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Abstract: Hepatitis B is a widespread epidemic in the world, but so far no single drug has been shown
to kill or eliminate the Hepatitis B virus and heal people with chronic Hepatitis B virus infection. Based
on comprehensive investigations to relevant characteristics of Hepatitis B, a diagnostic modelling
and reasoning methodology using Dynamic Uncertain Causality Graph is proposed. The symptoms,
physical signs, examinations results, medical histories, etiology, pathogenesis and other factors were
included in the diagnosis model. In order to reduce the difficulty of building the model, a modular
modeling scheme is proposed, which provides multi-perspectives and arbitrary granularity for
the expression of disease causality. The chain reasoning algorithm and weighted logic operation
mechanism are introduced to ensure the correctness and effectiveness of diagnostic reasoning under
incomplete and uncertain information. In addition, the causal view of the potential interactions
between diseases and symptoms visually shows the reasoning process in a graphical way. In the
relevant model, the model of the diagnostic process and the model of the therapeutic process are
symmetrical. The results show that, even with incomplete observations, the proposed methodology
achieves encouraging diagnostic accuracy and effectiveness, providing a promising assistance tool
for physicians in the diagnosis of Hepatitis B.
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1. Introduction

Hepatitis B is a kind of infectious disease which spreads widely all over the world. As published
by the World Gastroenterology Organization, more than 400 million people have been infected with
hepatitis B, which is the third leading cause of cancer death in the world [1]. However, until now,
there is no drug available for the hepatitis B virus elimination and to cure the chronic hepatitis B
virus-infected patients. In response to this disease, researchers have made active efforts, aiming to
improve the accuracy of diagnosis and provide more accurate treatment plans.

In recent years, with the development of computer science and artificial intelligence, it is
possible to digitize medical diagnosis. Currently, the application of computer technology, in particular
the artificial intelligence in medical diagnosis, has become one of the hot spots in the research
society. Various decision making systems for medical diagnosis have been developed [2,3]. Moreover,
computer-aided systems for clinical diagnoses have been involved in many major medical areas. These
works promotes the development of medical science [4–7].

Rule reasoning method was first applied in clinical diagnosis, and has been widely used, such as
MYCIN and INTERNIST-1 [8,9]. Various mixed reasoning method has also been adopted in clinical
diagnosis and treatment decision making, such as method combining case-based and rule-based
reasoning [10], method combining rule and neural network [11], method combining hybrid fuzzy logic
and case [12], method combining neural network and hybrid fuzzy logic [13], method combining fuzzy

Symmetry 2020, 12, 1690; doi:10.3390/sym12101690 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/12/10/1690?type=check_update&version=1
http://dx.doi.org/10.3390/sym12101690
http://www.mdpi.com/journal/symmetry


Symmetry 2020, 12, 1690 2 of 20

reasoning and Bayesian networks [14], etc. Since 2016, a large amount of work has focused on deep
learning based methods [15–18]. Most clinical neural network models focus on imaging examinations
rather than general clinical diagnoses, because the unified data collected in the imaging examination
makes data processing easier.

These intelligent diagnostic methods mentioned above can help doctors to improve diagnostic
accuracy of various medical specialties by quantifying important clinical diagnostic indicators.
In addition, intelligent diagnostic methods may cover some rare cases in the field of experts, while
clinical expert can not have encyclopedic knowledge of the manifestations of such diseases. Therefore,
the application of computer aided systems in clinical diagnoses is helpful to improving the quality of
medical services.

However, the existing computer-aided system for clinical diagnosis still has many problems.
In practice, the clinical diagnosis of most diseases depends on the observations found by human
doctors. In traditional treatment, human doctors make diagnoses according to their accumulated
personal experience combined with a number of tests. The conclusion is made by the human doctor
according to observing, coupled with some subjective factors. In clinical practice, a large amount of
data can be collected, from organ images to blood and gene detection. These observations are depicted
and recorded in different minor, which makes it hard for computers to organize, although this is
critical for the computer-aided systems to be applied. There are challenges associated with analysing,
combining, and correlating these data to make diagnostic predictions [19]. How to make the clinical
diagnostic data structured and standardized is a problem. At the same time, environmental issues of
the patients, such as family history, living area, and eating habits, are not considered by most of the
clinical diagnoses systems.

For general clinical diagnoses, the data-driven methods also have some limitations. It relies
too much on the amount of data, the application scenario coverage of data, the quality of data
and the preprocessing of data. Thus the medical records of patients in hospitals cannot be used
to train the diagnosis model. Experts must manually select high-quality data from the collected
data and preprocess them so that the model can learn from them, which means a lot of work to be
done. On the other hand, the general clinical diagnoses process is an serialized causal inference
process, and can hardly be simplified as a classification problem in a predefined feature space,
or a mapping/fitting process between input (state combinations of input variables including absent
information, irrelevant information and even incorrect diagnoses in the records) and output [20].
Thus the generalization performance of the NN based general clinical diagnoses process can hardly
be guaranteed. In addition, data-driven approaches are not good at modelling the rare diseases
diagnosing, because their case records are rare in training and test datasets [20]. In fact, as the rare
diseases are relatively hard to diagnose by human doctors, the ability of rare diseases diagnose is a
rigid demand for a clinical diagnoses system. Thus the advantages of the data-driven approaches
may be greatly reduced. Also, the trained models and diagnostic results lack interpret-ability [21,22],
which is almost indispensable in real clinical diagnoses. Because the AI software users, the doctors
responsible for the diagnoses, need to understand the diagnostic process before believing the results,
at least for general clinical diagnoses at the present stage [20].

In addition to the above problems, in the current intelligent diagnosis model, only current disease
data can be used, and the related trends can not be well expressed. At present, the intelligent diagnosis
system basically only aims at the diagnosis of the disease, and how to further provide an appropriate
treatment schemes after diagnosis is also an urgent problem to be solved by the intelligent diagnosis
system at present. Due to the different physical conditions of different patients, some drugs may not be
suitable for some of them, and how to deal with this situation is also a problem. With the progress of
the treatment process, the relevant treatment plan given by the intelligent diagnosis system also needs
to deal with the patient’s drug resistance. On the other hand, patients have a variety of conditions,
and their mentalities and economic conditions are different. Only when individualized treatment is
carried out accurately, can patients achieve better therapeutic effect.
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To overcome these defects, a new model named as Dynamic Uncertain Causality Graph (DUCG) is
presented [23–25]. DUCG has been successfully applied in the fault diagnoses of industrial systems [26]
and medical diagnoses of vertigo [27].

In this paper, an intelligent diagnosis methodology for both the diagnosis and treatment
recommendation of hepatitis B is proposed based on DUCG, which is applicable to model uncertain
behaviours of complex systems. In order to get a better performance, the DUCG medical diagnosis
method is also expanded in the following aspects: quantifying the trend of clinical data, providing a
treatment plan, providing personalized treatment plans for patient resistance, and giving interpretable
diagnosis results.

The remainder of this paper is organized as follows:
Section 2 provides the priori knowledge of DUCG. Section 3 shows a method of the process of

intelligent inference. Section 4 shows the experiment cases of the HepatitisB diagnosis and treatment.
Section 5 evaluated the results of the experiment. Section 6 concludes this paper and outlines the
future work. And the detailed description of DUCG can be found in the Appendix A.

2. Preliminaries

DUCG is a probabilistic graphical model that explicitly represents uncertain causalities among
variables and performs probabilistic reasoning [24]. It is a directed graph consisting of a number of
nodes (variables) and directed arcs (causalities).

The corresponding nodes (variables) are divided into several classes:

• B-type variables are the root cause variables;
• X-type variables are the effect or consequence variables;
• D-type variables are the default cause variables;
• G-type variables are virtual logic gate variables;
• BX-type variables are used to represent the integrated effect of a group of B-type variables;
• A-type events are virtual events defined in DUCG to represent the random causality between the

parent and child nodes.

Please refer to the Appendix A for more details about DUCG theory.

3. Method

3.1. Diagnosis and Treatment of Hepatitis B

The hepatitis B virus (HBV) particle (virion) consists of an outer lipid envelope and a core
composed of protein. These virions are 30–42 nm in diameter. These particles are composed of lipids
and protein which constitute a part of the surface of virosomes, which are called the hepatitis B surface
antigens (HBsAg) and are overproduced in the life cycle of the virus. The center of the virions is about
28 nm in diameter and is the core of the virions, which include the hepatitis B core antigen (HBcAg) and
the hepatitis B e antigen (HBeAg). The core contains the viral genomic DNA and the DNA polymerase.
Therefore, the hepatitis B virus has three antigen: surface antigens (HBsAg), core antigen (HBcAg) and
e antigen (HBeAg). During the natural course of an infection, the presence of these three antigens in
a host’s serum can cause the immune response of the host, and antibodies to the hepatitis B surface
antigen (anti-HBs), antibodies to the hepatitis B core antigen (anti-HBc) and antibodies to the e antigen
(anti-HBe) will arise immediately afterwards. These viral antigens and antibodies produced by the
host can be used as the markers of hepatitis B virus infection for the diagnosis of hepatitis B. However,
it is difficult to detect hepatitis B core antigen (HBcAg) in serum by the usual tests. Therefore, the tests
for the detection of hepatitis B virus infection involve serum or blood tests that usually detect HBsAg
and anti-HBs, HBeAg, and anti-HBe and anti-HBc.

Under normal circumstances, acute hepatitis B infection does not need treatment, and most
adults will recover automatically [28]. On the other hand, in order to reduce the risk of liver cirrhosis
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and liver cancer, it may be necessary to treat chronic infection. Before discussing the diagnosis of
chronic hepatitis B virus infection, we must first distinguish the difference between chronic hepatitis B
virus infection and chronic hepatitis B. Chronic hepatitis B virus infection refers to the status that the
hepatitis B virus has been in the host’s body for a long time, and the host can not clear the infection.
Therefore, as long as the hepatitis B surface antigens (HBsAg) and/or the hepatitis B virus DNA (HBV
DNA) in host’s serum is positive for more than 6 months, it is chronic hepatitis B virus infection.
According to serological, virological, biochemical tests, and other clinical and laboratory tests of
HBV-infected individuals, chronic hepatitis B virus infection can be divided into chronic HBV carriers,
HBeAg-positive chronic hepatitis B, HBeAg-negative chronic hepatitis B, inactivity HBsAg carriers,
occult chronic hepatitis B and hepatitis B cirrhosis. Treatment is often required when an infected
person has persistently elevated HBV DNA levels and serum alanine aminotransferase (a marker
of liver damage) [29]. According to different genotypes and the drug, the treatment time can range
from six months to one year. However, oral medications are usually required for a longer duration of
treatment, most of which will last more than a year [30]. Although the existing drugs cann’t clear the
infection, they can prevent the virus from replicating, so as to minimize the liver damage. As of 2015,
there are seven medications licensed for the treatment of hepatitis B infection in China. These include
the two immune system modulators interferon alpha-2a and PEGylated interferon alpha-2a (Pegasys),
and antiviral drugs entecavir (Baraclude), adefovir (Hepsera), telbivudine (Tyzeka), tenofovir (Viread)
and lamivudine (Epivir).

3.2. Characteristic Analysis to Hepatitis B Diagnosis and Treatment

In the diagnosis of Hepatitis B, medical evidence used usually includes laboratory results, imaging
examination results, liver biopsy, symptoms, medical signs, and basic information. First, the patient
needs to have a laboratory examination. Detection of hepatitis B virus infection includes serum or
blood detection, detection of virus antigens (proteins produced by the virus), or antibodies produced
by the patient. Hepatitis B viral antigens and antibodies are detectable in the blood following infection
as shown in Figure 1.

Figure 1. Hepatitis B viral antigens and antibodies detectable in the blood following infection.

Test results can distinguish whether the patient has hepatitis B or not. Meanwhile, the Hepatitis B
virus antigens and antibodies detected in the blood can also predict the therapeutic effect of antiviral
drugs and immune system regulator interferon. Once chronic hepatitis B virus infection is confirmed,
the patient need to do some tests to detect and measure HBV DNA. These tests are used to assess
a person’s infection status and to monitor treatment [31]. Secondly, the levels of these enzymes in
serum are collected in detail. The activity of enzymes in the liver is an important indicator of the
liver’s function. For example, serum alanine aminotransferase (ALT) levels and aspartate transaminase
(AST) levels generally reflect the degree of hepatocyte damage. Thirdly, the imaging examinations
carried out, such as medical ultrasound and computed tomography. Fourth, collect the results of liver
biopsy to evaluate the inflammation of the liver, exclude other liver diseases and monitor treatment.
Fifth, the symptoms and medical signs, such as fatigue, abdominal distension and jaundice, are also
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used in the diagnosis of chronic hepatitis B. Finally, some basic pieces of information are taken into
consideration, e.g., sex, age, history of drinking, history of mental illness, and medications that have
been taken before. In addition, seven licensed drugs and related basic medicine for treating hepatitis B
infection were introduced in the construction of the knowledge base. In fact, the information used in
our diagnosis methods is basically based on objective examination results and subjective descriptions
of patients. Through this information, the system can diagnose hepatitis B patients in more detail at
the same time, and make a treatment plan according to their personal situation.

3.3. A Hepatitis B Diagnosis and Treatment Model Based on DUCG

Hepatitis B is a widespread epidemic disease in the world, but, up to now, there is no single drug
that can kill or eliminate the hepatitis B virus and cure chronic hepatitis B virus infection. In order to
give a more appropriate treatment scheme, hepatitis B infection will be further diagnosed in clinical
diagnosis. Chronic hepatitis B virus infection can be divided into chronic HBV carriers, HBeAg-positive
chronic hepatitis B, HBeAg-negative chronic hepatitis B, inactivity HBsAg carriers, occult chronic
hepatitis B, and hepatitis B cirrhosis. We can diagnose chronic hepatitis B virus infection by detecting
viral antigens and antibodies in serum, and these diseases are listed in Table 1.

Table 1. The chronic hepatitis B virus infection subdivisions.

No. Disease

1 HBeAg-positive chronic hepatitis B
2 HBeAg-negative chronic hepatitis B
3 Chronic hepatitis B virus carriers
4 Inactivity HBsAg carriers
5 Occult chronic hepatitis B
6 Compensated hepatitis B cirrhosis
7 De-compensated hepatitis B cirrhosis

In order to minimize drug abuse and treat patients, different treatment plans are given for different
diseases and the condition of the patient, and these treatment plans are listed in Table 2.

Table 2. The treatment plans of chronic hepatitis B virus infection.

No. Treatment Plan Medical Abbreviation

1 Interferon alpha-2a IFN-3MIU
2 Interferon alpha-2a IFN-5MIU
3 PEGylated interferon alpha-2a PEG-135
4 PEGylated interferon alpha-2a PEG-180
5 Lamivudine LAM
6 Adefovir Dipivoxil ADV
7 Entecavir ETV
8 Telbivudine LdT
9 Tenofovir Disoprox TDF

In the process of building the model, each disease is treated as a separate module, and some
variables can be shared with other variables [27]. This is a modular modeling scheme, which allows a
causal graph to be divided into semi-independent parts from multiple angles, while still keeping the
consistency of events definitions. Therefore, all aspects of a disease can be described at any granularity
level, and the difficulty of modeling complex system is greatly reduced. In addition, as we analyzed,
incomplete knowledge and imprecise parameters have little influence on the accuracy of reasoning.
These characteristics have brought us great flexibility in using statistical data and domain knowledge.

For example, Figures 2 and 3 demonstrate two sub-graphs of HBeAg-positive chronic hepatitis B.
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Figure 2. The sub-DUCG includes treatment plans of HBeAg-positive chronic hepatitis B.
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Figure 3. The sub-DUCG includes symptoms and signs of HBeAg-positive chronic hepatitis B.

For the sake of simplicity, the variable symbols “B” and “X” are omitted from the system,
and only their subscripts are kept. All causality and related parameters, such as event matrices (An;i),
are decided by domain knowledge.

3.4. A Introduction to the Sub-DUCG for HBeAg-Positive Chronic Hepatitis B

Based on the prior knowledge and previous works of DUCG, after the initial diagnosis of hepatitis
B, we will make a detailed distinction between hepatitis B diseases and recommend treatment options.

Take HBeAg-positive chronic hepatitis B as an example.
The hepatitis B surface antigens in serum (X10) is positive in patients with HBeAg-positive chronic

hepatitis B. At the same time, both the hepatitis B surface e antigens in serum (X12) and the hepatitis
B virus DNA (X16) are positive. The serum alanine aminotransferase levels (X18) of the patients are
abnormal. Through the above laboratory test results, we can distinguish the development degree
and type of hepatitis B disease in detail. After simply distinguishing the type of hepatitis B disease,
we need to recommend a treatment plan for the patient based on the condition of the hepatitis B
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disease and the patient’s current test results. At this time, the simple diagnosis model needs further
modification and addition.

To get more accurate results when we get relevant treatment plans, we need a continuous
observation of some of the patient’s findings. This involves the problem that the state of the X variable
for each inspection result will change over time.

In order to better express and reason about many times involved in the process of patient state
observation and detection, in addition to the Duck variable that we have introduced in previous work,
we add a variable preprocessing process here.

We keep the patient’s test results every time(tm). For each historical record, we subtract the state
value of the current Xn(tm+1) variable from the state value of the current Xn(tm) variable, and record
it as X′n. For example, the status of a patient’s X18(t1) is 0 last time, and the status of X18(t2) is 2 this
time. Therefore,

X′18 = X′(t2−t1)
= X18(t2)− X18(t1) = 2− 0 = 2. (1)

The positive and negative of X′n can express the change trend of Xn. After recording the
patient’s test results multiple times, we can also get the changing trend of Xn within a period.
Xn(t1), Xn(t2), Xn(t3) . . . Xn(tm) are added to obtain the sum of results in a period of time,

∫ tm
t1

Xn,
denoted as

∫
Xn.

It should be noted that Xn(t) is not directly equal to the result of the t time test results, it is
assigned a different state depending on the detection result. Because in addition to some variables
directly as a numerical result, there are still some variables that cannot be directly described by
numerical values. Here are two examples.

The status list of Jaundice(X50) as shown as Table 3. The status list of ALT (X18) as shown as
Table 4, and the “ULN” in Table 4 means “upper limit of normal”.

Table 3. The status list of Jaundice.

State State Description

0 No
2 Have

Table 4. The status list of ALT.

State State Description

0 Normal (0∼40)
2 Less than 2×ULN (<80)
4 Greater than or equal to 2×ULN and less than or equal to 10×ULN (80∼400)
6 Greater than 10×ULN (>400)

For example, the weekly ALT value of a patient is 23.7, 49.5, and 115.3, respectively, and the
patient has no symptoms of jaundice. The state of X18(t1) is 0; the state of X18(t2) is 2; the state of
X18(t3) is 4; and the status of X50(t1), X50(t2), and X50(t3) are 0. During the period from t1 to t3,∫

X18 = X18(t1) + X18(t2) + X18(t3) = 0 + 2 + 4 = 6, (2)

and ∫
X50 = X50(t1) + X50(t2) + X50(t3) = 0 + 0 + 0 = 0. (3)

It should be noted that when the state of Xn is singular, the singular value of
∫

Xn should
be subtracted from the integral calculation. The

∫
Xn can express the cumulative trend of Xn,

preventing abnormal test results at certain times from causing erroneous diagnosis. After the concepts
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of X′n and
∫

Xn were introduced into the DUCG model, the HBeAg-positive chronic hepatitis B patients
were taken as examples, a more accurate diagnosis model is as shown in Figure 4.
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Figure 4. The sub-graph for HBeAg-positive chronic hepatitis B.

The definitions of each X variable are shown in the Table 5.

Table 5. The variable definitions in the sub-DUCG of HBeAg-positive chronic hepatitis B.

Name Description

X66 The symptoms and medical signs of HBeAg-positive chronic hepatitis B
X45, X47, X49 Tired; Anorexia; Bloating

X50–53 Jaundice; Dull looking; Palmar erythema; Spider nevi
X12 The e antigens in serum
X18 Serum alanine aminotransferase levels
X16 Serum hepatitis B virus DNA levels
X41 Inflammatory conditions of liver tissue
X10 The hepatitis B surface antigens in serum

X58–62 Gender; Way of infection; Drinking history; Duration of the disease; Hepatitis viruses
X67, X69 Age; Medication history

X1601 X′16
X1801 X′18
X1802

∫
X18

Antiviral therapy was used to treat HBeAg positive chronic hepatitis B. Antiviral therapy can be
divided into nucleotide or nucleoside analogue therapy and interferon therapy. However, if the patient
is young and the ALT value is very high (X18 state is more than 6), the doctor will usually observe
the patient for 3 to 6 months. With a probability of 1.1% to 9%, the patient will develop antibodies to
eliminate the virus and no treatment is needed. This type of treatment that requires time for continuous
observation is difficult to describe in previous diagnostic models. And after introducing the X′n and
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∫
Xn, we can clearly express this tendency. After observation, the patient did not spontaneously

develop HBeAg seroconversion, and the doctor would take antiviral treatment to the patient. At the
same time, after introducing the X′n and

∫
Xn, it is convenient to express the drug resistance process in

the treatment process, to find out the drug resistance as soon as possible and replace the treatment plan.
We found that in the process of causal reasoning, the diagnostic reasoning graph and the treatment
reasoning graph have a certain symmetry.

4. Verification Experiments

In order to verify the effectiveness of the diagnosis and treatment system, and demonstrate the
calculation details of diagnostic reasoning algorithm, we collected clinical data from patients with
chronic hepatitis B. In the validation experiment, two typical cases were used as diagnostic evidence.

4.1. Verification Experiment: Case 1

In DUCG, Ej denotes the evidence indexed by j, in which the j is a serial number of positive
integers. Note that E = ∏j Ej can be divided as two parts: E = E′E′′, in which E′ is called the abnormal
evidence, E′′ is called the normal evidence.

Suppose that the evidence E collected from a patient is:

E′1 = X10,2; E′2 = X12,2; E′3 = X16,6; E′4 = X18,6;

E′5 = X41,2; E′6 = X45,2; E′7 = X47,2; E′8 = X49,2;

E′9 = X50,2; E′10 = X52,2; E′11 = X58,2; E′12 = X59,2;

E′13 = X60,1; E′14 = X62,2; E′15 = X67,2;

E′16 = X1601,2; E′17 = X1801,2;

(4)

Other nonexistent X-type variables indicate that the patient is normal to the symptom, or the
related pathological features are not confirmed or determined.

The purpose of the simplification is to remove the invalid or impossible causalities and
irrelevant variables based on the evidence were given. In this way, the problem is more focused on,
and unnecessary details are removed. Of course, the computation scale is then reduced exponentially
without losing accuracy.

By applying the simplification rules to the DUCG-based diagnostic model, the irrelevant variables
in the DUCG are simplified and the meaningless causal functions are removed, so as to obtain the
simplified DUCG, as shown in Figure 5.

In order to better distinguish the states of X-type variables, ellipses of different colors is used to
indicate whether a symptom are normal or not: normal state 0 is represented in green; sky blue and
yellow municipal initiates state 1 and state 2; orange and red respectively indicate state 4 and state 6.
And state6. Any X-type variable without color in Figure 5 means an unconfirmed/unrecognizable
pathological feature. Please note that the green ellipse didn’t appear in this experiment, because
all normal variables were eliminated in the process of simplifications. The simplification process is
an essential step in DUCG diagnostic reasoning, and if some causal relationships lack evidentiary
support, they are filtered during the simplification process and are no longer placed within the scope
of the reasoning.

As we can see that Figure 5 contains all abnormal evidence, it is meaningful and explainable,
and can vividly show the user how the root cause(B1 in this example) influenced other evidence
through causal chains and led to the eventual observed symptoms.
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Figure 5. The simplified DUCG in Case 1.

In DCUG, assuming that only one B-type event can be true in one case. The DUCG can be
decomposed as a set of sub-DUCGs k, and the weight xik of sub-DUCG can be calculated based on E
of the sub-DUCG. Each decomposed sub-DUCG can be a further simplification. Only the sub-DUCGs
which can explain E′ are needed. And find the B-type variable of those sub-DUCGs, put them in a
hypothesis spaceSH . The member in SH called Hkj. If there is only one member in SH , the diagnosis
is done, because the exact result Hkj is found. The event outspread operations are first carried out
to generate the hypothesis space In DUCG, assuming that only one type of event can be true in one
case. The event outspread operations are first carried out to generate the hypothesis space the event
outspread operations are first carried out to generate the hypothesis space SHg . Limited by the length,
we only take E′6 and E′13 as examples. The event outspread expressions are as follows.

E′6 = X45,2 = F45,2;66B1,1 = A45,2;66B1,1

E′13 = X60,1 = F60,1;DD60

E′17 = X1801,2 = F1801,2;BB1,1

(5)

Thus, we have

E′ =
17

∏
i=1

E′i

=A10,2;B A12,2;B A16,6;B A18,6;B A41,2;B A45,2;66

A47,2;66 A49,2;66 A50,2;D A52,2;D A58,2;D A59,2;D

A60,1;D A62,2;D A67,2;D A1601,2;B A1801,2;B

(6)
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Then, we get Pr{E′} = 0.997288162. By ignoring all the A type events and weighing factors
(rn;i/rn) from the outspread expression of E′, we get the hypothesis space:

SH1 = {H1,1} = {B1,1}, (7)

where H1 indicates B1. Obviously, we have

H1,1E′ =B1,1 A10,2;B A12,2;B A16,6;B A18,6;B A41,2;B A45,2;66

A47,2;66 A49,2;66 A50,2;D A52,2;D A58,2;D A59,2;D

A60,1;D A62,2;D A67,2;D A1601,2;B A1801,2;B = E′
(8)

Thus, the approximate state probability of Hk,jSH1 conditioned on incomplete evidence E′ is

hS′
1,1 = Pr{H1,1E′}/Pr{E′} = 1. (9)

Because of the normal evidence E′′ = null in Figure 5, we have

Pr{E} = Pr{E′} = 0.997288162. (10)

Therefore, the modification factor between hS
k,j and hS′

k,j is 1, and the local state probability of
H1,1 is

hS
1,1 = hS′

1,1 = 1. (11)

It should be noted that Xn(t) is not directly equal to the result of t time test results, it is assigned a
different state depending on the detection result. Because in addition to some variables directly as a
numerical result, there are still some variables that cannot be directly described by numerical values.
Here are two examples. The status list of Jaundice(X50) as shown as Table 3. The status list of ALT(X18)
as shown as Table 4, and the “ULN” in Table 4 means “upper limit of normal”.

Similarly, with the above calculation, the probabilistic inference is performed in Figure 5. As we
can see that Figure 5 is meaningful because it can account for all the evidence observed. The abnormal
evidence E′ is outspread as E′.

Thus, we have
Pr{E} = Pr{E′} = 0.003945654, (12)

and H2,1 = B10,1 (H2 indicates B10) is determined as the only candidate hypothesis of Figure 5.
We proceed to perform reasoning calculation in Figure 5, with B1 being a candidate hypothesis,

and we get that Pr{E} = 0.0000234. The reasoning details are omitted for brevity.
Combining all the candidate hypotheses in the meaningful sub-DUCGs, a complete hypothesis

space is obtained.
SH = UgSHg = {B7,1, B10,1, B1,1}, g = 1, 2, 3. (13)

The root causes of the observed symptoms have been found without absence. After modification
by a weighting coefficient associated with the prior evidence probability in each sub-DUCG containing
the hypothesis Hk,j, the global state probabilities of Hk,j, SH , hs

k,j, k = 1, 2, 3, can be obtained as

hs
1,1 = 0.3458932, hs

2,1 = 0.1040686, hs
3,1 = 0.5500382. (14)

As a conclusion to this diagnostic case, these three hypotheses were identified as the possible
reasons of observed evidence. And each hypothesis was able to justify itself. The probability of
different states in turn indicate the possibility that the hypothesis is the root cause. B10,1 and B7,1

are considered more likely with larger state probabilities (0.5500382 for B10,1 and 0.3458932 for B7,1).
Being exactly consistent with the doctor’s conclusion, such a quantified result can provide physicians
with effective assistance in the differential diagnosis.
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4.2. Verification Experiment: Case 2

Now look at another verified calculation case. It is assumed that Case 1 will undergo further
clinical examination and collect more detailed medical history, while the original DUCG and
parameters remain unchanged. The evidence in case 1 after supplementing the relevant symptoms is
as follows.

E′1 = X10,2; E′2 = X12,2; E′3 = X16,4; E′4 = X18,2;

E′5 = X41,2; E′6 = X46,2; E′7 = X47,2; E′8 = X48,2;

E′9 = X50,2; E′10 = X52,2; E′11 = X58,2; E′12 = X59,2;

E′13 = X60,1; E′14 = X62,2; E′15 = X63,2;

E′16 = X1601,2; E′17 = X1801,2;

(15)

By applying the simplification rules to Figure 4, we get the simplified DUCG shown in Figure 6.
Note that the other two sub-DUCGs of B1 and B10 are both invalid and eliminated, for containing

no causal explanations to some abnormal evidence such as X49,1, X52,1, X55,1, X118,1, X150,1 and X154,2.
Therefore, Figure 6 becomes the only meaningful sub-DUCG in this situation. The hypothesis space
obtained is

SH = {H1,1} = B7,1, (16)

where H1 indicates B7. As we can see that in comparison to case 1, the more evidence observed,
the smaller the hypothesis space, and the more accurate the inference result.

In fact, the root cause of the symptoms can now be determined, even if no numerical calculation
is needed. Nevertheless, we complete the reasoning process in order to maintain the integrity: because
of H1,1E′ = E′, the approximate state probability can be obtained as

hs′
1,1 =

Pr{H1,1E′}
Pr{E′} = 1. (17)

Since the normal evidence E′′ = φ, the state probability of H1,1 is hs
1,1 = hs′

1,1 = 1 as expected.
In conclusion, the hypothesis B1,1 is uniquely determined as the root cause of the current

hepatitis B virus. This result is consistent with the clinical conclusions confirmed by doctors.
The causal reasoning process can be demonstrated graphically to the user, making the conclusions
and recommendations more convincing and reliable. For example, the reasoning results are shown
in case 1 prove that patients with chronic hepatitis B will have better treatment results with ADV
drugs in the case of LAM resistance: continuing to use LAM treatment will not achieve the desired
therapeutic effect. Therefore, drug selection is not only Related to the currently diagnosed disease.
Medication history also needs to be considered. Such a process of diagnostic reasoning not only
produces results but also explains why the disease was proposed and why the current treatment
options were chosen. Compared to its method, such probabilistic results can be explained to doctors
and patients, significantly promoting clinical decisions. Besides, the system can be used as a tool for
doctors to test patients’ questions and needs. Also, it can be used as an educational tool for medical
students by causally mapping and visualizing certain diseases.
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Figure 6. The simplified DUCG in Case 2.

5. Empirical Evaluations

To evaluate the performance of the duck-based intelligent diagnosis and treatment of hepatitis
B system, we randomly selected 120 cases of hepatitis B from the medical record database of Beijing
Ditan Hospital. Sixty cases were selected for diagnosis and testing of hepatitis B, and 90 cases were
selected for testing of treatment plan. The correct diagnosis was confirmed by doctors who are not
involved in the system development. In the process of clinical diagnosis, being able to diagnosis based
on incomplete information is very important for intelligent diagnosis methods. Therefore, part of the
available medical evidence was discarded and used for experiments with incomplete information.
Specifically, only part of the medical data is uploaded to the system, and there is no further test data.
We divided the data into two groups, and detected cases with complete information and cases with
incomplete information, and compared the diagnosis and treatment plan results with the confirmed
correct cases. The results are as shown in Table 6.

Remark 1. The reason why we select only 10 cases for each disease is because most diseases have less than
10 cases. If we increase the test cases for each disease, most of the increased cases would be for only a few
common diseases, which would improperly increase the precision, because the common diseases are easy to
diagnose. On the other hand, 10 cases have covered most knowledge points in the DUCG and the marginal
utility decreases greatly.

Remark 2. In the actual diagnosis process, there are cases where some of the test results are missing. For example,
due to financial constraints, patients did not apply for too expensive examinations. In order to simulate these
conditions in the real diagnosis process, part of the information in the case has been hidden randomly. The results
obtained are divided into two cases: complete medical information and incomplete medical information. Even in
the case of incomplete medical information, the correct rate of the system is still acceptable. This result proves the
robustness of the system to incomplete information.
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Table 6. The correct rate of diagnosis and treatment plan in DUCG-based system.

Incomplete Medical Information Complete Medical Information

Disease Tested Correct Precision Tested Correct Precision

HBeAg-positive chronic hepatitis B 10 9 90% 10 9 90%
HBeAg-negative chronic hepatitis B 10 8 80% 10 9 90%

Chronic hepatitis B virus carriers 10 6 60% 10 8 80%
Inactivity HBsAg carriers 4 2 50% 4 4 100%
Occult chronic hepatitis B 10 8 80% 10 9 90%

Compensated hepatitis B cirrhosis 6 4 66.60% 6 5 83.30%
Decompensated hepatitis B cirrhosis 10 8 80% 10 9 90%

Total 60 45 75.00% 60 53 88.3%

Treatment plan
IFN-3MIU 10 6 60% 10 9 90%
IFN-5MIU 10 7 70% 10 9 90%
PEG-135 10 6 60% 10 9 90%
PEG-180 10 8 80% 10 10 100%

LAM 10 9 90% 10 10 100%
ADV 10 8 80% 10 10 100%
ETV 10 10 100% 10 10 100%
LdT 10 7 70% 10 9 90%
TDF 10 8 80% 10 10 100%
Total 90 69 76.60% 90 86 95.50%

The results showed that the DUCG-based system correctly diagnosed 88.3% of disease with
complete information and the correct rate of the treatment plan was 95.5% with complete information.

In addition, 20 cases of non-hepatitis B were added to the test, and the system was able to
diagnose 100% of non-hepatitis B patients, proving that the correct rate of the DUCG-based system for
diagnosing hepatitis B disease could reach 100%. While the other methods have 74.37–98.75% correct
rate when diagnosing hepatitis [32]. The comparisons are as shown in Table 7.

As a result, the DUCG-based intelligent diagnosis and treatment of hepatitis B system show
shows high accuracy and excellent robustness. The DUCG-based method uses expressions with their
own causal semantic to construct models, so that the system has the advantage of being faithful to the
pathogenesis. Therefore, the conclusions obtained by the model are inherent and will not change with
the application environment. This characteristic ensures the high accuracy of system diagnosis.

In addition, the error results in the test were analysed in detail. Part of them are because of the
changing process of the disease samples, and the diagnosis given by the human doctors may be more
conservative. Another part of the error results is caused by the inaccuracy of the relevant parameters.
In this paper, the parameters in the system are given by domain experts, and may bring in some
subjective factors. This leads to deviations in some of the results. One possible solution may be design
a learning based parameter tuning method, to overcome the subjective bias in the parameters.

Table 7. Comparisons of DUCG and other methods.

Method Accuracy

PNN(10XFC) [33] 91.25%
LDFA-SVM [34] 96.77%

SVM+SA [35] 96.25%
MLP [32] 74.37%

3SVM [32] 98.75%
DUCG 100%
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Remark 3. The DUCG method is 100% correct. The data used is a sample of 80 cases, of which 60 cases
are diagnosed with hepatitis B disease and 20 cases are non-hepatitis B disease. The DUCG method correctly
diagnosed 60 cases of hepatitis B disease and ruled out another 20 cases, so the correct rate here is 100%.
Of course, this result is obtained from existing case samples, and some new and different cases are also in the
search process to test the diagnostic accuracy of the system under extreme conditions.

6. Conclusions and Future Work

In this study, we developed an intelligent diagnosis and treatment of hepatitis b system based
on Dung, which can support the diagnosis of hepatitis b in 7 diseases and give the best treatment
plan. This system includes diagnosis and treatment models, including 67 variables and 127 causal
arcs. The models use clinical data(such as signs, symptoms, examination results, environmental
factors, medical history, pathophysiological knowledge, and disease-related psychosocial; for causality
analysis. At the same time, a modular modeling scheme is used, which enables the causality diagram
to be divided into sub-graphs from multiple angles. As a result, large and complex system model are
allowed to be split, and the modeling process becomes simple.

The system experiment results show that the model has good accuracy and robustness.
This indicates that the system will play a role in clinical diagnosis. With the help of link reasoning and
weighted logic algorithms, the system can achieve high accuracy even if the information is incomplete.
In addition, the graphic representations can directly show the pathological mechanisms and express the
interpretable reasoning processes. And through the graphical representation, it is also observed that
the graph of the diagnostic process and the graph of the treatment process are symmetrical. This makes
the diagnosis conclusions and treatment suggestions given by the system easier to accept, and helps
doctors to show more objective clinical decisions to patients. The above characteristics show that this
method has extensive medical significance, especially for complicated diagnosis and treatment of
hepatitis B. The contributions of this paper can be concluded as:

1. Introducing the expression method of the trend brought by the inspection data over time in
the system;

2. Providing the treatment plan after the diagnosis of the disease;
3. Providing a new treatment plan immediately after the patient develops resistance to a certain drug;
4. Giving an explanation of the diagnosis and treatment plan.

Of course, the current system still has certain limitations. The methods discussed in the article are
mainly for the diagnosis and treatment of hepatitis B. There is not much discussion about treatment
options other than interferon. In addition, the diagnosis methods used in this article are more based on
the doctor’s knowledge accumulation, and there is a lack of coping methods for the existing intractable
diseases that cannot be diagnosed.

As future work, we will improve the current system by integrating other diseases that cause
hepatitis B. Also, the model will continue to optimize the treatment plan and try to predict the response.
In addition, experiments on clinical data will continue, and test data samples will be enriched to further
evaluate and improve the accuracy of the model.

Author Contributions: Conceptualization, Q.Z. and N.D.; methodology, Q.Z.; software, Q.Z. and N.D.;
validation, N.D.; formal analysis, Q.Z. and N.D.; data curation, N.D.; writing—original draft preparation, N.D.;
writing—review and editing, Q.Z.; funding acquisition, Q.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China under Grant
61402266, Grant 61273330 and Grant 71671103.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to
publish the results.



Symmetry 2020, 12, 1690 16 of 20

Abbreviations

The following abbreviations are used in this manuscript.

DUCG Dynamic Uncertain Causality Graph
HBV The hepatitis B virus
HBsAg The hepatitis B surface
HBcAg The hepatitis B core antigen
anti-HBs antibodies to the hepatitis B surface antigen
anti-HBc antibodies to the hepatitis B core antigen
anti-HBe antibodies to the e antigen
ALT alanine aminotransferase
AST aspartate transaminase
IFN Interferon alpha-2a
PEG PEGylated interferon alpha-2a
LAM Lamivudine
ADV Adefovir Dipivoxil
ETV Entecavir
LdT Telbivudine
TDF Tenofovir Disoprox

Appendix A. Dynamic Uncertain Causality Graph

DUCG is a probabilistic graphical model that explicitly represents uncertain causalities among
variables and performs probabilistic reasoning [24]. It is a directed graph consisting of a number of
nodes (variables) and directed arcs (causalities). The main features of DUCG are:

1. able to focuses on the compact representation of complex uncertain causalities;
2. able to perform exact reasoning in the case of the incomplete knowledge representation;
3. able to simplify the graphical knowledge base conditional on observations before numerical

calculations, so that the scale and complexity of problem can be reduced exponentially; and
4. much less reliant on the parameter accuracy.

An illustrative example of DUCG is shown in Figure A1.

G6 D7

X4

B1

X5

X7B2

B3

Figure A1. The original DUCG of the intruder detecting system.

The corresponding nodes(variables) are divided into classes as follows.
B-type variables represent the root cause variables, drawn as squares, and can only be root causes

without input. Each B-type event must have a prior probability, Bi is a basic event variable indexed by
i. In Figure A1, B1 represents rat, B2 represents intruder, and B3 represents earthquake.

X-type variables drawn as cycles represent the effect or consequence variables, must have at
least one input and arbitrarily output. Xi is an X-type event variable indexed by i. In Figure A1,
X4 represents infra-red, X5 represents vibration, both X4 and X5 are effect variables, e.g., X7 represents
alarm, and is a consequence variable.
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D-type variables are the default cause variables without input, drawn as pentagons. When a
X-type variable have no reason to explain, a D-type variable are associated with the X-type variable,
representing unknown causes of the X-type variable. A D-type variable can only be connected to one
X-type variable, e.g., D7 represents the default cause event variable of X7.

G-type variables are virtual logic gate variables. The state of G-type variable depends on the
logical relationship among its parent variables (AND, OR, NOT, etc.). Gi is a gate event variable
indexed by i. In Figure A1, G6 represents the logic gate event variable specifying the logic among X4

and X5 to X7, where the G-type variables are drawn as gates and the details of Gi are specified in the
LGSi (Logic Gate Specification i).

The A-type event encoded in a directed arc is a virtual event defined in DUCG to represent the
random causality between the parent and child. The causal events A connect the parent variables
and child variables. Ank;ij represents the effect of state j of parent variable Vi (V ∈ {B, X, D, G}) on
state k of child variable Xn, given that Vij occurs, if Ank;ij occurs, then Xnk occurs; otherwise, Xnk does
not occur.

In the event Ank;ij, “;” is used to separate the child variable (subscripts before) and the parent
variable (subscripts after), “,” is used to separate the variable index (subscripts before) and the
variable state (subscripts after), and sometimes “,” can be ignored. Usually, 0 indexes the normal state,
for example, in Figure A1, the definitions of {B, X, D}-type events are follows.

B1,1 ≡ {Rat appears}
B1,0 ≡ {No rat}
B2,1 ≡ {Intruder appears}
B2,0 ≡ {No intruder}
B3,1 ≡ {Earthquake occurs}
B3,0 ≡ {No earthquake}
X4,0 ≡ {No in f rared}
X4,1 ≡ {Slight in f rared}
X4,2 ≡ {Strong in f rared}

X5,0 ≡ {No vibration}
X5,1 ≡ {Slight vibration}
X5,2 ≡ {Strong vibration}
X7,1 ≡ {Alarm on}
X7,0 ≡ {No alarm}

D7 ≡ {Unknown cause o f alarm on}.

The probability of independent random event Ank;ij is ank;ij ≡ Pr{Ank;ij}. Ank;ij is a member of
the matrix An;i.

Define Fn;i ≡ (rn;i/rn)An;i.
Fn;i represents the red directed arcs among variables in DUCG. It is a An;i with a weight coefficient.

rn;i > 0, and it represents the strength of the causal relationship between the parent variable Vi and
child variable Xn, rn ≡ ∑i rn;i. Fn;i is actually an event matrix with Fnk;ij as its members.

Define fnk;ij = Pr{Fnk;ij} = (rn;i/rn)Pr{Ank;ij} = (rn;i/rn)ank;ij.
Normal state 0 does not affect any abnormal state and it can not be caused by any abnormal

state. It means that, in DUCG, the knowledge representation and casual inference can be done without
specifying the cause or result of Xn;0.

Probability calculation is an important part of DUCG. Posterior probability calculation of DUCG
needs to expand the event expression. During the expanding, the logic operations such as AND,
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OR, XOR, absorption, and exclusion are used to simplify the expressions. The algorithm to expand
more than one event ANDs (multiplied) together is presented in [36]. The formula of basic event
expression is as follows.

In DUCG, assume Vi, V ∈ {B, X, G, D}, are the parent variables of Xn, the expression formula of
event Xnk is

Xnk = ∑
i

Fnk;iVi

= ∑
i
(rn;i/rn) Ank;iVi = ∑

i;j
(rn;i/rn) Ank;ijVij,

(A1)

where j expresses the state of Vi, rn;i represents the causal relationship intensity between Xn and Vi,
and rn = ∑i rn;i. Ank;ij is a random event that Vij affects Xnk.

Equation (A1) can be applied repeatedly, until only B-type or D-type variables remaining.
Therefore, this logical expansion can be for any X variables. In DUCG, the lower case letters represent
the probabilities of the corresponding upper case letter events. Replace the upper case letters with the
lower case letters in Equation (A1), we have

Xnk = ∑
i

fnk;ivi

= ∑
i
(rn;i/rn) ank;ivi = ∑

i;j
(rn;i/rn) ank;ijvij.

(A2)

In addition to Figure A1, the BX-type variable is used in the clinical diagnosis DUCG, which is a
special X-type variable and its state is to be diagnosed just like B-type events.
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