant, but it also had a low auto-correlation and a high standard deviation.
Its average performance is only slightly greater than that of cluster 3, but the sequences are much more
variable over time than cluster 3 and also display a slight jump in the first three trials. We call this the
“low and unstable with modest increase” cluster. Cluster 1 (which is five in the six-cluster solution) is

https://github.com/ztau/HMTD-v0.0.1
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the largest, with 39 sequences (38% of the sample), and contains the ’‘average” sequences. Its three
parameters have median values as compared to those of the other clusters, and the individuals appear
to display high homogeneity.
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Figure 4. Hidden Mixture Transition Distribution (HMTD) partition with six clusters.
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Figure 5. HMTD partition with five clusters.

Among the clusters that are specific to the six-group solution, cluster 2 displays high constant
and low auto-dependence for the mean. We call this the “normal high” performance. Finally, cluster 5
is the most erratic in terms of standard deviation. It also has high constant for the mean, and we call
this the “highest and erratic” cluster.

In terms of the covariates (Table 6), cluster 4 is significantly older than the clusters 2 and 5. This is
coherent considering the average scores of the clusters. It is also interesting to mention that cluster 4
also has the lowest auto-correlation and, according to Figure A1 in the Appendix A, it also contains
the oldest individuals on average. Cluster 5 has significantly larger CS scores than 1 and 4 and higher
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SJS scores than clusters 3 and 4. Thus, these individuals, who scored highest on the PR task, also had
higher working memory abilities. Finally, cluster 3 (“lowest and stable”) has lower SR scores than 5
and 2.

Table 5. Estimated parameters for the five (bottom) and six (top side) clusters partitions of HMTD.
Three groups coincide in both partitions, their correspondences are indicated on the second column of
the top table.

6cl. sol. corresp. θ̂k,0 φ̂k,0 φ̂k,1
5cl. sol.

1 1.81 4.81 0.53
2 1.07 4.47 0.37
3 3 0.65 1.07 0.67
4 4 1.32 2.76 0.29
5 1 1.00 3.18 0.43
6 0.98 4.13 0.51

5cl. sol. θ̂k,0 φ̂k,0 φ̂k,1

1 0.99 3.25 0.41
2 1.08 4.08 0.44
3 0.64 1.07 0.66
4 1.30 2.76 0.29
5 1.40 3.70 0.61

4.3.2. Six-Group Solution

Table 7 shows the correspondence matrix between the five- and six-cluster HMTD solutions
and, thus, eases the comparison of these two models. As for the five-group solution, cluster 3
(“lowest and stable”) obtained the lowest constant of the mean and standard deviation, as well as the
highest auto-correlation. Similarly, cluster 4 was the “low and unstable with modest increase” group,
with low mean constant and low auto-correlation, but high standard deviation. Additionally, cluster 5
was the largest, and it represented the “average” group.

Cluster 1 had the highest mean constant, and it was composed of only three individuals who
were in cluster 5 (“highest and erratic”) in the five-cluster solution. The remaining four individuals
of cluster 5 in the 5-group solution were classified in cluster 6 here, together with four individuals
previously in cluster 2. This cluster is characterized by individuals who start moderately high (but not
highest) and who increase quite a bit. Finally, cluster 2 is largely similar to the previous cluster 2
“normal high” seen before.

A glance at Table 6 shows that this solution also displays some significant differences in terms
of the covariates. Cluster 6 is significantly younger than 3, 4, and 5, and it also has higher SJS scores
than 3. Cluster 3 has lower SR scores than 2 and 4. Although we would have expected greater group
differences on the Tukey tests on the covariates, we point to the relatively small subsample sizes of
each cluster, which reduces the power of the pairwise comparison test.
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Table 6. Tukey tests for the difference in covariate mean levels between each pair of clusters. HMTD: solutions with 2, 3, 4 and 5 groups; GMM with linear trajectories:
solutions with 2, 3, 4 and 5 groups. p -values < 0.05 are in bold.

HMTD 2 Cl. 3 Clusters 4 Clusters 5 Clusters
2-1 2-1 3-1 3-2 2-1 3-1 4-1 3-2 4-2 4-3 2-1 3-1 4-1 5-1 3-2 4-2 5-2 4-3 5-3 5-4

Age −7.882 10.581 13.187 2.606 9.756 7.267 −8.068 −2.488 −17.824 −15.336 −7.576 −1.570 9.784 −15.645 6.007 17.360 −8.068 11.353 −14.075 −25.429
p-value 0.028 0.024 0.005 0.783 0.087 0.467 0.661 0.937 0.040 0.149 0.385 0.997 0.298 0.134 0.748 0.017 0.772 0.273 0.285 0.009
LS 7.824 −3.828 −9.820 −5.992 −5.698 −8.596 3.487 −2.898 9.185 12.083 3.997 −3.620 −8.385 7.484 −7.616 −12.381 3.487 −4.765 11.103 15.868
p-value 0.008 0.472 0.014 0.158 0.343 0.176 0.931 0.850 0.326 0.179 0.787 0.871 0.284 0.641 0.372 0.066 0.973 0.858 0.332 0.087
CS 4.633 −9.217 −9.673 −0.456 −6.545 −4.809 14.026 1.737 20.571 18.835 5.831 2.175 −4.099 19.857 −3.657 −9.930 14.026 −6.274 17.683 23.956
p-value 0.215 0.074 0.067 0.993 0.400 0.776 0.195 0.979 0.012 0.048 0.676 0.990 0.935 0.032 0.953 0.407 0.276 0.823 0.112 0.019
SJS 1.202 −0.453 −1.462 −1.010 −0.570 −1.277 1.130 −0.707 1.700 2.407 0.343 −0.911 −1.000 1.473 −1.254 −1.343 1.130 −0.089 2.383 2.473
p-value 0.001 0.531 0.003 0.043 0.558 0.081 0.426 0.400 0.072 0.010 0.941 0.313 0.356 0.222 0.136 0.167 0.541 1.000 0.017 0.021
SR 2.970 −1.391 −3.800 −2.409 −1.931 −3.807 0.638 −1.876 2.569 4.444 1.388 −2.719 −1.923 2.026 −4.107 −3.311 0.638 0.796 4.745 3.949
p-value 0.000 0.237 0.000 0.016 0.136 0.005 0.979 0.217 0.333 0.044 0.549 0.063 0.419 0.671 0.003 0.055 0.994 0.971 0.039 0.153
WCST −8.481 8.967 14.378 5.411 8.308 14.946 −5.638 6.638 −13.946 −20.583 −7.801 7.895 1.478 −13.439 15.696 9.279 −5.638 −6.417 −21.333 −14.917
p-value 0.056 0.169 0.018 0.506 0.349 0.072 0.924 0.586 0.366 0.122 0.573 0.619 0.999 0.539 0.090 0.684 0.971 0.904 0.158 0.563

HMTD 6 Clusters
2-1 3-1 4-1 5-1 6-1 3-2 4-2 5-2 6-2 4-3 5-3 6-3 5-4 6-4 6-5

Age 7.386 10.123 21.476 11.692 −9.167 2.737 14.090 4.306 −16.553 11.353 1.570 −19.289 −9.784 −30.643 −20.859
p-value 0.973 0.902 0.269 0.811 0.953 0.994 0.121 0.921 0.134 0.319 0.999 0.050 0.347 0.000 0.012
LS −1.982 −9.056 −13.821 −5.436 2.905 −7.073 −11.838 −3.453 4.887 −4.765 3.620 11.960 8.385 16.725 8.341
p-value 1.000 0.877 0.573 0.982 1.000 0.576 0.137 0.934 0.958 0.917 0.926 0.328 0.356 0.085 0.634
CS −9.368 −13.111 −19.385 −15.286 0.286 −3.743 −10.016 −5.917 9.654 −6.274 −2.175 13.397 4.099 19.670 15.571
p-value 0.938 0.787 0.434 0.625 1.000 0.981 0.528 0.796 0.759 0.895 0.997 0.441 0.971 0.116 0.203
SJS −0.368 −1.526 −1.615 −0.615 1.000 −1.158 −1.247 −0.247 1.368 −0.089 0.911 2.526 1.000 2.615 1.615
p-value 0.999 0.687 0.662 0.990 0.954 0.285 0.317 0.995 0.443 1.000 0.386 0.013 0.433 0.017 0.190
SR −0.368 −4.412 −3.615 −1.692 0.250 −4.043 −3.247 −1.324 0.618 0.796 2.719 4.662 1.923 3.865 1.942
p-value 1.000 0.527 0.737 0.984 1.000 0.010 0.106 0.741 0.998 0.989 0.085 0.028 0.508 0.139 0.694
WCST 9.763 24.500 18.083 16.605 4.500 14.737 8.320 6.842 −5.263 −6.417 −7.895 −20.000 −1.478 −13.583 −12.105
p-value 0.985 0.554 0.834 0.853 1.000 0.207 0.860 0.817 0.988 0.949 0.711 0.168 1.000 0.658 0.614
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Table 7. Correspondence matrix between the five- and six-clusters solutions of HMTD.

Cluster 1 2 3 4 5 6

1 0 0 0 0 39 0
2 0 19 0 0 0 4
3 0 0 19 0 0 0
4 0 0 0 14 0 0
5 3 0 0 0 0 4

4.4. Correspondence between the Model Solutions

Every time that different clustering methods are applied, it is always interesting to understand
the extent to which the various solutions are distinct from each other. This comparison may also guide
the choice of a given clustering method over another. The correspondence matrices on Tables 8 and 9
provide interesting information about this question. The ICR-GMM method does not appear to have a
clear correspondence to any of the other two methods. However, the GMM and the HMTD obtained
results with this particular data set that displayed some similarities. More precisely, the five-class
solutions of GMM and HMTD obtained high correspondence between clusters 1 and 2, 3 and 1, and 4
and 3, respectively.

Table 8. Correspondence matrix between and the five (top) and six (bottom) cluster solutions of HMTD
with the five clusters solution of exponential curve ICR-GMM (a) and exponential GMM (b).

(a) (b)

HMTD 4 cl. exp. ICR-GMM HMTD 5 cl. exponential GMM

5 clusters 1 2 3 4 5 clusters 1 2 3 4 5

1 3 14 17 5 1 4 2 32 0 1
2 1 9 10 3 2 20 0 1 0 2
3 1 7 9 2 3 0 2 1 16 0
4 3 6 5 0 4 0 2 5 7 0
5 0 3 3 1 5 4 0 0 0 3

6 clusters 1 2 3 4 6 clusters 1 2 3 4 5

1 0 2 1 0 1 1 0 0 0 2
2 0 7 9 3 2 16 0 1 0 2
3 1 7 9 2 3 0 2 1 16 0
4 3 6 5 0 4 0 2 5 7 0
5 3 14 17 5 5 4 2 32 0 1
6 1 3 3 1 6 7 0 0 0 1

Table 9. Correspondence matrix between four group exponential ICR-GMM and five cluster exponential GMM.

Exp.GMM 4 cl. exp. ICR-GMM

Clusters 1 2 3 4

1 1 9 14 4
2 0 5 1 0
3 5 15 15 4
4 2 7 12 2
5 0 3 2 1

5. Discussion

5.1. Data Particularities and Number of Parameters

The performance of a clustering method may vary highly depending on the data particularities.
As mentioned, in our application we have a rather small sample size (number of sequences N), but with
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quite long sequences (large number of periods T). The small N reduces the power of the method
and limits the maximal number of clusters that can be estimated, because a given minimal number
of observations within each cluster is required for estimation. On the other hand, the increasing T
requires more flexible methods of approximation and thus larger number of parameters.

What an applied researcher needs in such situations is a flexible method that remains
parsimonious in terms of number of parameters to be estimated per group, yet with enough parameters
for an accurate description of the data and adequate interpretation with respect to the substantive
issues under scrutiny. It is also important that the method has the capacity of identifying small clusters
that are truly significantly different from the others. A bootstrap approach to clustering may not be
appropriate, because identical sequences may bias the estimation of the variability of the clusters,
and adding noise will hinder one’s capacity to understand the behavior of the individual sequences
across time.

5.2. Linearity and Trajectory Assumptions

It is common that, the longer a sequence, the less likely it is that it follows a truly linear function.
As detailed, in this paper we attempted to capture the non-linearity with as few parameters as
possible, by relying on previous research [7,8]. If the application calls for attention on the change
function dictating the sequences, GMM and ICR-GMM might be well-suited, given that they need
the explicit specification of such a change function. Additionally, analyzing the differences among
the parameters across the clusters could be very useful in understanding the nature of the clusters.
In our application, the learning underlying an unpracticed task (PR) lent itself to a mathematical
model stipulating an initial level, and exponential acquisition rate, and a final asymptotic level of
performance. However, many other sequences may stem from more random processes, so that no
good guess can be made about a possible change function. Furthermore, in some cases the presence of
very high volatility could make the difference between the individual trajectories vanish, which also
penalizes trajectory-based methods.

Without any single clear pattern emerging in a data set, the simplicity and flexibility of HMTD
may be an advantage. The lack of any precise trajectory makes the model very adaptive and economical
to estimate. Moreover, this method estimates a single or possibly multiple measures of dependence
from the past. The results that were obtained in this article have also shown that this method can be a
very attractive alternative in such situations.

5.3. Summary of the Results

The ICR-GMM method did not provide very interesting results for this data set. Neither the
trajectories in the four-cluster partition, nor their relations to the covariates appear as informative
as those from the GMM and HMTD. A possible reason may be hidden in the computation of the
distance considered as a sum of all the residuals across time. This calculation may underestimate the
fact that some sequences may have different behavior over the different periods of time and, therefore,
that their residuals may change. A residual definition that accounts for the temporality of the residuals
may overcome this issue. However, we repeat that our conclusions are only relative to this particular
data set.

The GMM adapted rather well to the data, mainly with the help of the exponential function.
As discussed previously, the non-linear GMM could only be estimated with the same residual errors
and the same variance-covariance of the coefficients among all groups. The complexity of the model
made it infeasible to relax these assumptions for such a small data set and this estimation issue is a
drawback of GMM. Nevertheless, it appears feasible that smaller clusters have smaller variability
estimates than larger clusters, a hypothesis we were not able to test within our application.

HMTD was able to estimate the highest number of clusters here (6). As suggested by the fitting
criteria, these partitions were important for the choice of the optimal number of groups. Both the
five- and six- cluster solutions appear interpretable and displayed differences with respect to the
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covariates. Another important advantage is that this model did not require any previous information
over the shape of the sequences. Here, we showed that, even in its simplest form, it adapted well to
this particular data set.

6. Conclusions

Nowadays there are multiple clustering methods available to researchers of many disciplines,
and interest in these applications is on a steady rise. We have limited ourselves to three methods,
never before presented together, which apply to sequences of continuous data, but many other methods
exist and deserve attention [4].

In this paper, we briefly discussed each of the three methods that we find particularly well-suited
for sequences of continuous data: GMM, ICR-GMM, and HMTD. Each method has clear advantages,
and may also present drawbacks in particular empirical settings. In our particular application,
stemming from a learning experiment in cognitive psychology, the results were highly influenced by
the nature of the data and the process dictating the phenomenon under investigation.

More precisely, given that we were able to apply a mathematical function that appeared to describe
well the individual trajectories, the use of the GMM procedure was quite appropriate. Therefore,
we suggest that, when users have strong theoretical reasons in favor of an explicit mathematical change
function to describe the individual sequences, they implement this function in the GMM procedure
and make use of that. If, however, there is no strong theoretical or empirical rationale in favor of an
explicit mathematical function, we suggest that users apply the HMTD approach, because, given its
parametric parsimony, it is quite easily estimated and it adapts well to different types of trajectories
even in small samples. However, whichever method is applied, it is very important that the results be
interpreted not solely based on statistical criteria, but also in light of the theoretical knowledge about
the individual sequences.

It is important to stress that this work is limited to a single illustration. Clearly, additional
more systematic research is needed in order to generalize the differences in behavior of these
models across other types of sequences. For instance, further research could benefit from simulation
experiments in which the three methods are formally compared on data generated under known
underlying distributions.
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Appendix A

Table A1. Tukey tests for the difference in covariate mean levels between each pair of clusters. Linear GMM: solutions with 2, 3, 4 and 5 groups; p-values < 0.05 are
in bold.

GMM 2 cl. 3 Clusters 4 Clusters 5 Clusters
(Linear) 2-1 2-1 3-1 3-2 2-1 3-1 4-1 3-2 4-2 4-3 2-1 3-1 4-1 5-1 3-2 4-2 5-2 4-3 5-3 5-4

Age −5.831 2.883 −17.658 −20.541 −1.481 −2.106 −21.473 −0.625 −19.992 −19.367 0.582 −2.484 −10.740 −20.502 −3.067 −11.322 −21.085 −8.256 −18.018 −9.763
p-value 0.086 0.683 0.002 0.000 0.974 0.990 0.000 1.000 0.000 0.055 1.000 0.997 0.129 0.002 0.994 0.121 0.002 0.835 0.218 0.485
LS 2.979 −2.438 5.176 7.614 4.146 0.375 8.732 −3.771 4.586 8.357 −3.263 −3.513 1.292 4.837 −0.250 4.556 8.100 4.806 8.350 3.544
p-value 0.285 0.697 0.461 0.227 0.531 1.000 0.186 0.932 0.674 0.631 0.865 0.988 0.997 0.853 1.000 0.796 0.485 0.968 0.836 0.964
CS 1.367 −0.440 12.358 12.798 1.407 −5.284 10.901 −6.691 9.493 16.185 −2.544 −9.472 −1.806 14.750 −6.929 0.738 17.294 7.667 24.222 16.556
p-value 0.697 0.992 0.069 0.075 0.983 0.909 0.197 0.823 0.266 0.252 0.971 0.801 0.995 0.117 0.930 1.000 0.052 0.912 0.106 0.102
SJS 0.350 −0.156 1.065 1.221 0.323 −0.469 1.174 −0.792 0.851 1.643 0.053 −0.747 1.164 1.253 −0.800 1.111 1.200 1.911 2.000 0.089
p-value 0.336 0.915 0.149 0.106 0.851 0.931 0.167 0.725 0.386 0.229 1.000 0.890 0.136 0.252 0.871 0.208 0.324 0.191 0.220 1.000
SR 1.163 −0.693 1.796 2.490 0.925 −3.387 2.541 −4.312 1.616 5.929 −0.632 −4.632 0.480 1.768 −4.000 1.111 2.400 5.111 6.400 1.289
p-value 0.128 0.679 0.286 0.122 0.670 0.205 0.127 0.056 0.442 0.011 0.954 0.114 0.990 0.639 0.239 0.843 0.374 0.087 0.029 0.892
WCST −9.469 8.597 −6.962 −15.559 −8.163 −9.010 −16.690 −0.848 −8.527 −7.679 7.389 −0.984 −4.062 −11.006 −8.372 −11.450 −18.395 −3.078 −10.022 −6.944
p-value 0.022 0.129 0.545 0.070 0.284 0.737 0.060 1.000 0.520 0.861 0.569 1.000 0.954 0.574 0.908 0.319 0.122 0.998 0.895 0.912
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Figure A1. Age differences among the five clusters of an HMTD partition, the white bands represent
confidence intervals for the mean.
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