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Abstract: The energy limitation remains one of the biggest constraints in drone path planning,
since it prevents drones from performing long surveillance missions. To assist drones in such
missions, recharging stations have recently been introduced. They are platforms where the drone can
autonomously land to recharge its battery before continuing the mission. However, the cost of those
platforms remains a significant obstacle to their adoption. Consequently, it is important to reduce
their number while planning the path of the drone. This work introduces the Single Drone Multiple
Recharging Stations on Large Farm problem (SD-MRS-LF). A large farm is considered as an area of
interest to cover with a set of candidate locations where recharging stations can be installed. The aim
is to determine the path of the drone that minimizes the number of locations for recharging stations
as well as the completion time of the surveillance mission. This path planning problem falls within
the realm of computational geometry and is related to similar problems that are encountered in the
field of robotics. The problem is complicated due to environmental constraints on farms such as wind
speed and direction, which produce asymmetries in the optimal solution. A back-and-forth-k-opt
simulated annealing (BFKSA) approach is proposed to solve the defined problem. The new approach
is compared to the basic back-and-forth (BF) and a K-opt variant of the well-known simulated
annealing (KSA) approach over a set of 20 random topologies in different environmental conditions.
The results from computational experiments show that the BFKSA approach outperforms the others,
in terms of providing feasible solutions and minimizing the number of recharges.

Keywords: drone path planning; recharging stations; back-and-forth-k-opt simulated annealing;
large farms

1. Introduction

One of the latest developments in agriculture is the use of drones. According to a recent PwC
report [1], the agricultural drone market is estimated at USD 32.4 billion, taking the second largest
share of the market. In, particular, drones are increasingly used in the surveillance of farms [2].
In this application, drones fly over an area of interest to take pictures that can be analyzed later for
different purposes including crop yield estimation, early warning of pests and disease, disaster risk
reduction, and so on. Drone can be operated in two modes: manual mode requiring a remote human
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intervention and automatic mode in which the path of drone is determined beforehand [3]. This last
mode requires prior planning of the drone path, commonly known as coverage path planning (CPP) [4].
More precisely, CPP for drones may be defined as the determination of an optimal path allowing a
drone to complete a coverage mission, while minimizing the mission’s completion time. The area of
interest in agriculture is typically a farm that may be represented as a sequence of vertices that form a
planar polygon. This polygon generally is decomposed into smaller cells to facilitate the coverage task.
The decomposition is essentially based on the ground sampling distance (GSD), which represents the
distance between pixel centers measured on the ground [5].

The major constraint in drone CPP is the small capacity of the drone’s battery, which limits the
drone’s available energy and thus its flight range. For this reason, much research in the area of CPP
has been focused on the development of energy-aware algorithms. One of the main ideas behind
common algorithms is the assumption that a drone spends a lot of time and energy making turns [6,7].
Thus, those algorithms modify conventional trajectories such as back-and-forth [8] and HILBERT [9].
An interesting survey on coverage path planning with drones can be found in [10].

Regardless of the efficiency of algorithms, large-scale surveillance missions will require more
than a single trip. For instance, the authors in [11] conducted around 200 flights to survey an area of
about 29.5 ha with a battery-powered DJI Inspire 1 quadcopter. In an area of four square kilometers
as it is the case in [12], a DJI Phantom 3 Professional drone requires at least 10 flights for a mission.
Consequently, recharging stations have recently been introduced to assist the drone in continuous
operation [13,14]. When the drone runs out of energy, it may land on a recharging station to recharge
its battery. Even if it is possible for a drone to land on a moving platform [15] and perform a dynamic
wireless charging [16], the movement of such a platform in many farms is limited due the lack of proper
roads throughout the farm. Most of the current literature considers predefined locations for recharging
stations. For example, authors in [17] use only one drone with some recharging stations located at
predefined sites. They tried to minimize the mission completion time by deciding when the drone
should stop for charging depending on the state of charge (SoC). Reference [18] takes an alternative
approach, by considering a fleet of drones with only one recharging station located at the center of
the area of interest—the aim is to cover the area of interest with a constraint on energy replenishment
scheduling. Since only one recharging station is used, the surveyed area is limited to a radius of half
the traveling distance of a drone, so that the drone can make a round trip to the recharging station.

To automatically survey a larger area will require at least one recharging station located at an
acceptable position. The first attempt to solve this issue of determining the optimal location of
recharging stations is found in [19]. Authors proposed a Drone Delivery Recharging Location Model
(DDRLM) that optimizes the location of a set of recharging stations with the aim of maximizing
the customer demand that can be served. In this formulation, the number of recharging stations is
given beforehand.

Besides finding optimal locations for recharging stations, their number should also be minimized
to reduce the cost of the overall architecture. Actually, the cost of an additional recharging station can
significantly influence the cost of the overall architecture. For example, the Heisha recharging station
costs about 1000 USD, while a Mavic Air drone that can be recharged using this station costs barely
half the price (600 USD) [20]. This shows the necessity to reduce the number of recharging stations,
especially for users with limited budgets such as low-income users.

This work introduces the Single Drone Multiple Recharging Stations in Large Farm problem
(SD-MRS-LF). Unlike the work in [19] which focuses on the determination of the locations for a
given number of recharging stations, this work rather tackles drone path planning with a priority
on the economical point of view. In this formulation, an area of interest is given as well as a set of
candidate locations within the area of interest where recharging stations may potentially be installed.
The objective is two-fold: first to minimize the number of actually used recharging stations and
secondly to minimize the completion time of the surveillance mission. The solution with the smallest
number of recharging stations will be the best regardless the completion time, since the priority is to
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reduce the cost. In case more than one solution provide the smallest number of recharging stations,
the one with the smallest completion time will be considered as the best. To solve this problem,
a new approach has been proposed: back-and-forth-k-opt simulated annealing (BFKSA). BFKSA is a
combination of the two well-known algorithms, back and forth (BF) and the K-opt variant of simulated
annealing (SA). The idea behind BFKSA is based on the assumption that the quality of the initial
solution provided to a SA algorithm can influence the final solution.

The rest of the paper is organized as follows: Section 2 presents the system modelling and the
formulation of the Single Drone Multiple Recharging Stations in Large Farm problem. Section 3
presents and explains the Back-and-Forth-k-opt Simulated Annealing approach defined to solve the
problem. Section 4 presents the simulation setup and compares the results with basic Back-and-Forth
and Simulated Annealing approaches. This paper ends with a conclusion and a look at future work.

2. System Modelling and Problem Formulation

2.1. Basic Assumptions

The following realistic assumptions and approximations have been made to specify the problem:

• The drone begins the mission fully charged, but a single charge does not supply enough energy
for the entire mission.

• The flying status of the drone is one of two possibilities: vertical moving (take-off/landing),
or horizontal motion [21].

• Take-off energy and landing energy is negligible compared to the energy required for flight.
• The drone flies at a constant altitude throughout the mission (except when recharging).
• The area to cover presents no obstacles to impede the drone’s flight. In practice, drones may fly at

altitudes at 120 m which is higher than the tallest trees.
• Weather conditions (including temperature, air pressure, relative humidity, and wind speed) are

constant over the entire region, during the entire mission. Note that weather conditions such as
wind and temperature can affect the energy consumption. The ambient temperature may influence
the battery drain and capacity [22] while the wind may affect either positively or negatively the
forward movement of the drone [23], depending on the wind speed and direction, as well as the
flying status of the drone.

• Recharging stations are located within the area to enable the drone to complete its mission.
There are a number of pre-identified candidate locations within the region where charging stations
may potentially be located.

• The drone can only visit a recharging station once per mission. This assumption reflects the
fact that once a recharge is performed, the station will require a period of time to recharge itself
(possibly using solar energy).

2.2. Scenario Modeling

Farm areas typically can be described as planar polygons. Unlike urban areas that may contain
nonflying zones or tall buildings, the aerial space over a farm is generally free of obstacles. In this
scenario, an area to cover is considered as a rectangular form of size S m2 and decomposed into cells as
illustrated in Figure 1a. The set of the cells is represented by A and contains n ×m elements among
which some cells are candidate locations where recharging stations may conveniently be deployed.
The set of candidate locations is represented by C, with C ⊆ A.
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Figure 1. Description of the area of interest: (a) area to cover with candidate location for recharging
stations; (b) numbering of the decomposed cells.

The decomposition of our target area into a grid depends on the maximum image collection
distance interval of the drone. This distance interval depends on the specification of the drone (the field
of view angle and the resolution of the camera) and the overlap requirement during image collection.
The maximal value of the distance Imax separating image collection points (as shown in Figure 1b) is
computed using (1) as proposed in [24].

Imax = (1− r) · 2H · tan
(
θ
2

)
(1)

where θ is the opening angle of the camera; H is the drone’s altitude, and r the overlap ratio.
Figure 2 shows the geometry used to derive (1), with I the size of a cell of the grid.
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In real scenarios in farm surveillance, the minimal resolution of each collected image is an
important aspect for image processing in further stages. This minimal resolution depends on the
purpose of the surveillance mission. Given an image resolution

(
ϕx,ϕy

)
, the spatial resolution ρ
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obtained by taking a picture at an altitude H with a field of view angle θ can be computed by
Equation (2).

ρ =
ϕx

2H · tan
(
θ
2

) (2)

If we consider the minimal resolution ρm required by the mission, we obtain the inequality

H ≤
ϕx

2ρm · tan
(
θ
2

) (3)

From (3) we deduce the maximum altitude HM the drone can fly.

HM =
ϕx

2ρm · tan
(
θ
2

) (4)

The maximum altitude with respect to the image resolution requirement is generally used to
minimize the time of the mission. During the remote sensing mission for monitoring sorghum growth,
the authors in [25] used a ReadyMadeRC Anaconda drone equipped with a camera of 1.2 megapixels
and flying at an altitude of 120 m which provided a spatial resolution of approximately 6.5 cm.
In addition, the maximum altitude of the drone can be legally restricted.

Due to budget limitation only one drone is considered with a maximal capacity energy EM.
Each time the drone stops at a recharging station, it recharges its battery to EM before leaving.
The mission starts at a given take-off point St and ends at a given landing point that maybe different
from the take-off point.

2.3. Energy Consumption Model

Under horizontal motion, drones power expenditure may be broken into two components:
one component for lift, and the second to overcome the parasitic drag that hinders its forward
movement in free space [26,27]. The total power in horizontal moving is given by (5). Details on how
the formula is derived are presented in [28].

P = PP + PL (5)

with
PP =

1
2

CDFaDav3 (6)

PL =
W2

Dab2v
(7)

where

• P is the required total power (in watts);
• PP is the required power to overcome the parasitic drag (in watts);
• PL is the required power to lift the drone (in watts);
• CD is the aerodynamic drag coefficient;
• Fa is the front facing area (in m2);
• W is the total weight of the drone (in kg);
• Da is the density of the air (in kg/m3);
• b is the width of the drone (in m);
• v is the speed of the drone relative to the wind (in m/s).
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Since PP and PL are respectively proportional and inversely proportional to the speed of the drone,
a tradeoff (optimum speed) that minimizes the power consumption of the drone during horizontal
moving should therefore be found. To compute this optimum speed, we use (8) proposed by [28].

voptimum =

(
2W2

CDFab2Da2

) 1
4

(8)

All the parameters are the same used in (6) and (7). Several energy models have been proposed
in the literature. The energy consumed during horizontal flight has been considered approximately
constant [23], but it is not true in real case scenarios. The authors in [17] tried to derive a more realistic
energy model based on empirical experiments. However, the model is tailored for experimental
conditions in which the study has been conducted. In this paper, we will consider Equation (8) to
derive an energy model. The energy E consumed during a time T and a power P is given by

E = PT (9)

The time T can also be expressed as

T =
d

v + w cosθ
(10)

where d, v, w, and θ representing respectively the distance traveled, drone speed relative to the
wind, the wind speed, and the relative angle between the wind and the travel direction. Considering
Equations (5)–(10), we may express energy consumption in terms of drone velocity relative to wind
speed as

E =
PP + PL

v + w cosθ
=

αv3 + β
v

v + w cosθ
(11)

where α = 1
2 CDFaDa and β = W2

Dab2

Taking the derivative with respect to v, we find the optimization condition for the optimal
speed vopt 3αv2

opt −
β

v2
opt

(w cosθ) + 2αv3
opt −

2β
vopt

= 0 (12)

In the case w = 0, this gives an optimal velocity v0 that is expressed in Equation (13),

v0 =

(
β

α

) 1
4

, (13)

Which agrees with (5). In the general case, we may write vopt = z · v0. This gives the
optimum condition 3αv3

0z2
−
βv−1

0

z2

(w cosθ)/v0 + 2αv3
0z3
−

2βv−1
0

z
= 0 (14)

Multiplying by v0/β and noting that
(
α
β

)
v4

0 = 1, we obtain Equation (15)(
3z2
−

1
z2

)
ω+ 2z3

−
2
z

= 0, (15)

where ω ≡ (w cosθ)/v0. This gives a 5th order Equation (16)

2z5 + 3ωz4
− 2z−ω = 0. (16)
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Denoting the largest root of Equations (16) by zmax, we obtain the expression of the optimal speed
in Equation (17), where the parameter v0 corresponds to the cruise speed.

vopt = zmaxv0 (17)

The energy consumption is then given by Equation (18)

E =

(
PP,opt + PL,opt

)
d

vopt + w cosθ
=

(
αv3

opt +
β

vopt

)
d

vopt + w cosθ
(18)

We use the specifications of the manufacturer to derive α and β. The specifications for the 3DR
Solo drone are the following:

• Cruise speed = 2.5 m/s,
• Max flight time: 25 min.
• Energy: 5200 mAh, 14.8 VDC = 77 Wh = 277,200 W-s

From these numbers we may derive the power consumed at 2.5 m/s = 77 Wh/(25/60) = 185 Watts.
From (5)–(7) we have

2.53α+
β

2.5
= 185 (19)

From the cruise speed, we may derive: 2.5m/s =
(
β
α

) 1
4 which implies

2.54α = β (20)

Solving Equations (19) and (20) for α, β gives

β = 185 ·
2.5
2

= 231.25; α =
β

2.54
= 5.92 (21)

Finally, the energy consumption is estimated by plugging these parameters into (18)

E =

(
5.92v3

opt +
231.25

vopt

)
d

vopt + w cosθ
(22)

where
vopt = 2.5zmax (23)

and zmax is the largest root of Equation (24)

2z5 + 1.2(w · cosθ)z4
− 2z− 0.4w · cosθ = 0 (24)

2.4. Problem Formulation

The Single Drone Multiple Recharging Stations in Large Farm problem (SD-MRS-LF) is defined as
follows: given an area of interest decomposed into a set of cells A and a set of candidate locations for
recharging station(s) C, determine a route R that minimizes the number of actually used recharging
stations and the completion time of the mission. A route R may be characterized as a permutation of
the elements of A. More specifically, R = (R1, R2, . . . , Rn×m) with Ri ∈ A, 1 ≤ i ≤ n×m.

The objective functions are given by (25) and (26). They respectively minimize the number of
recharging stations and the total traveling time.

Min f1(R) =
n∑

i=1

h(Ri) (25)
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Min f2(R) =
n∑

i=1

d(Ri, Ri+1)

voptRi, Ri+1
+ w cosθ

(26)

with

h(Ri) =

{
1, | Ri ∈ CE

0, |otherwise
(27)

• n is the number of elements in R;
• Ri ∈ R;
• d(Ri, Ri+1) is the distance between Ri and Ri+1;
• voptRi, Ri+1

is the optimal speed of the drone to move from point Ri to point Ri+1;

• w is the wind speed;
• θ is the relative angle between the wind and the travel direction;
• CE is the set of actually used recharging stations.

2.5. Complexity Analysis of the Problem

Let us consider the take-off point and the final landing node of the drone to be the same. The given
problem can easily be reduced to the traveling salesman problem (TSP) by considering each cell to
cover as a city to visit. Since each cell and recharging station can be visited once only, the problem
amounts to find the best arrangement starting from the take-off point considered as the depot to the
final landing point which is the same point. The given problem is therefore NP-hard with factorial
time complexity O(n!).

For instance, an area of size 8× 8 contains 64 cells corresponding to 64! = 1.26× 1089 arrangements.
Evaluating such a number of arrangements using an exhaustive strategy would require � 1072 years
on a CPU with a clock speed of 4 gigahertz. That is why metaheuristics are good alternatives.

3. Back-and-Forth-k-opt Simulated Annealing Approach (BFKSA)

3.1. Background

BFKSA is a combination of three algorithms: back-and-forth, k-opt, and simulated annealing.
In the following subsections, we describe these three algorithms. In Section 3.2. we will describe how
the three algorithms are integrated together to construct the BFKSA algorithm.

3.1.1. Back-and-Forth (BF)

BF is the simple technique mainly used in regular areas. It is inspired by ‘the way of the ox’.
In fact, when an ox trails a plow and has to cover an area, it moves in a straight line along the field,
turns around, and then traces a new straight path adjacent to the previous one. BF is considered
as an energy-aware algorithm since it reduces the number of turns made by a drone. For instance,
in Figure 3a,b, the drone makes only six turns to cover the area of interest. A BF route can be generated
using Algorithm 1 or Algorithm 2.

A generated route R may not be feasible. A route is feasible if the maximum energy of the
battery allows the drone to fly from the starting point or an intermediary recharging station to the
closest recharging station on the route; or from the last recharging station to the final landing point.
Algorithm 3 minimizes the number of recharging stations as given by (24) on a given route R when the
route is feasible.
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Depending on the location of the recharging stations, three cases can be observed (Figure 3):

1. The route requires the minimal energy and the minimal number of recharging stations (Figure 3a)
2. The route requires the minimal energy, but a higher number of recharging station (Figure 3b)
3. The route requires the minimal energy, but it is not feasible (Figure 3c)

In the last two cases, modifying the BF route may decrease the number or recharging stations
or turn an infeasible route into a feasible one. This can be done by combining back-and-forth with
metaheuristics such as simulated annealing, as described below.

3.1.2. Simulated Annealing (SA)

SA is inspired from the annealing process in metallurgy. The idea consists of generating an initial
route and then performing several iterations to improve this route. A neighbor route is generated
from the previous one at each iteration. The new route is accepted if it improves the value of the
objective function. If it is not the case, the new route is accepted with a probability depending on the
current temperature T and the difference between the new and previous values of the objective function
(denoted by ∆E). The probability in the SA algorithm generally follows the Boltzmann distribution
given by e−

∆E
T . Since the temperature updates each time the equilibrium state is reached, the probability

of accepting non-improving routes decreases.

Algorithm 1: Back and Forth Vertical (BFv)

Input: A: Area to cover
Output: R: A route;
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Output: 𝑅: A route; 
1   Begin 
2      k:=0, 𝑅:=[ ] 
3      for j from 0 to n do 
4        for i from 0 to m do 
5           if j mod 2 = 0 then 
6             p ≔ 𝑖 × n + j + 1 
7           else 
8             p ≔ (m − i − 1) × n + j + 1 
9           𝑅௞ ≔p 
10          k ≔ 𝑘 + 1 
11     return R 
End 
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Algorithm 2: Back and Forth Horizontal (BFh)

Input: A: Area to cover
Output: R: A route;
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3.1.3. K-Opt Algorithm

The basic simulated annealing randomly selects a new solution x′ in the neighborhood of the
current solution x. This selection process presents some limitations. First, the same neighbor solution
x′ can be evaluated several times since there is no mechanism to recognize already visited solutions.
In some special cases, the algorithm can even be trapped in a local loop, switching between x′ and x.
Secondly, by selecting only one solution in the neighborhood of x, another neighbor solution x′′ better
than x′ can be ignored. To mitigate these limitations, a local search in the neighborhood of a current
solution x is usually performed.

One of the most widely used local search algorithms is the k-opt algorithm. It is a generalization
of the 2-opt algorithm proposed by Georges Croes in 1958 to solve the traveling salesman problem.
The algorithm is based on the k-opt operator and works as follows: at each step, k edges are removed
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from the current solution and the k partitions are therefore reconnected to form a new solution.
An application of the 2-opt and the 3-opt operator on a given route R is illustrated in Figure 4.
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Figure 4. Application of 2-opt and 3-opt operators on a partial instance of size 6 × 6. (a) initial route;
(b) a neighbor route by deleting edges (25,31) and (32,26); (c) a neighbor route by deleting edges (19,25),
(31,32), and (26,20); (d) a neighbor route by deleting edges (19,25), (31,32), and (26,20) without reversing
remaining edges.

3.2. BFKSA Algorithm

The Back-and-Forth Simulated Annealing is given in Algorithm 4.
Initial Route (line 2): The initial route is obtained using Algorithm 5 (GenerateInitialRoute).

BF algorithm can consider either vertical orientation (Figure 5b) or horizontal orientation (Figure 5c).
The idea in Algorithm 5 is to run BF in both directions and to consider the orientation that provide the
best value for f1 and f2 depending on wind direction. In case there is no feasible solution, the orientation
that forms the smallest angle with the wind direction is taken. In this paper, we consider three directions
for the wind: (0,1), (1,1), (1,0), shown in Figure 5a.
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considered; (b) BF orientation for wind direction (0,1); (c) BF orientation for wind direction (1,0).

Fitness functions (lines 3 and 11): the two objective functions namely f1 and f2 are evaluated
using respectively Equations (3) and (4). The number of actual recharging stations in a route is reduced
using Algorithm 2 (recharging station minimization).

Generating a new route (line 8–10): the process of finding a new route starts by randomly
selecting three indexes that will correspond to the edges to delete on the current route. Then, by using
GenerateRoutes(), new solutions are derived from the current one using a k-opt operator that deletes
k edges and builds a new route. The value of k varies between 2 and 3. For a given route R, all the
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routes derived by applying a 2-opt or 3-opt are tested and the best is kept. Since the proposed model
considers the wind direction, a reverse edge may consume a different energy quantity compared to the
original edge (Figure 4). The determination of the best local route is given in Algorithm 6.

Stopping condition (line 6): the algorithm stops when the current temperature is lower than the
minimal temperature or after reaching several equilibrium stages without improvement. We suppose
therefore having reached at least a close to optimal route.

Equilibrium stage (line 7): If there is no improvement of the best route found so far after a certain
number of iteration, we suppose having reached an equilibrium state at the current temperature and
the temperature is update (line 19).

Accepting a solution (line 14 to 18): Since the problem formulation first focuses on the cost of the
deployment, a route is accepted if it provides a smaller number of recharging station, or if the number
of recharging station is equal to the one of the best route found so far, but with a smaller completion
time. However, a non-improving route with regard to the completion time can be accepted in order to
escape from local optima, but with a certain probability.

Algorithm 4: Back-and-Forth-k-opt Simulated Annealing

Input: f1, f2 : Objective functions; C: Set of Candidate RS; A: area to cover
Output: RB: best route found, DB: Corresponding time, CEB: minimal set of actual RS
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Accepting a solution (line 12 to 16): A route is accepted if it provides a smaller number of

recharging stations, or if the number of recharging station is the equal to the one of the best route found
so far, but with a smaller energy consumption. However, a non-improving route with regard to energy
consumption can be accepted in order to escape from local optima, but with a certain probability.



Symmetry 2020, 12, 1661 13 of 25

Algorithm 5: GenerateInitialRoute

Input: f1, f2 : Objective functions; A: Area to cover; C: Set of Candidate RS; w: wind direction
Output: R: A route;
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4. Performance Evaluation

4.1. Parameter Settings and General Setup

Parameter values used in the simulations are summarized in Table 1. The maximum energy,
optimum velocity, and altitude correspond to operating parameters of the 3DR Solo drone. Vertical
velocity and acceleration were taken as 0; horizontal acceleration was taken as 0, except when the
drone is approaching a cell containing a RS.
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Table 1. Parameter values

Parameter Value

Maximum Energy 76.96 Wh
Altitude 120 m

Angle of view 94.4◦

Cell size 65 m
Cruise speed 2.5 m/s
Wind speed 1–4 m/s

Wind direction 0◦, 45◦, 90◦

Size 8 × 8; 16 × 16

A set of 20 random topologies of sizes between 8× 8 and 16× 16 cells with a varying number of
candidate recharging station locations was generated using a generalized Halton number generator
(https://github.com/fmder/ghalton). We consider an altitude H = 120 m as adopted in [22] for two
reasons. First, 3DR solo drone can be equipped with a camera able to shoot 4 K videos at 30 fps and
12MP. This is far above 1.2 MP provided by the embedded camera of the ReadyMadeRC Anaconda
drone used in [22]. Secondly, although the maximum altitude HM can be higher than 120 m according
to Equation (4), due to possibly legal restrictions and the maximum altitude of the drone we limit the
altitude of the drone to 120 m. Using an angle of view θ = 94.4◦, the size of a cell is around 65 m
(0.4 ha) according to Equation (1). That means the total area varies between 27 ha (8× 8 instances) and
108 ha (16× 16 instances).

Wind direction can influence the energy consumption of the drone for higher wind speeds. In this
work, the wind speed ranges from 1 to 4 m/s. In addition, we consider three prevailing wind directions:
0◦, 45◦, 90◦ (Figure 5a).

All algorithms were implemented in Python, and a UI was developed to visualize the results.
Figure 6 presents a screenshot of the UI.
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Figure 6. UI for visualization. The blue cell represents the take-off and landing point. Red cells are
candidate locations of recharging stations. White cells are locations that are actually used for recharging
stations. (a) Drone path generated respectively by BF using two recharging stations. (b) Drone path
generated respectively by BFKSA using only one recharging station.
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4.2. Simulation Results and Discussion

The proposed BFKSA is compared to the naïve Back and Forth approach and the K-Simulated
Annealing (KSA). KSA is the K-opt variant of the well-known simulated annealing (KSA). The main
difference with BFKSA is the fact that KSA starts with a randomly generated initial solution. All the
algorithms are implemented from scratch in Python. The source code is available on GitHub at the
following address: https://github.com/Suns-group/SD-MRS-LF (Supplementary Materials).

Four metrics are used to compare approaches: the ability to find a feasible solution, the number of
recharging stations, the completion time of the mission, and the total energy consumption.

Simulations results are discussed based on the size of the instances and the wind speed and
direction. Figures 7–10 display the results for feasibility, number of charging stations, mission
completion time, and total energy consumption respectively on 8 × 8 instances. Figure 7 shows
that the higher the wind speed, the lower the ability of all algorithms to find feasible solutions for
all the approaches. This is explained by the fact that the drone must at times travel against the
wind, and opposing strong winds can cause very large increases in energy consumption, according
to Equation (21). Figures 7 and 8 show that all the approaches provide 100% feasibility and equal
numbers of charging stations for wind speed less than or equal to 2 m/s. However, for higher wind
speeds the BFKSA outperforms other approaches in both feasibility and reduced number of charging
stations, except for wind speed 4 m/s and wind direction 45◦. This may be due to the fact that the
initial back-and-forth movement used by BFKSA either aligns with 90◦ or 0◦, whereas the optimal
direction to avoid wind drag should be orthogonal to the wind direction 45◦. It is plausible that the
initial suboptimal alignment leads to the algorithm’s convergence to a suboptimal solution. On the
other hand, KSA starts with a complete random solution and has a better chance of finding optimal
drone path alignments.
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Figures 9 and 10 show the completion time and energy consumption respectively for 8× 8 instances
for the different wind scenarios. It is known from the literature that back and forth movement provides
the most efficient energy consumption and mission completion time when wind speed is negligible.
However, the figures show that BFKSA can provide a slight improvement in some cases for lower
wind speeds. For other wind speeds, BFKSA gives results that are close to BF and better than KS,
except for power consumption with wind direction 45◦.

Detailed results for the 8 × 8 case are listed in Tables A1–A6 in Appendix A. An examination
of the tables shows that BFKSA does not provide the smallest mission completion time only in two
scenarios out of 12. The tables also show that each time BF finds a feasible solution, its energy
consumption is close to the one of BFKSA, except in the cases where BFKSA provides a smaller number
of recharging stations.

Figures 11–14 display the results for feasibility, number of charging stations, mission completion
time, and total energy consumption respectively on 16 × 16 instances. As was the case in 8 × 8 instances,
the wind speed and direction heavily influence the ability to find feasible solutions. For wind speed
higher than 2 m/s and wind direction different from 0◦, none of the approaches is able to find a feasible
solution. This justifies the holes in Figures 12–14 for wind speed higher than 2 m/s and wind direction
different from 0◦.

However, BFKSA manages to obtain close to 100% feasibility higher wind speeds and direction
equals to 0◦. In addition, Figures 12–14 show that BFKSA provides the minimal number of
recharging stations in all scenarios, as well as nearly matching BF in terms of completion time
and energy consumption.
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More detailed results for the 16 × 16 simulations are given in Tables A7–A12. The comparative
performance for KSA is much worse for 16 × than for 8 × 8. In particular, KSA sometimes requires
more than twice the number of recharging stations and the total energy required by BFKSA.

All the above results show the dominance of BFKSA over the other approaches due to its ability
to find a feasible solution with a minimum number of recharging stations.
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5. Conclusions

The automatic surveillance of large farms using drones requires intelligent path planning that takes
into account the drone’s limited range and optimizes the locations of recharging stations. In this work,
we introduced the Single Drone Multiple Recharging Stations in Large Farm problem (SD-MRS-LF).
The objectives were to minimize first the number of recharging stations and then the mission completion
time. An approach called BFKSA based on a combination of BF (back-and-forth), K-opt, and simulated
annealing (SA) has been proposed to solve the problem. Simulation results comparing BFKSA to BF
and KSA have shown the superior performance of BFKSA with respect to its ability to find feasible
solutions with a minimal number of charging stations. BFKSA provides the highest percentage of
feasible solutions with the smallest number of recharging stations. In certain cases, BFKSA was able to
provide a mission completion time and energy consumption smaller than the values provided by BF
known to be effective solution.

In this work, the drone was constrained to visit each station only once. Removing this constraint
can significantly reduce the number of recharging stations, but it requires a new formulation of the
problem. In addition, we suppose each recharging station having an unlimited energy. In case the
drone can visit the same recharging station more than once, a charging and discharging function of the
recharging station should be considered for a more realistic scenario. Moreover, other optimization
techniques can be explored, and the area of interest can be extended to random fields.

Supplementary Materials: The source code is available online at: https://github.com/Suns-group/SD-MRS-LF.
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Appendix A. Results from Simulations

Table A1. Mean values of performance metrics on 8 × 8 instances with wind speed = 3 m/s,
direction = 90◦.

Feasibility (%) Number of
Recharging Station Completion Time (min) Energy Consumption (Wh)

BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA

Inst8_1 100 100 100 2 2.25 2 32.33 39.39 31.17 169.09 234.14 170.47

Inst8_2 100 100 100 2 2.25 2 32.33 38.90 31.30 169.09 227.49 173.24

Inst8_3 100 100 100 2 2.20 2 32.33 39.25 31.18 169.09 231.73 170.87

Inst8_4 100 100 100 2 2.50 2 32.33 40.52 31.53 169.09 239.05 170.67

Inst8_5 100 95 100 2 2.16 2 32.33 38.88 31.34 169.09 231.54 171.92

Inst8_6 100 100 100 2 2.25 2 32.33 39.61 31.11 169.09 233.77 170.16

Inst8_7 100 100 100 2 2.30 2 32.33 39.12 31.39 169.09 235.30 170.99

Inst8_8 100 100 100 2 2.05 1.95 32.33 38.02 31.17 169.09 223.23 170.71

Inst8_9 100 100 100 2 2.40 2 32.33 39.78 31.53 169.09 236.90 171.13

Inst8_10 100 95 100 2 2.47 2 32.33 39.59 31.04 169.09 236.41 170.65

https://github.com/Suns-group/SD-MRS-LF
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Table A2. Mean values of performance metrics on 8 × 8 instances with wind speed = 3 m/s,
direction = 45◦.

Feasibility (%) Number of
Recharging Station Completion Time (min) Energy Consumption (Wh)

BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA

Inst8_1 100 100 100 1 2.00 1 29.98 34.22 29.28 127.84 193.74 127.32

Inst8_2 100 100 100 1 1.95 1 29.98 34.40 29.45 127.84 191.31 126.58

Inst8_3 100 100 100 1 1.90 1 29.98 33.10 29.46 127.84 185.37 128.51

Inst8_4 100 100 100 2 2 1 29.98 33.91 31.31 127.84 192.25 139.31

Inst8_5 100 100 100 1 2 1 29.98 35.03 29.11 127.84 195.83 129.24

Inst8_6 100 100 100 1 1.90 1 29.98 33.98 29.23 127.84 187.46 127.94

Inst8_7 100 100 100 1 1.95 1 29.98 34.20 29.61 127.84 194.30 127.48

Inst8_8 100 100 100 1 1.95 1 29.98 33.65 29.55 127.84 193.49 126.83

Inst8_9 100 100 100 1 2 1 29.98 35.73 29.68 127.84 209.81 127.46

Inst8_10 100 100 100 1 2.10 1 29.98 36.02 29.35 127.84 205.57 128.17

Table A3. Mean values of performance metrics on 8× 8 instances with wind speed = 3 m/s, direction = 0◦.

Feasibility (%) Number of
Recharging Station Completion Time (min) Energy Consumption (Wh)

BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA

Inst8_1 100 100 100 2 2 2 32.33 35.39 31.41 169.09 201.00 171.01

Inst8_2 100 100 100 2 2 2 32.33 36.73 31.35 169.09 204.80 170.41

Inst8_3 100 100 100 2 2 2 32.33 34.90 31.70 169.09 202.64 171.27

Inst8_4 0 100 100 - 2 2 - 37.93 33.69 - 211.94 181.85

Inst8_5 100 100 100 2 1.90 2 32.33 36.40 31.42 169.09 205.60 171.49

Inst8_6 100 100 100 2 1.90 2 32.33 34.11 31.44 169.09 190.71 170.56

Inst8_7 100 100 100 2 2 1.85 32.33 34.93 31.72 169.09 198.22 170.67

Inst8_8 100 100 100 2 2 2 32.33 34.77 31.34 169.09 197.91 168.79

Inst8_9 100 100 100 2 2 2 32.33 35.26 32.04 169.09 201.67 169.65

Inst8_10 100 90 100 3 2 2 32.33 35.91 33.24 169.09 203.91 182.30

Table A4. Mean values of performance metrics on 8 × 8 instances with wind speed = 4 m/s,
direction = 90◦.

Feasibility (%) Number of
Recharging Station Completion Time (min) Energy Consumption (Wh)

BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA

Inst8_1 100 75 100 3 3.07 3 29.77 35.31 28.80 243.69 318.33 253.66

Inst8_2 0 70 85 - 3.07 2.94 - 34.60 31.90 - 319.68 264.94

Inst8_3 0 65 100 - 3.15 3 - 35.73 31.84 - 323.33 264.61

Inst8_4 0 35 100 - 2.71 2.95 - 34.69 32.35 - 298.96 278.56

Inst8_5 0 65 100 - 3.15 2.95 - 33.58 30.84 - 301.53 258.17

Inst8_6 0 80 100 - 3.06 2.95 - 36.19 31.45 - 312.23 270.15

Inst8_7 0 90 100 - 3.22 3 - 37.05 32.45 - 341.63 289.55

Inst8_8 0 95 95 - 3.11 2.89 - 36.31 30.92 - 314.37 271.26

Inst8_9 0 70 100 - 3.07 2.85 - 36.64 31.94 - 331.92 271.32

Inst8_10 100 45 100 4 2.89 2.95 29.77 34.37 30.90 243.69 345.96 270.49
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Table A5. Mean values of performance metrics on 8 × 8 instances with wind speed = 4 m/s,
direction = 45◦.

Feasibility (%) Number of
Recharging Station Completion Time (min) Energy Consumption (Wh)

BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA

Inst8_1 0 75 10 - 3.13 4.5 - 33.80 25.48 - 301.36 363.18

Inst8_2 0 90 5 - 2.94 4 - 35.58 25.96 - 306.98 383.01

Inst8_3 0 95 0 - 2.89 - - 35.15 - - 295.41 -

Inst8_4 0 50 0 - 2.70 - - 32.68 - - 283.64 -

Inst8_5 0 70 25 - 2.86 4 - 32.58 27.33 - 283.07 383.47

Inst8_6 0 50 10 - 3.10 4 - 32.84 25.49 - 304.37 359.28

Inst8_7 0 90 10 - 3.06 4 - 35.04 25.87 - 314.40 382.36

Inst8_8 0 90 0 - 2.89 - - 34.71 - - 308.74 -

Inst8_9 0 80 0 - 2.88 - - 34.18 - - 312.63 -

Inst8_10 0 45 0 - 2.78 - - 33.54 - - 294.10 -

Table A6. Mean values of performance metrics on 8× 8 instances with wind speed = 4 m/s, direction = 0◦.

Feasibility (%) Number of
Recharging Station Completion Time (min) Energy Consumption (Wh)

BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA

Inst8_1 100 45 100 3 3.56 2.8 29.77 35.76 29.71 243.69 367.00 247.71

Inst8_2 100 50 100 3 3.70 3 29.77 36.00 29.47 243.69 349.26 244.48

Inst8_3 0 45 100 - 3.78 2.9 - 37.18 31.94 - 377.64 277.93

Inst8_4 0 0 100 - - 3 - - 32.23 - - 267.14

Inst8_5 100 25 100 3 3.80 2.6 29.77 35.05 29.98 243.69 372.78 246.58

Inst8_6 100 50 100 3 3.70 2.8 29.77 37.17 30.06 243.69 369.74 252.76

Inst8_7 100 55 100 3 3.91 2.7 29.77 37.50 29.70 243.69 361.09 244.90

Inst8_8 100 60 100 4 3.83 3 29.77 37.59 30.63 243.69 358.71 256.23

Inst8_9 100 30 100 3 3.33 2.9 29.77 35.83 29.97 243.69 325.65 244.57

Inst8_10 100 0 100 3 - 2.85 29.77 - 29.81 243.69 - 243.42

Table A7. Values of performance metrics on 16 × 16 instances with wind speed = 1 m/s, direction = 90◦.

Feasibility (%) Number of
Recharging Station Completion Time (min) Energy Consumption (Wh)

BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA

Inst16_1 100 95 100 5 8.95 4.55 117.23 213.13 118.61 365.61 688.27 370.35

Inst16_2 100 75 100 5 9.2 5 117.23 210.77 117.17 365.61 699.65 365.39

Inst16_3 100 100 100 5 8.75 4.95 117.23 214.71 117.79 365.61 690.99 367.52

Inst16_4 100 65 100 6 8.85 5.1 117.23 200.31 130.75 407.59 667.21 436.48

Inst16_5 100 100 100 6 9 5 117.23 214.93 123.34 365.61 692.8 385.7

Inst16_6 100 100 100 5 8.85 4.6 117.23 211.59 117.51 365.61 681.78 366.53

Inst16_7 100 90 100 5 8.89 4.95 117.23 211.94 117.37 365.61 689.96 366.04

Inst16_8 100 100 100 5 8.95 4.55 117.23 210.54 117.93 365.61 677.76 367.91

Inst16_9 100 90 100 6 9 5 117.23 209.5 123.24 365.61 679.81 385.51

Inst16_10 100 85 100 5 8.88 4.9 117.23 209.86 117.61 365.61 682.68 366.84
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Table A8. Values of performance metrics on 16 × 16 instances with wind speed = 1 m/s, direction = 45◦.

Feasibility (%) Number of
Recharging Station Completion Time (min) Energy Consumption (Wh)

BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA

Inst16_1 100 90 100 5 8.72 4.35 117.23 211.2 119.05 365.61 687.16 371.64

Inst16_2 100 75 100 5 8.67 5 117.23 202.92 117.14 365.61 675.12 365.32

Inst16_3 100 95 100 5 8.74 4.95 117.23 207.91 117.37 365.61 671.58 366.12

Inst16_4 100 65 100 6 8.46 5 121.41 201.46 132.76 407.59 664.88 442.41

Inst16_5 100 85 100 6 8.41 4.8 117.23 203.29 123.29 365.61 661.4 385.89

Inst16_6 100 100 100 5 8.9 4.8 117.23 214.75 117.59 365.61 691.2 366.84

Inst16_7 100 80 100 5 8.56 5 117.23 206.86 117.13 365.61 677.07 365.28

Inst16_8 100 100 100 5 8.7 4.5 117.23 208.23 118.93 365.61 670.6 370.98

Inst16_9 100 95 100 6 8.84 5 117.23 209.34 122.77 365.61 676.53 384.13

Inst16_10 100 75 100 5 9.2 4.85 117.23 208.74 117.75 365.61 689.99 367.35

Table A9. Values of performance metrics on 16 × 16 instances with wind speed = 1 m/s, direction = 0◦.

Feasibility (%) Number of
Recharging Station Completion Time (min) Energy Consumption (Wh)

BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA

Inst16_1 100 95 100 5 9.05 4.05 117.23 211 119.53 365.61 685.21 373.21

Inst16_2 100 70 100 5 8.86 4.65 117.23 204.24 118.39 365.61 682.22 369.45

Inst16_3 100 90 100 6 9.17 5 117.23 214.26 123.74 365.61 694.76 387.25

Inst16_4 0 65 100 - 9.08 5 - 206.48 127.45 - 678.03 398.99

Inst16_5 100 95 100 5 8.89 4.3 117.23 211.07 118.55 365.61 686.13 369.96

Inst16_6 100 100 100 5 9.2 4.65 117.23 215.61 118.04 365.61 697.04 368.24

Inst16_7 100 90 100 5 9 4.55 117.23 207.57 117.66 365.61 673.79 366.93

Inst16_8 100 95 100 4 8.95 4 117.23 212.27 117.2 365.61 695.5 365.51

Inst16_9 100 100 100 6 8.9 5 117.23 213.94 123.15 365.61 690.82 385.23

Inst16_10 100 90 100 5 9.06 4.05 117.23 213.61 119.68 365.61 700.72 373.65

Table A10. Values of performance metrics on 16× 16 instances with wind speed = 2 m/s, direction = 90◦.

Feasibility (%) Number of
Recharging Station Completion Time (min) Energy Consumption (Wh)

BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA

Inst16_1 100 30 100 5 11 5 117.62 205.66 117.55 387.9 800.06 387.5

Inst16_2 100 15 100 6 11.33 5 117.62 200.25 122.38 387.9 849.84 408.39

Inst16_3 100 40 100 6 10.5 5 117.62 207.15 126.12 387.9 808.05 423.86

Inst16_4 0 10 20 - 11 8 - 198.72 125.8 - 795.34 606.15

Inst16_5 100 35 100 6 10.71 5 117.62 205.72 123.41 387.9 790.25 411.09

Inst16_6 100 45 100 6 11 5 117.62 208.98 122.62 387.9 840.03 409.37

Inst16_7 100 10 100 5 10 5 117.62 201.56 117.51 387.9 758.86 387.4

Inst16_8 100 30 100 5 10.17 5 117.62 203.88 117.48 387.9 783.53 387.43

Inst16_9 100 15 100 5 11.33 4.95 117.62 200.54 117.84 387.9 833.57 388.05

Inst16_10 100 25 100 5 11 5 117.62 200.55 117.49 387.9 825.01 387.44
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Table A11. Values of performance metrics on 16× 16 instances with wind speed = 2 m/s, direction = 45◦.

Feasibility (%) Number of
Recharging Station Completion Time (min) Energy Consumption (Wh)

BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA

Inst16_1 100 45 100 5 11.11 5 117.62 209.6 117.6 387.9 846.94 387.8

Inst16_2 100 5 100 6 12 5 117.62 201.71 121.6 387.9 855.09 405.19

Inst16_3 100 55 100 6 10.73 5 117.62 204.04 126.41 387.9 805.49 425.79

Inst16_4 0 10 15 - 11 8 - 200.06 125.76 - 803.45 615.34

Inst16_5 100 25 100 6 10.2 5 117.62 202.68 122.57 387.9 785.22 411.15

Inst16_6 100 40 100 6 11 5 117.62 207.14 121.7 387.9 820.39 405.05

Inst16_7 100 20 100 5 10.5 5 117.62 199.98 117.6 387.9 789.66 387.84

Inst16_8 100 40 100 5 10.88 5 117.62 206 117.53 387.9 800.92 387.44

Inst16_9 100 10 100 5 11.5 5 117.62 204.42 117.49 387.9 856.11 387.39

Inst16_10 100 15 100 5 10.67 5 117.62 201.68 117.58 387.9 807.72 387.69

Table A12. Values of performance metrics on 16 × 16 instances with wind speed = 2 m/s, direction = 0◦.

Feasibility (%) Number of
Recharging Station Completion Time (min) Energy Consumption (Wh)

BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA BF KSA BFKSA

Inst16_1 100 10 100 5 11.5 5 117.62 210.69 117.6 387.9 860.01 387.84

Inst16_2 100 10 100 5 11.5 5 117.62 204.61 117.55 387.9 921.26 387.7

Inst16_3 100 20 100 6 11.5 5 117.62 204.84 124.93 387.9 843.27 415.64

Inst16_4 0 5 60 - 10 5.92 - 211.42 125.72 - 776.78 444.95

Inst16_5 100 35 100 6 10.86 5 117.62 211.5 122.64 387.9 867.79 407.84

Inst16_6 100 20 100 5 12.25 5 117.62 212.81 117.48 387.9 900.99 387.34

Inst16_7 100 20 100 8 11.5 8 124.53 210.44 124.47 585.97 840.68 586

Inst16_8 100 30 100 5 11.83 4.75 117.62 211.65 118.12 387.9 873.25 389.2

Inst16_9 100 10 100 6 10.5 5 117.62 206.68 123.14 387.9 827.71 410.95

Inst16_10 100 0 100 6 - 5 117.62 - 123.23 387.9 - 409.35
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