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Abstract: The use of impact attenuators (IA) is important for vehicles as they absorb the kinetic
energy exerted from the car crashes to protect the drivers from any possible injuries. Under the
framework of the Formula Student (FS) competition, we investigate various designs of IA made
of aluminum honeycomb material. Specifically, the crushing behavior of the honeycomb structure
is investigated from the theoretical point of view and later verified with numerical simulations.
To achieve the desired crushing behavior of the aluminum honeycomb structure, apart from the
so-called pre-crushing method, another way to pre-process the aluminum honeycomb is proposed.
Modification on the aluminum honeycomb is done in a symmetric manner to ensure the same uniform
crushing behavior on the two sides of the mirror plane of the car. Different variations presented in
this paper shed a light on future aluminum honeycomb IA designs in the context of FS competitions.

Keywords: formula student; impact attenuator; aluminum honeycomb

1. Introduction

Formula Student (FS) is a multinational auto racing competition established to foster university
students under the framework of a semi-professional motorsport competition. Joining this competition,
students can improve their business and engineering skills while attempting to deliver a racing car to
compete with others from different universities [1].

It is possible to construct the vehicle with designed or commercially available components. Among
the designable components, there are the bell crank, suspension link, rear upright, etc. [2–5]. The impact
attenuator (IA) is as well in this category, and is defined as a deformable, energy-absorbing device
mounted forward of the car’s front [6]. In practice, porous materials are generally suitable for impact
energy absorption due to their internal material structure which allows the progressive collapse under
impact loading. Hence, structures such as polymeric foams or aluminum honeycombs are the most
favored among FS teams. Due to the ease of access, novice FS teams often purchase the standard,
commercially available IA made of foam as shown in Figure 1. The standard IA was also tested in [7].
It was found that the standard IA can be further reduced in size, thus its weight, and still it can meet
the competition requirements.
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Figure 1. Standard IA [8]. 

As composite materials become widely available, considerable endeavor is put into the design 
of composite IA among FS teams and the research community in general. Nevertheless, in 1983 NASA 
came up with a study of energy-absorbing properties of tubes under compression [9]. Examinations 
were made for aluminum, glass-epoxy, graphite-epoxy, and aramid-epoxy tubes. Chamfering or 
notching was suggested to reduce the peak load during the impact. In addition, post-crushing 
integrity and failure mechanisms were examined. Composite tubes were recently studied for their 
energy-absorbing properties in [10]. The influence of tube diameter, winding angles, and wall 
thickness on energy absorption was examined, suggesting that for a larger tube diameter, the 
absorbed energy is higher. Then, the winding angle of 35 degrees showed more energy absorbed for 
less compressive strength than other angles. The utilization of composite material (including carbon 
fibers) was also studied in [11–13]. The papers brought insights about IA design, testing, numerical 
analysis, and optimization. Optimization methods examined in [11] allowed authors to design an IA 
with 14% better energy absorption. 

Another group of IA is welded thin-walled structures. Such designs were examined for their 
impact performance in [14–16]. All designs met FS competition requirements, suggesting another 
promising method of designing IA. Indeed, this solution is possibly the most feasible and economical 
in terms of numerical simulation and physical tests. 

Owing to the maturity of additive technologies, a lot of studies examined 3D-printed lattice 
structures of various materials for their energy-absorbing properties. Existing literature suggests that 
a lot of effort was put into examinations of aluminum alloy lattice structures, made of AlSi10Mg. The 
authors in [17–19] examined lattice structure designs for energy absorbers manufactured by selective 
laser melting technology (SLM). The studies provide insights about lattice failure mechanisms, the 
influence of lattice cell design, and print imperfections on structure performance under impact. The 
authors in [17,20] found that the heat treatment of AlSi10Mg lattice structure increases its strain 
capacity suggesting that more energy can be absorbed. Further investigation of lattice cells in [19,21] 
found that for the same relative density of structure, different types of lattices have different impact 
resistance. This is caused by different failure modes for different lattice cell designs. 

Another favorite material for SLM is alloyed titanium. Lattice structures of titanium alloys were 
investigated in [22–24]. An interesting combination of materials was investigated in [22]. The authors 
examined sandwich panels of carbon fiber-reinforced polymer (CFRP) faces which were constructed 
of two types of core—aluminum honeycomb and titanium alloy (Ti64) lattice structure. It was found 
that panels with aluminum honeycomb cores have comparable impact resistance as panels with Ti64 
lattice structure cores. The disadvantage of panels with Ti64 lattice cores is its double weight 
compared to panels with aluminum honeycomb. Panels with Ti64 lattice core showed less dent depth 
and more localized damage area. That is probably caused by the brittle failure mechanism of Ti64 
lattices leading to unstable energy-absorbing behavior. Hence, the use of titanium alloy lattices for 
energy absorbers needs to be further examined. In [23,25], optimum design strategies for Kagome 
structures were investigated. Prediction of the failure of SLM-manufactured lattice structures with a 
wide range of slenderness ratios and different failure modes was performed. Failure modes and 
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As composite materials become widely available, considerable endeavor is put into the design of
composite IA among FS teams and the research community in general. Nevertheless, in 1983 NASA
came up with a study of energy-absorbing properties of tubes under compression [9]. Examinations
were made for aluminum, glass-epoxy, graphite-epoxy, and aramid-epoxy tubes. Chamfering or
notching was suggested to reduce the peak load during the impact. In addition, post-crushing
integrity and failure mechanisms were examined. Composite tubes were recently studied for their
energy-absorbing properties in [10]. The influence of tube diameter, winding angles, and wall thickness
on energy absorption was examined, suggesting that for a larger tube diameter, the absorbed energy is
higher. Then, the winding angle of 35 degrees showed more energy absorbed for less compressive
strength than other angles. The utilization of composite material (including carbon fibers) was
also studied in [11–13]. The papers brought insights about IA design, testing, numerical analysis,
and optimization. Optimization methods examined in [11] allowed authors to design an IA with 14%
better energy absorption.

Another group of IA is welded thin-walled structures. Such designs were examined for their
impact performance in [14–16]. All designs met FS competition requirements, suggesting another
promising method of designing IA. Indeed, this solution is possibly the most feasible and economical
in terms of numerical simulation and physical tests.

Owing to the maturity of additive technologies, a lot of studies examined 3D-printed lattice
structures of various materials for their energy-absorbing properties. Existing literature suggests that
a lot of effort was put into examinations of aluminum alloy lattice structures, made of AlSi10Mg.
The authors in [17–19] examined lattice structure designs for energy absorbers manufactured by
selective laser melting technology (SLM). The studies provide insights about lattice failure mechanisms,
the influence of lattice cell design, and print imperfections on structure performance under impact.
The authors in [17,20] found that the heat treatment of AlSi10Mg lattice structure increases its strain
capacity suggesting that more energy can be absorbed. Further investigation of lattice cells in [19,21]
found that for the same relative density of structure, different types of lattices have different impact
resistance. This is caused by different failure modes for different lattice cell designs.

Another favorite material for SLM is alloyed titanium. Lattice structures of titanium alloys were
investigated in [22–24]. An interesting combination of materials was investigated in [22]. The authors
examined sandwich panels of carbon fiber-reinforced polymer (CFRP) faces which were constructed of
two types of core—aluminum honeycomb and titanium alloy (Ti64) lattice structure. It was found that
panels with aluminum honeycomb cores have comparable impact resistance as panels with Ti64 lattice
structure cores. The disadvantage of panels with Ti64 lattice cores is its double weight compared to
panels with aluminum honeycomb. Panels with Ti64 lattice core showed less dent depth and more
localized damage area. That is probably caused by the brittle failure mechanism of Ti64 lattices leading
to unstable energy-absorbing behavior. Hence, the use of titanium alloy lattices for energy absorbers
needs to be further examined. In [23,25], optimum design strategies for Kagome structures were
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investigated. Prediction of the failure of SLM-manufactured lattice structures with a wide range of
slenderness ratios and different failure modes was performed. Failure modes and failure locations
of Kagome structures were also predicted. Results show that Kagome structures indicated superior
performance compared to lattice structures.

Among widely printed materials, there is also stainless steel 316L. The energy-absorbing
performance under compression of the SLM-manufactured steel 316L lattice structure was investigated
in [26,27]. An interesting study was presented in [28], where an SLM-manufactured aluminum lattice
structure coated by ceramic was examined for its energy-absorbing properties. A combination of
increasing truss angle and oxide coating thickness results in improvements in the compressive strength,
energy absorbed per volume and per mass. Improvement in the performance of the structure is caused
by the change of failure mode from mid-strut buckling to a hinge kinking mode as the oxide coating
thickness increases. In terms of energy absorption, the best performing lattice materials in the study
are comparable with the best available cellular materials in the existing literature.

Furthermore, it is worth mentioning the honeycomb structure, which is well known for its
remarkably lightweight property, relatively high strength-to-weight ratio and energy-absorbing ability.
Honeycomb structures can be metallic (usually aluminum) or nonmetallic (paper reinforced with
plastic), with similar unique crushing behavior. The most utilized honeycomb structure is the sandwich
shape, as investigated in [29,30], in which the honeycomb layers are glued in between metal sheets to
make the airplane walls, vehicle bodies, etc. The aluminum honeycomb block specifically designed
for FS competition is available on the website of the Plascore company [31]. Thus, a number of
teams purchased the product, tested, and deployed it in their car. As a matter of fact, owing to the
complexity of the simulations, a few studies attempted to numerically study the crushing behavior
of the honeycomb block in the scope of FS competitions [32–34]. An unusual IA design made from
aluminum honeycomb panels and aluminum sheets was examined in [33], which met the competition
requirements. For purposes of FS competition, in [34], an aluminum honeycomb IA was examined and
compared with a hollow truncated thin-walled pyramid and a hybrid IA made from honeycomb panels
bonded to several CFRP plates. It was found that all designs met FS requirements and the hybrid IA
was the lightest and the most energy-absorbing. The collapse of aluminum honeycomb structures
under compression loading was also examined in [35,36]. The authors in [36] suggested various
honeycomb cell shapes which, under out-of-plane compression, performed better than conventional
honeycombs. Another interesting design of an energy-absorbing structure utilizing honeycombs
was studied in [37]. The authors examined an IA of aluminum honeycomb internally reinforced by
corrugated aluminum sheets. Significant enhancement of absorbed energy was found compared to the
performance of bare honeycomb or corrugated sheet. As honeycombs are not always loaded purely
in-plane or out-of-plane, examination in [38] showed honeycomb performance when inclined cells
were compressed, and hence loaded under non-ideal conditions. Results suggested that the angle of
inclination dictates the failure mode of cells and that plateau stress is influenced by the inclination
angle of cells. The larger cell inclination, the more the plateau stress is reduced leading to less energy
to be absorbed. Studies of an innovative approach, aluminum honeycomb reinforced with CFRP tubes
in cells, were reported in [39,40]. The authors conducted studies of impact behavior of aluminum
honeycombs with CFRP tubes in cells. Results showed an increase of about 60% absorbed energy
compared to bare aluminum honeycomb. For designing the IA for FS competition, not only is the
absorbed energy the criterion, but there are also average and peak accelerations during the impact.
It should be noted that for the majority of the cited studies, the acceleration values were not reported.
Hence, suggestions of cited studies should serve future designers as a guide and an encouragement to
investigate the real impact properties of their IA design.

For FS vehicles, it is also necessary to design a backing plate for the IA which is called the
anti-intrusion plate (AIP). Standard options given by rules are steel or aluminum sheets of specific
thicknesses. As the mass reduction of the vehicle is desirable, studies were conducted to see the
performance of AIP of different materials. The most frequently investigated material in terms of the
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strength-to-weight ratio is carbon fiber composite. The authors in [41,42] performed examinations of
cross-ply unidirectional polyethylene fiber composite under dynamic loading utilizing the bi-material
model to evaluate the failure and energy absorption modes. In [43], the thermoplastic composite was
evaluated for its penetration resistance-deriving method for the quick design of fiber volume fraction
and plate thickness. CFRP plates reinforced by aluminum sheets were tested for their perforation
resistance in [44]. Mainly the protection effect of aluminum sheets was investigated. It was found
that aluminum sheet helps to distribute the loading from an impact more evenly over CFRP layers
contributing to the overall perforation resistance. Regarding the AIP design, suggestions from cited
studies can only serve as a guide for the design of AIP for FS vehicles. Further examination of materials
and real impact behavior with specific IA used is needed.

Inspired by the above studies, we decide to numerically investigate the crushing behavior of
IAs made of aluminum honeycomb. Differing itself from existing works, herein, we simulate the
honeycomb block with detailed cell walls in association with a portion of the car’s front, as an effort
to replicate the real physical crash test that is described in the FS rules. Consequently, our main
contributions are as follows:

• We propose an alternative way to process the honeycomb block instead of pre-crushing for
energy-absorbing purposes and conducted numerical simulations to verify the concept.

• From the simulation results, we are able to describe the insights of the crushing process which can
be useful for future development.

Furthermore, readers can refer to the Figure 2 below for the workflow diagram of this paper:
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2. Materials and Methods

In this section, we introduce the honeycomb materials and the typical properties of the aluminum
honeycomb making it feasible for shock-absorbing application. The information of the aluminum
honeycomb block is taken from real products of the Plascore company and later modeled accordingly
for numerical simulations.
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2.1. Terminologies

To manufacture the aluminum honeycomb, the corrugated aluminum sheets are joined by means
of resistance welding. Inheriting from such a process, the in-between thicknesses (node bonds)
are two times the incline walls. It should be noted that for our numerical simulations, we model
the node bonds with double thickness according to Figure 3 taken from [45] below. With regard
to [46], the single-thickness walls collapse following the same failure mechanism but sooner than the
double-thickness walls.
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For our study, we consider two profiles; namely PAMG-PA3-3.0-3⁄8-20-N-5052 (profile A) and
PAMG-PA3-5.4-3⁄8-40-N-5052 (profile B) in the Plascore’s catalog. The naming explains, in order:
Aerospace grade aluminum-PA3 corrosion coating-Density-Cell thickness x10,000-Not perforated
(N)-Alloy of the material (5052 Al), [47]. It should be noted that only the density and geometric data
are employed for modeling the honeycomb cells made with 5052 Al. Thus, listed in Table 1 below are
our considered details.

Table 1. Honeycomb dimensions.

Material Density Cell size Cell Thickness

profile A 3.0 pcf 3⁄8 inch 0.002 inch
(0.0480 g·cm−3) (9.525 mm) (0.0508 mm)

profile B 5.4 pcf 3⁄8 inch 0.004 inch
(0.0865 g·cm−3) (9.525 mm) (0.1016 mm)

Applications of aluminum honeycomb for energy absorption are mostly with impact pressure
applied on the out-of-plane surface which is prescribed by W and L.

2.2. Properties

The aluminum honeycomb is orthotropic material. Its applications span widely in aerospace,
automobile, marine, and military fields, owing to its lightweight property; excellent energy-absorbing
ability; and high strength-to-weight and stiffness-to-weight ratios. Besides, according to [45], it possesses
excellent and constant crush strength; high structural integrity; high fatigue, corrosion, and flammability
resistance; etc.
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2.2.1. Crushing Behavior

For out-of-plane compressive loading, compression applied perpendicularly to the out-of-plane
surface, after the structure reaches its ultimate strength, the crushing behavior follows the crush curve
as shown in Figure 4 below.Symmetry 2020, 12, x FOR PEER REVIEW 6 of 17 
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However, the peak load owing to the initialization of the collapse is harmful for under-protected
structures [14]. Thus, this peak load is eliminated by a so-called pre-crushing process and what remains
is a uniform crush curve.

It should be noted that Figure 4 is taken from the manual of the manufacturer to explain in general
the effect of pre-crushing on the crushing behavior of the material. Thus, specific values and units on
the axes are not within our interest.

In the next subsection, we discuss the collapse mechanism of the honeycomb cell walls and explain
the benefit of the pre-crushing process.

2.2.2. Collapse Mechanism

Under out-of-plane compressive loading, at first, the thin-walled cells elastically buckle within
the free spaces between the cells, indicated by the rhombus shapes in Figure 5. Further loaded beyond
the yield limit, the structure starts to “dimple” (cell walls are hinged among the free space between
cells) leading to the plastic collapse of the whole structure [35,46], Figure 6.

This uniform plastic collapse process happens along the thickness of the honeycomb block and
corresponds to the flat portion of the curve in Figure 4. During this time, the kinetic energy that the
crashing vehicle exerts will be converted uniformly to the deformation energy of the honeycomb block.

The pre-crushing process is able to cut out the peak load because it introduces some initial plastic
buckling to the honeycomb block, thus allowing the plastic collapse of the whole structure to happen
without the need of initiation from the peak load.

In the next section, we discuss analytical and numerical approaches for computing the IA design.
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2.3. Analytical Estimation of Impact Values

Given that a car of m = 300 kg travels at vimpact = 7 m.s−1 to hit a rigid wall. Design an IA
that can fully stop the car by absorbing at least Ke = 7350 J of the kinetic energy that the car exerts.
The decelerations of such event are not higher than aaverage = 20 g’s on average and apeak = 40 g’s at
peak, with g = 9.81 m.s−2. No part of the AIP deflects more than 25 mm from its original position.

• Kinetic energy:

Ke =
1
2

mv2
impact =

1
2
·300·(7)2 = 7350 J;

• Approximation of impact time:

timpact =
vimpact

aaverage
=

7
20·9.81

= 0.0357s;

• Deflection of AIP is measured in ANSYS.

There are three versions of IA presented. According to the analytical result, the simulation
time was preset to 0.04 s for the first two versions, and 0.055 s for the final version. It should be
noted that since the simulation time is approximated, we do not know in advance during that period
whether the vehicle will be fully stopped or not. This issue is later indicated by the fact that not all the
deceleration–time curves converge to zero, as shown later in Section 3.

2.4. Numerical Solution of Impact Behavior

We used the ANSYS Workbench for Researcher, Version 18.2 with four processors. In addition,
the impact simulations were conducted using the explicit dynamic module. Thus, the below design
and setting were conducted following the ANSYS format.
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2.4.1. Designs for Simulations

According to the rules [6], in Figure 7, we designed a portion of the car’s front for the explicit
dynamic simulations. There is an impact attenuator assembly which includes the honeycomb IA,
the AIP, and the rectangular front bulkhead (FB). The IA assembly has the plane of symmetry to be
xzO. From the finite element analysis (FEA) perspective, the model was constructed of shell elements
with zero thickness, thus allowing us to flexibly change the thicknesses while saving a considerable
amount of modeling and computing time.Symmetry 2020, 12, x FOR PEER REVIEW 8 of 17 
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Figure 7. Simulation model, [49].

From left to right, to the -Oz axis direction, there are:

• Wall: Hidden in Figure 7, which is a rigid plane, normal to the Oz axis, 1 mm away from the rear
most surface of the IA.

• IA: An aluminum honeycomb block dimensioning 200 mm × 150 mm × 250 mm (profile A or B),
which is further modified for different variations.

• AIP: Rectangular steel plate dimensioning 357 mm × 305 mm × 1.5 mm.
• FB and other tubes: Four round steel tubes forming a rectangle of 307 mm × 255 mm (center-line

distances); one X-bracing or one + -bracing; four extra tubes for mounting the FB on the Vehicle
plane. All tubes are round 25 mm, thickness of 2 or 4 mm.

• Vehicle: A rigid plane with an artificial mass of 300 kg.

2.4.2. Constraints

The rigid Wall is fixed in space in six degrees of freedom (DOF) at 1 mm in front of the IA, using
Fix Support function. The rest, as a whole, moves at a velocity of 7000 mm·s−1 in the +Oz direction
to crash into the rigid Wall. Additionally, we use the Bonding joining function to weld the FB and
other tubes, the AIP and the FB. The same function is used to glue the IA to the AIP. Last but not least,
the separate honey walls are grouped to form a continuous IA block.

2.4.3. Materials

Readers can refer to the Tables 2 and 3 below for the Material properties and Material assignment
for the simulations.

It is noteworthy that tangent modulus is employed to describe the behavior of materials after
being stressed beyond their elastic limits. Values of 1 or 1000 MPa caused no difference to the numerical
results as studied by the authors.
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Table 2. Material properties, [49].

Al 5052 Structural Steel (SS) Structural Steel
Artificial (SSA) Unit

Density 2680 7850 214,000 kg·m−3

Young’s modulus 70,300 200,000 200,000 MPa
Poisson ratio 0.33 0.3 0.3 -
Yield strength 193 200 200 MPa

Tangent modulus 1 1000 1000 MPa

Table 3. Material assignment, [49].

Component Material Thickness [mm] Type Note

IA Al 5052 9.525 × 0.1 (profile B) or
9.525 × 0.05 (profile A) Deformable

Cell size × Cell thickness.
Bond node thickness is

double.
AIP SS 1.5 Deformable -

FB + other tubes SS 2.0 or 4.0 Deformable -
Wall SSA 1.0 Rigid 1 mm away from IA

Vehicle SSA 10 Rigid -

2.4.4. Others

Simulation results were shown in True Scale, no magnification. Automatic Mass Scaling was
turned on (Yes), for the efficient computational time and to avoid the Error of too large Energy.
Elements which experienced higher stress level than their yield limit would be eliminated from the
IA assembly during the impact. Moreover, it is worth noting that the acceleration was measured
in mm·s−2 then divided by the gravitational acceleration of g = 9.81 mm·s−2 to obtain the g times,
providing a perception of weight for the impacts. The deceleration should be on average 20 g’s and at
peak 40 g’s because these are the limits that a human body can withstand, [50].

3. Results and Discussions

In Figure 8, there are simulation results of the three versions modified from the basic shape shown
in Figure 7. Besides, the deceleration versus time results during the impact are plotted in Figure 9.

3.1. Version 1 (V.1)

According to the rule [6], because of the relative size of the honeycomb block on the AIP, we must
consider adding an X-bracing to enhance the stiffness of the FB. We start with a honeycomb block
with profile B. Besides, as an attempt to reduce the peak load, we modify the honeycomb block as in
Figure 10 below.

It should be noted that the deceleration versus time also indicates the force versus time load.
Regarding Figure 9, the vehicle is fully stopped at 0.038 s and then bounds back. With regard to
Figure 7, the assembly moves in +Oz direction to crash into the rigid wall. Thus, from 0 to 0.038 s,
the acceleration is negative, deceleration. Later on, the positive acceleration indicates the bound back
of the assembly. Additionally, the assembly first experiences a peak load at 0.01 s. The peak load is
transferred from the honeycomb cells to the AIP and the FB. If the AIP and the FB survive this peak
load, the vehicle will continue to be pushed forward and the peak load will initiate the collapse of the
honeycomb block. Then, the honeycomb block will attenuate the kinetic energy from the car crash
with its deformation energy.



Symmetry 2020, 12, 1647 10 of 17
Symmetry 2020, 12, x FOR PEER REVIEW 10 of 17 

 

  
Figure 8. Top view. Three columns from left to right, the deformation shape to time of (a) Version 1 
(V.1), (b) Version 2 (V.2), and (c) Version 3 (V.3), respectively [49]. 

Figure 8. Top view. Three columns from left to right, the deformation shape to time of (a) Version 1
(V.1), (b) Version 2 (V.2), and (c) Version 3 (V.3), respectively [49].



Symmetry 2020, 12, 1647 11 of 17

Symmetry 2020, 12, x FOR PEER REVIEW 11 of 17 

 

 
Figure 9. The deceleration versus time curves of V.1, V.2, and V.3, [49]. 

  

Figure 10. Design of V.1 (a) with the AIP, and (b) without the AIP, [49]. 

It should be noted that the deceleration versus time also indicates the force versus time load. 
Regarding Figure 9, the vehicle is fully stopped at 0.038 s and then bounds back. With regard to 
Figure 7, the assembly moves in +Oz direction to crash into the rigid wall. Thus, from 0 to 0.038 s, the 
acceleration is negative, deceleration. Later on, the positive acceleration indicates the bound back of 
the assembly. Additionally, the assembly first experiences a peak load at 0.01 s. The peak load is 
transferred from the honeycomb cells to the AIP and the FB. If the AIP and the FB survive this peak 
load, the vehicle will continue to be pushed forward and the peak load will initiate the collapse of the 
honeycomb block. Then, the honeycomb block will attenuate the kinetic energy from the car crash 
with its deformation energy. 

However, for this version, the AIP and the diagonal tubes of the FB fail under the peak load 
which is figuratively indicated by the fact that they are squeezed to the rigid vehicle plane at 0.01 s, 
and henceforth remain intact with the vehicle plane until the end of the simulation. 

However, we can notice that the honeycomb block inherits an interesting collapsing pattern. The 
collapse starts from the shoulder edges which are then folded inward. The kinetic energy is 
transferred to deformation energy primarily owing to the collapse of the shoulder pattern. 

The maximum deformation of the AIP measured from ANSYS as shown in Figure 11 below is 
127.1 − 57.82 = 69 mm. 

Figure 9. The deceleration versus time curves of V.1, V.2, and V.3, [49].

Symmetry 2020, 12, x FOR PEER REVIEW 11 of 17 

 

 
Figure 9. The deceleration versus time curves of V.1, V.2, and V.3, [49]. 

  

Figure 10. Design of V.1 (a) with the AIP, and (b) without the AIP, [49]. 

It should be noted that the deceleration versus time also indicates the force versus time load. 
Regarding Figure 9, the vehicle is fully stopped at 0.038 s and then bounds back. With regard to 
Figure 7, the assembly moves in +Oz direction to crash into the rigid wall. Thus, from 0 to 0.038 s, the 
acceleration is negative, deceleration. Later on, the positive acceleration indicates the bound back of 
the assembly. Additionally, the assembly first experiences a peak load at 0.01 s. The peak load is 
transferred from the honeycomb cells to the AIP and the FB. If the AIP and the FB survive this peak 
load, the vehicle will continue to be pushed forward and the peak load will initiate the collapse of the 
honeycomb block. Then, the honeycomb block will attenuate the kinetic energy from the car crash 
with its deformation energy. 

However, for this version, the AIP and the diagonal tubes of the FB fail under the peak load 
which is figuratively indicated by the fact that they are squeezed to the rigid vehicle plane at 0.01 s, 
and henceforth remain intact with the vehicle plane until the end of the simulation. 

However, we can notice that the honeycomb block inherits an interesting collapsing pattern. The 
collapse starts from the shoulder edges which are then folded inward. The kinetic energy is 
transferred to deformation energy primarily owing to the collapse of the shoulder pattern. 

The maximum deformation of the AIP measured from ANSYS as shown in Figure 11 below is 
127.1 − 57.82 = 69 mm. 

Figure 10. Design of V.1 (a) with the AIP, and (b) without the AIP, [49].

However, for this version, the AIP and the diagonal tubes of the FB fail under the peak load
which is figuratively indicated by the fact that they are squeezed to the rigid vehicle plane at 0.01 s,
and henceforth remain intact with the vehicle plane until the end of the simulation.

However, we can notice that the honeycomb block inherits an interesting collapsing pattern.
The collapse starts from the shoulder edges which are then folded inward. The kinetic energy is
transferred to deformation energy primarily owing to the collapse of the shoulder pattern.

The maximum deformation of the AIP measured from ANSYS as shown in Figure 11 below is
127.1 − 57.82 = 69 mm.

We aim to come up with a design which is strong enough to withstand the peak load indicated by
the fact that the AIP deflects less than 25 mm. Thus, this version fails.

Subsequently, for the next versions, we investigate further into decreasing the honeycomb block’s
crashworthiness and increasing the FB’s one.
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3.2. Version 2 (V.2)

Witnessing that the longer side tubes of the FB experience the most severe deformity, we decide
to change the X-bracing to + -bracing to enhance the stiffness of the FB side tubes. In addition,
we introduce a so-called double-shoulder pattern on the honeycomb block and change to a smaller
honeycomb cell thickness, profile A, to further weaken it as shown in Figure 12 below.

As can be seen in Figure 9, the V.2 curve varies within a smaller range in comparison with V.1.
The magnitude of the first peak load, applied within the first 0.008 s period, is reduced significantly.
As a result, the AIP deforms less than V.1. However, it still does not meet the 25 mm requirement.

The maximum deformation of the AIP measured from ANSYS as shown in Figure 13 below is
185.4 − 122.5 = 63 mm.
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3.3. Version 3 (V.3)

For this version, we further stiffen the FB by increasing the tube thickness of the + -bracing from
2 mm to 4 mm. Additionally, we further pursue the idea of weakening the profile-A-based honeycomb
block with a triple-shoulder pattern as shown in Figure 14 below.

With regard to Figure 8, we can observe that the honeycomb block crashes uniformly. Indeed,
this proves the correctness of our findings about the relation between different components contributing
to the crashworthiness of the IA assembly. In Figure 9, this uniform crash is indicated by the almost
constant trend of the V.3 curve starting from 0.033 s. For vehicle crashes, both in simulations and
testing, this constant deceleration is desirable because it helps to ensure the safety of the drivers [10].

The maximum deformation of the AIP measured from ANSYS as shown in Figure 15 below is
195.0 − 160.6 = 34.5 mm.
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3.4. Comparison Studies

The simulation results are summarized in Table 4 below.

Table 4. Result summary, [49].

Name Peak Deceleration
[g’s]

Average
Deceleration [g’s]

AIP Deformation
[mm] Note

V.1 30.5 18.0 69.0 X-bracing, 2 mm tubes, profile B
V.2 19.9 11.9 63.0 + -bracing, 2 mm tubes, profile A
V.3 16.1 11.8 34.5 + -bracing, 4 mm tubes, profile A

Before commenting on the data in the above table, it is worth noting that the deceleration is only
calculated for the whole crashing period (until the vehicle stops) in V.1. For V.2 and V.3, we cannot
capture the moment the vehicle stops during the preset time.

With reference to Figure 9, within the duration of 0.04 s, we can see that V.1 is fully stopped
and even bounds back. The deceleration on average and at peak during this period meets the rules.
However, the AIP deformation does not satisfy the rules.

For V.2, at 0.04 s, the deceleration–time curve does not show any trend of rising or declining.
The decelerations on average and at peak during this period meet the rules. However, the AIP
deformation does not satisfy the rules. This is the worst simulation among the three.

For V.3, at 0.055 s, the deceleration–time curve shows a monotonic trend of rising to zero floor.
The decelerations on average and at peak during this period meet the rules. Even though the AIP
deformation does not satisfy the rules, we can conclude that this version is the most promising one.

Owing to the time that was permitted for this project, our study stopped at V.3.

4. Conclusions

This paper presents crash simulations of aluminum honeycomb IA for the Formula Student
VSB-TU Ostrava team. The properties of the aluminum honeycomb are studied from theory and
numerical simulations. The effect of different components on the crashworthiness is studied by
incrementally developed designs. Specifically, to avoid the force (deceleration) peaks, instead of
pre-crushing, we introduce cutting with shoulder pattern. This pattern inherits uniform crushing
behavior as shown in the simulation results. Ideally, the force (deceleration) versus time curves are
flat. However, in our simulations, the first peak load is reduced but cannot be eliminated thoroughly.
The shoulder patterns work well as crush initiators that significantly improve the response of the
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structure from the frontal impact point of view. Possible future works for this would be to re-evaluate
the simulation time so that we can capture the moment when the velocity of the vehicle is reduced
to zero. Besides, we can evaluate the effect of mesh sizes on the computing time for optimizing the
computing resources according to [51]. These two things should be done in the context of better
designs according to the findings in this paper.

Author Contributions: Conceptualization, J.S. and J.M.; methodology, Z.P.; formal analysis, P.M.Q. and D.K.;
investigation, P.M.Q. and D.K.; writing—original draft preparation: P.M.Q.; writing—review and editing, P.M.Q.
and D.K.; supervision, Z.P.; project administration, A.S.; funding acquisition, J.P. All authors have read and agreed
to the published version of the manuscript.

Funding: The research was funded in association with project Innovative and additive manufacturing
technology—new technological solutions for 3D printing of metals and composite materials, reg. no.
CZ.02.1.01/0.0/0.0/17_049/0008407 financed by Structural Funds of the European Union and project.

Acknowledgments: This article has been completed in connection with project Innovative and additive
manufacturing technology–new technological solutions for 3D printing of metals and composite materials,
reg. no. CZ.02.1.01/0.0/0.0/17_049/0008407 financed by Structural Funds of European Union and project.
The authors express their gratitude towards the Formula Student VSB-TU Ostrava for establishing the foundation
for this project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Institution of Mechanical Engineers. Available online: https://www.imeche.org/events/formula-student/
about-formula-student (accessed on 19 August 2020).

2. Mesicek, J.; Pagac, M.; Petru, J.; Novak, P.; Hajnys, J.; Kutiova, K. Topological optimization of the formula
student bell crank. MM Sci. J. 2019, 2019, 2964–2968. [CrossRef]
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51. Markopoulos, A.; Hapla, V.; Čermák, M.; Fusek, M. Massively parallel solution of elastoplasticity problems

with tens of millions of unknowns using PermonCube and FLLOP packages. Appl. Math. Comput. 2015, 267,
698–710. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.compositesb.2017.09.048
http://dx.doi.org/10.1016/j.tws.2018.07.037
http://dx.doi.org/10.1016/j.commatsci.2013.08.039
https://apps.dtic.mil/sti/citations/ADA564440
http://dx.doi.org/10.1016/j.ijimpeng.2018.09.003
http://dx.doi.org/10.1016/j.ijimpeng.2018.06.011
https://www.hexcel.com/user_area/content_media/raw/Honeycomb_Sandwich_Design_Technology.pdf
https://www.hexcel.com/user_area/content_media/raw/Honeycomb_Sandwich_Design_Technology.pdf
https://www.plascore.com/download/datasheets/honeycomb_data_sheets/PLA_PAMG_PA3_5052.pdf
https://www.plascore.com/download/datasheets/honeycomb_data_sheets/PLA_PAMG_PA3_5052.pdf
https://www.hexcel.com/user_area/content_media/raw/HexWebHoneycombAttributesandProperties.pdf
https://www.hexcel.com/user_area/content_media/raw/HexWebHoneycombAttributesandProperties.pdf
http://hdl.handle.net/10084/129693
http://hdl.handle.net/10084/129693
https://ntrs.nasa.gov/citations/19930020462
http://dx.doi.org/10.1016/j.amc.2014.12.097
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Terminologies 
	Properties 
	Crushing Behavior 
	Collapse Mechanism 

	Analytical Estimation of Impact Values 
	Numerical Solution of Impact Behavior 
	Designs for Simulations 
	Constraints 
	Materials 
	Others 


	Results and Discussions 
	Version 1 (V.1) 
	Version 2 (V.2) 
	Version 3 (V.3) 
	Comparison Studies 

	Conclusions 
	References

