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Abstract: Kim and Kim (Russ. J. Math. Phys. 26, 2019, 40-49) introduced polyexponential function
as an inverse to the polylogarithm function and by this, constructed a new type poly-Bernoulli
polynomials. Recently, by using the polyexponential function, a number of generalizations of
some polynomials and numbers have been presented and investigated. Motivated by these
researches, in this paper, multi-poly-Euler polynomials are considered utilizing the degenerate
multiple polyexponential functions and then, their properties and relations are investigated and
studied. That the type 2 degenerate multi-poly-Euler polynomials equal a linear combination of
the degenerate Euler polynomials of higher order and the degenerate Stirling numbers of the first
kind is proved. Moreover, an addition formula and a derivative formula are derived. Furthermore,
in a special case, a correlation between the type 2 degenerate multi-poly-Euler polynomials and
degenerate Whitney numbers is shown.

Keywords: Euler polynomials; degenerate multiple polyexponential function; degenerate
multi-poly-Euler polynomials; degenerate Stirling numbers; degenerate Whitney numbers

1. Introduction and Preliminaries

Special functions have recently been applied in numerous fields of applied and pure mathematics
besides in such other disciplines as physics, economics, statistics, probability theory, biology and
engineering, cf. [1–26], and see also the references cited therein. One of the most important families of
special functions is the family of special polynomials, cf. [1,3–8,10,21,23–26]. Intense research activities
in such an area as the family of special polynomials are principally motivated by their importance in
both pure and applied mathematics and other disciplines. The degenerate forms of special polynomials
are firstly considered by Leonard Carlitz [2] by defining the degenerate forms of the Bernoulli, Stirling,
and Eulerian numbers. Despite there being more than 60 years old, these studies are still a hot topic
and today enveloped in an aura of mystery within the scientific community, cf. [6–8,14–21,23,25,26].
For instance, Duran and Acikgoz [6] considered the degenerate truncated exponential polynomials and
gave their several properties. After that, degenerate truncated forms of various special polynomials
including Genocchi, Bell, Bernstein, Fubini, Euler, and Bernoulli polynomials were introduced via the
degenerate truncated exponential polynomials and their various properties and relationships were
derived in [6]. Kim and Kim [15] considered degenerate poly-Bernoulli polynomials by means of the
degenerate polylogarithm function and investigated several properties and relations. Kim et al. [16]
defined a new type of the degenerate poly-Genocchi polynomials and numbers constructed from the
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modified polyexponential function and the degenerate unipoly Genocchi polynomials and derived
several combinatorial identities and some explicit expressions. Kim [17] introduced a degenerate form
of the Stirling polynomials of the second kind and proved some novel relations and identities for these
polynomials. Kim and Kim [18] considered a new type degenerate Bell polynomials via degenerate
polyexponential functions and then gave some of their properties. Kim et al. [20] introduced degenerate
multiple polyexponential functions whereby the degenerate multi-poly-Genocchi polynomials are
considered and multifarious explicit expressions and some properties were investigated. Lee et al. [25]
studied a new type of type 2 poly-Euler polynomials and its degenerate form by utilizing the modified
polyexponential function.

In this paper, we introduce a novel class of degenerate multi-poly-Euler polynomials and numbers
utilizing the degenerate multi-polyexponential function and studied their main explicit relations and
identities. This work is organized as follows:

• Section 2 includes several known definitions and notations.
• In Section 3, we consider a novel class of degenerate multi-poly-Euler polynomials and numbers

and investigate their diverse properties and relations.
• The last section outlines finding gains and the conclusions in this work and mentions

recommendations for future studies.

2. Definitions

Let Z denotes the set of all integers, R denotes the set of all real numbers and C denotes the set of
all complex numbers. Let λ ∈ R/ {0} (or C/{0}). The degenerate exponential function ex

λ(t) is defined
as follows

ex
λ(t) := (1 + λt)

x
λ =

∞

∑
n=0

(x)n,λ
tn

n!
, (1)

where (x)0,λ = 1 and (x)n,λ = x(x− λ) · · · (x− (n− 1)λ) for n ≥ 1, cf. [1,2,6–8,14–25] and see also
the references cited therein.

It is easily observed that limλ→0 ex
λ(t) = ext. Notice that e1

λ(t) := eλ(t).
The usual Bernoulli Bn (x) and Euler En (x) polynomials (cf. [3]), and the degenerate Bernoulli

Bn,λ (x) and Euler En,λ (x) (cf. [1,6,8,14–21,23,25,26]) polynomials are defined by the following
generating functions:

∞

∑
n=0

Bn (x)
tn

n!
=

t
et − 1

ext and
∞

∑
n=0

Bn,λ (x)
tn

n!
=

t
eλ (t)− 1

ex
λ (t) (2)

and
∞

∑
n=0

En (x)
tn

n!
=

2
et + 1

ext and
∞

∑
n=0

En,λ (x)
tn

n!
=

2
eλ (t) + 1

ex
λ (t) . (3)

The polyexponential function Eik(x) is defined by (cf. [13])

Eik(x) =
∞

∑
n=1

xn

(n− 1)!nk , (k ∈ Z). (4)

For k = 1 in (4), it yields Ei1(x) = ex − 1.
The modified degenerate polyexponential function Eik,λ(x) is defined by (cf. [14])

Eik,λ(x) =
∞

∑
n=1

(1)n,λ

(n− 1)!nk xn. (5)

It is noted that for k = 1, Ei1,λ(x) = eλ(x)− 1.
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Let k ∈ Z and λ ∈ R. The degenerate version of the logarithm function logλ(1 + t) given by
(cf. [15])

logλ(1 + t) =
∞

∑
n=1

λn−1 (1)n,1/λ

tn

n!
.

which is also the inverse function of the degenerate exponential function eλ(t) as shown below

eλ(logλ(1 + t)) = logλ (eλ(1 + t)) = 1 + t.

In [25], the type 2 poly-Euler polynomials E(k)
n (x) and the type 2 degenerate poly-Euler

polynomials E(k)
n,λ(x) are introduced using the following generating functions to be

∞

∑
n=0

E(k)
n (x)

tn

n!
=

Eik (log(1 + 2t))
t(et + 1)

ext and
∞

∑
n=0

E(k)
n,λ(x)

tn

n!
=

Eik,λ (log(1 + 2t))
t(eλ(t) + 1)

ex
λ(t). (6)

Multifarious relations and identities for these polynomials are investigated intensely in [25].
The degenerate Stirling numbers of the first kind (cf. [15,16]) and second kind (cf. [1,6,8,15–21,23,25,26])

are defined, respectively, by

∞

∑
n=k

S1,λ(n, k)
tn

n!
=

(logλ(1 + t))k

k!
(k ≥ 0) (7)

and
∞

∑
n=k

S2,λ(n, k)
tn

n!
=

(eλ(t)− 1)k

k!
(k ≥ 0). (8)

Noting here that as λ → 0, the degenerate Stirling numbers of the first kind S1,λ(n, k) and the
second kind S2,λ(n, k) reduce to the usual Stirling numbers of the first kind S1(n, k) and the second
kind S2(n, k) as follows (cf. [1,6,8,15–21,23,25,26])

∞

∑
n=k

S1(n, k)
tn

n!
=

(log(1 + t))k

k!
(k ≥ 0),

and
∞

∑
n=k

S2(n, k)
tn

n!
=

(et − 1)k

k!
(k ≥ 0).

3. Type 2 Degenerate Multi-Poly-Euler Polynomials

Let k1, k2, · · · , kr ∈ Z. The degenerate multi-polyexponential function is given by, (cf. [20])

Eik1,k2,··· ,kr ,λ(x) = ∑
0<n1<n2<···<nr

(1)n1,λ · · · (1)nr ,λxnr

(n1 − 1)! · · · (nr − 1)!nk1
1 · · · n

kr
r

, (9)

where the sum is over all integers n1, n2, · · · , nr satisfying 0 < n1 < n2 < · · · < nr. By means of this
function, Kim et al. [20] defined and investigated the degenerate multi-poly-Genocchi polynomials
g(k1,k2,···kr)

n,λ (x) given by the following generating function to be

∞

∑
n=0

g(k1,k2,···kr)
n,λ (x)

tn

n!
=

r!Eik1,k2,··· ,kr ,λ(logλ(1 + t))
(eλ(t) + 1)r ex

λ(t). (10)

Motivated by the definition of degenerate multi-poly-Genocchi polynomials, utilizing the
degenerate multi-polyexponential function (9), we consider the following definition.
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Definition 1. Let k ∈ Z. Type 2 degenerate multi-poly-Euler polynomials E(k1,k2,··· ,kr)
n,λ (x) are defined by the

following Taylor expansion about t = 0:

∞

∑
n=0

E
(k1,k2,··· ,kr)
n,λ (x)

tn

n!
=

Eik1,k2,··· ,kr ,λ
(
logλ(1 + 2t)

)
tr(eλ(t) + 1)r ex

λ(t). (11)

In the case when x = 0 in (11), the type 2 degenerate multi-poly-Euler polynomials E(k1,k2,··· ,kr)
n,λ (x)

reduce to the corresponding numbers, that is the type 2 degenerate multi-poly-Euler numbers denoted
by E

(k1,k2,··· ,kr)
n,λ .

Remark 1. Letting λ→ 0, the type 2 degenerate multi-poly-Euler polynomials E(k1,k2,··· ,kr)
n,λ (x) reduce to a new

type multi-poly-Euler polynomials which we denote E(k1,k2,··· ,kr)
n (x), which are different from the polynomials

E(k1,k2,··· ,kr)
n (x) introduced by Jolany et al. [10], as follows:

∞

∑
n=0

E(k1,k2,··· ,kr)
n (x)

tn

n!
=

Eik1,k2,··· ,kr (log(1 + 2t))
tr(et + 1)r ext.

Remark 2. In the case when r = 1, the type 2 degenerate multi-poly-Euler polynomials reduce to a new type
degenerate poly-Euler polynomials that we denote E(k)

n,λ(x), which are different from the polynomials E(k)
n,λ(x)

in (6) defined by Lee et al. [25], as follows:

∞

∑
n=0

E
(k)
n,λ(x)

tn

n!
=

Eik,λ
(
logλ(1 + 2t)

)
t(eλ(t) + 1)

ex
λ(t). (12)

Also, when x = 0 in (12), these new type degenerate poly-Euler polynomials E
(k)
n,λ(x) reduce to the

corresponding numbers E(k)
n,λ, that is, E(k)

n,λ(0) := E
(k)
n,λ.

Now, we investigate some properties of the type 2 degenerate multi-poly-Euler polynomials.

Theorem 1. The following relation

E
(k1,k2,··· ,kr)
n,λ (x) =

n

∑
m=0

(
n
m

)
E
(k1,k2,··· ,kr)
n−m,λ (x)m,λ (13)

holds true for n ≥ 0.

Proof. From Definition 1, we observe that

∞

∑
n=0

E
(k1,k2,··· ,kr)
n,λ (x)

tn

n!
=

Eik1,k2,··· ,kr ,λ
(
logλ(1 + 2t)

)
tr(eλ(t) + 1)r ex

λ(t)

=
∞

∑
n=0

E
(k1,k2,··· ,kr)
n,λ

tn

n!

∞

∑
m=0

(x)m,λ
tm

m!

=
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
E
(k1,k2,···kr)
n−m,λ (x)m,λ

)
tn

n!
,

which gives the desired result (13).
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Remark 3. When λ approaches to 0, we get the following known relation for the multi-poly-Euler polynomials
(cf. [4,10])

E(k1,k2,··· ,kr)
n (x) =

n

∑
m=0

(
n
m

)
E(k1,k2,··· ,kr)

n−m xm.

The degenerate Euler polynomials of higher order are given by the following Maclaurin series:

∞

∑
n=0

E(r)
n (x; λ)

tn

n!
=

(
2

eλ(t) + 1

)r
ex

λ(t),

cf. [1,6,25], and also see the references cited therein. We also notice that when r = 1, the degenerate
Euler polynomials of higher order reduce to the degenerate Euler polynomials in (3), namely,
E(1)

n (x; λ) := En,λ(x).
A summation formula for the type 2 degenerate multi-poly-Euler polynomials is stated in the

following theorem.

Theorem 2. For k1, k2, · · · kr ∈ Z, and n, r ∈ N with n ≥ r, we have

E
(k1,k2,··· ,kr)
n,λ (x) =

n+r

∑
m=0

n!E(r)
n+r−m(x; λ)

(n + r−m)!m! ∑
0<n1<n2<···<nr

nr!(1)n1,λ · · · (1)nr ,λS1,λ(n + r−m, nr)

(n1 − 1)! · · · (nr − 1)!nk1
1 · · · n

kr−1
r−1 nkr

r
2m−r.

(14)

Proof. From Definition 1 and (9), we see that

∞

∑
n=0

E
(k1,k2,··· ,kr)
n,λ (x)

tn

n!
=

ex
λ(t)

tr(eλ(t) + 1)r ∑
0<n1<n2<···<nr

(1)n1,λ · · · (1)nr ,λ(logλ(1 + 2t))nr

(n1 − 1)! · · · (nr − 1)!nk1
1 · · · n

kr
r

=
ex

λ(t)
tr(eλ(t) + 1)r ∑

0<n1<n2<···<nr

(1)n1,λ · · · (1)nr ,λnr!

(n1 − 1)! · · · (nr − 1)!nk1
1 · · · n

kr−1
r−1 nkr

r

∞

∑
m=nr

S1,λ(m, nr)2m tm

m!

=
1

2rtr

(
2rex

λ(t)
(eλ(t)− 1)r

) ∞

∑
m=nr

(
∑

0<n1<n2<···<nr

(1)n1,λ · · · (1)nr ,λS1,λ(m, nr)nr!

(n1 − 1)! · · · (nr − 1)!nk1
1 · · · n

kr−1
r−1 nkr

r
2m

)
tm

m!

=
1

2rtr

∞

∑
l=0

E(r)
n (x; λ)

tl

l!

∞

∑
m=nr

(
∑

0<n1<n2<···<nr

(1)n1,λ · · · (1)nr ,λS1,λ(m, nr)nr!

(n1 − 1)! · · · (nr − 1)!nk1
1 · · · n

kr−1
r−1 nkr

r
2m

)
tm

m!

=
∞

∑
n=0

n

∑
m=0

∑
0<n1<n2<···<nr

(n
m)nr!(1)n1,λ · · · (1)nr ,λE(r)

n−m(x; λ)S1,λ(n−m, nr)

(n1 − 1)! · · · (nr − 1)!nk1
1 · · · n

kr−1
r−1 nkr

r
2m−r tn−r

n!
,

which means the asserted result (14).

Remark 4. When r = 1, we have

E
(k)
n,λ(x) = n!

n+1

∑
m=0

∞

∑
l=1

(1)l,λ

(n + 1−m)!m!
2m−1

lk−1 En+1−m,λ(x)S1,λ(n + 1−m, l),

which is a new relation including a new type degenerate poly-Euler polynomials (12), degenerate Euler
polynomials (3), and degenerate Stirling numbers of the first kind (7).

An addition formula for the type 2 degenerate multi-poly-Euler polynomials is given by the
following theorem.
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Theorem 3. The following addition formula

E
(k1,k2,··· ,kr)
n,λ (x + y) =

n

∑
m=0

(
n
m

)
(y)m,λE

(k1,k2,··· ,kr)
n−m,λ (x) (15)

is valid for k1, k2, · · · , kr ∈ Z and n ≥ 0.

Proof. Given Definition 1, we see that

∞

∑
n=0

E
(k1,k2,··· ,kr)
n,λ (x + y)

tn

n!
=

Eik1,k2,··· ,kr ,λ
(
logλ(1 + 2t)

)
tr(eλ(t) + 1)r ex+y

λ (t)

=
∞

∑
n=0

E
(k1,k2,··· ,kr)
n,λ (x)

tn

n!

∞

∑
m=0

(y)m,λ
tm

m!

=
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
(y)m,λE

(k1,k2,··· ,kr)
n−m,λ (x)

)
tn

n!
,

which implies the claimed result (15).

The derivative property of the type 2 degenerate multi-poly-Euler polynomials is provided below.

Theorem 4. The following relation

d
dx

E
(k1,k2,··· ,kr)
n,λ (x) = n!

∞

∑
l=1

E
(k1,k2,··· ,kr)
n−l,λ (x)

(−1)l+1

(n− l)!l
λl−1 (16)

is valid for k1, k2, · · · , kr ∈ Z and n ≥ 0.

Proof. By Definition 1, we observe that

∞

∑
n=0

d
dx

E
(k1,k2,··· ,kr)
n,λ (x)

tn

n!
=

Eik1,k2,··· ,kr ,λ
(
logλ(1 + 2t)

)
tr(eλ(t) + 1)r

d
dx

ex
λ (t)

=
∞

∑
n=0

E
(k1,k2,··· ,kr)
n,λ (x)

tn

n!
1
λ

ln (1 + λt)

=
∞

∑
n=0

E
(k1,k2,··· ,kr)
n,λ (x)

tn

n!

∞

∑
l=1

(−1)l+1

l
λl−1tl

=
∞

∑
n=0

∞

∑
l=1

E
(k1,k2,··· ,kr)
n,λ (x)

(−1)l+1

l
λl−1 tn+l

n!
,

which provides the asserted result (16).

Remark 5. Upon setting r = 1, we acquire

d
dx

E
(k)
n,λ(x) = n!

∞

∑
l=1

E
(k)
n−l,λ(x)

(−1)l+1

(n− l)!l
λl−1,

which is the derivative formula for the new type degenerate poly-Euler polynomials (12).

Remark 6. Taking r = k = 1, we attain

d
dx

En,λ(x) = n!
∞

∑
l=1

En−l,λ(x)
(−1)l+1

(n− l)!l
λl−1,
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which is the derivative formula for the degenerate Euler polynomials, cf. [6].

Theorem 5. The following correlation

E
(k1,k2,··· ,kr)
n,λ (x) =

n

∑
m=0

m

∑
l=0

(
n
m

)
(x)lS2,λ (m, l)E(k1,k2,··· ,kr)

n−m,λ . (17)

is valid for k1, k2, · · · , kr ∈ Z and n ≥ 0.

Proof. By means of Definition 1, we attain that

∞

∑
n=0

E
(k1,k2,··· ,kr)
n,λ (x)

tn

n!
=

Eik1,k2,··· ,kr ,λ
(
logλ(1 + 2t)

)
tr(eλ(t) + 1)r ex

λ(t)

=
Eik1,k2,··· ,kr ,λ

(
logλ(1 + 2t)

)
tr(eλ(t) + 1)r (eλ(t)− 1 + 1)x

=
Eik1,k2,··· ,kr ,λ

(
logλ(1 + 2t)

)
tr(eλ(t) + 1)r

∞

∑
l=0

(
x
l

)
(eλ(t)− 1)l

=
∞

∑
n=0

E
(k1,k2,··· ,kr)
n,λ

tn

n!

∞

∑
l=0

(x)l

∞

∑
m=l

S2,λ (m, l)
tm

m!

=
∞

∑
n=0

(
n

∑
m=0

m

∑
l=0

(
n
m

)
(x)lS2,λ (m, l)E(k1,k2,··· ,kr)

n−m,λ

)
tn

n!
,

where the notation (x)l is a falling factorial and is defined by (x)0 = 1 and (x)n = x(x−1) · · · (x− (n−1))
for n ≥ 1, cf. [1,2,6–8,14–22,25]. Therefore, we arrive at the asserted Formula (17).

Remark 7. In the case when r = 1, we acquire

E
(k)
n,λ(x) =

n

∑
m=0

m

∑
l=0

(
n
m

)
(x)lS2,λ (m, l)E(k)

n−m,λ,

which is a relation for the new type degenerate poly-Euler polynomials (12) and the degenerate Stirling numbers
of the second kind (8).

Kim [17] introduced the degenerate Whitney numbers which are defined by the generating
function to be

(em
λ (t)− 1)k

mkk!
eα

λ(t) =
∞

∑
n=k

Wm,α(n, k |λ )
tn

n!
, (k ≥ 0).

Remark 8. In the special case m = 1 and α = 0, the degenerate Whitney numbers Wm,α(n, k |λ ) reduce to the
degenerate Stirling numbers S2,λ (n, k) of the second kind in (8), that is, W1,0(n, k |λ ) := S2,λ (n, k).

A correlation including both the type 2 degenerate multi-poly-Euler numbers and polynomials
and the degenerate Whitney numbers.

Theorem 6. For k1, k2, · · · kr ∈ Z and n ≥ 0, we have

E
(k1,k2,··· ,kr)
n,λ (xu + α) =

n

∑
m=0

m

∑
l=0

(
n
m

)
ul(x)lWu,α(m, l |λ )E

(k1,k2,··· ,kr)
n−m,λ . (18)
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Proof. Utilizing Definition 1, we attain that

∞

∑
n=0

E
(k1,k2,··· ,kr)
n,λ (xu + α)

tn

n!
=

Eik1,k2,··· ,kr ,λ
(
logλ(1 + 2t)

)
tr(eλ(t) + 1)r eα

λ(t)e
xu
λ (t)

=
Eik1,k2,··· ,kr ,λ

(
logλ(1 + 2t)

)
tr(eλ(t) + 1)r eα

λ(t) (e
u
λ(t)− 1 + 1)x

=
Eik1,k2,··· ,kr ,λ

(
logλ(1 + 2t)

)
tr(eλ(t) + 1)r eα

λ(t)
∞

∑
l=0

(
x
l

)
(eu

λ(t)− 1)l

=
Eik1,k2,··· ,kr ,λ

(
logλ(1 + 2t)

)
tr(eλ(t) + 1)r

∞

∑
l=0

ul(x)l

(
eu

λ(t)− 1
)l

l!ul eα
λ(t)

=
Eik1,k2,··· ,kr ,λ

(
logλ(1 + 2t)

)
tr(eλ(t) + 1)r

∞

∑
l=0

ul(x)l

(
eu

λ(t)− 1
)l

l!ul eα
λ(t)

=
∞

∑
n=0

E
(k1,k2,··· ,kr)
n,λ

tn

n!

∞

∑
n=0

n

∑
l=0

ul(x)lWu,α(n, l |λ )
tn

n!

=
∞

∑
n=0

(
n

∑
m=0

m

∑
l=0

(
n
m

)
ul(x)lWu,α(m, l |λ )E

(k1,k2,··· ,kr)
n−m,λ

)
tn

n!
,

which provides the claimed Formula (18).

Remark 9. Upon setting r = 1, we get

E
(k)
n,λ(xu + α) =

n

∑
m=0

m

∑
l=0

(
n
m

)
ul(x)lWu,α(m, l |λ )E

(k)
n−m,λ,

which is a relation between the degenerate Whitney numbers and the new type degenerate poly-Euler
polynomials (12).

4. Conclusions

As is known, for k ∈ Z, the polylogarithm function is defined by (cf. [4,10])

Lik(x) = ∑
0<n

xn

nk .

It is easily seen that Li1 (x) = − log (1− x).
For k1, k2, · · · kr ∈ Z, the multiple polylogarithm function [4,10,19] is given by

Lik1,k2,··· ,kr (x) = ∑
0<n1<n2<···<nr

xnr

nk1
1 nk2

2 · · · n
kr
r

,

where the sum is over all integers n1, n2, · · · , nr satisfying 0 < n1 < n2 < · · · < nr.

By means of the multiple polylogarithm function, the degenerate multi-poly-Bernoulli
polynomials are introduced (cf. [4,10,19]) as follows

∞

∑
n=0

β
(k1,k2,··· ,kr)
n,λ (x)

tn

n!
=

r!Lik1,k2,··· ,kr

(
1− e−t)

(eλ(t)− 1)r ex
λ(t). (19)

Then, several properties for those polynomials are investigated.
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A slightly different version of the polylogarithm function, the polyexponential function Eik(x) is
defined as an inverse to polylogarithm function as follows (cf. [13])

Eik(x) =
∞

∑
n=1

xn

(n− 1)!nk , (k ∈ Z).

For k = 1 in (4), it yields Ei1(x) = ex − 1.
The modified degenerate polyexponential function Eik,λ(x) is defined by (cf. [14])

Eik,λ(x) =
∞

∑
n=1

(1)n,λ

(n− 1)!nk xn.

It is noted that for k = 1, Ei1,λ(x) = eλ(x)− 1.
Let k1, k2, · · · , kr ∈ Z. The degenerate multi-polyexponential function is given by, (cf. [20])

Eik1,k2,··· ,kr ,λ(x) = ∑
0<n1<n2<···<nr

(1)n1,λ · · · (1)nr ,λxnr

(n1 − 1)! · · · (nr − 1)!nk1
1 · · · n

kr
r

,

where the sum is over all integers n1, n2, · · · , nr satisfying 0 < n1 < n2 < · · · < nr. By means of this
function, Kim et al. [20] defined and investigated the degenerate multi-poly-Genocchi polynomials
g(k1,k2,···kr)

n,λ (x) given by the following generating function to be

∞

∑
n=0

g(k1,k2,···kr)
n,λ (x)

tn

n!
=

r!Eik1,k2,··· ,kr ,λ(logλ(1 + t))
(eλ(t) + 1)r ex

λ(t).

Motivated and inspired by the definitions of the degenerate multi-poly-Bernoulli polynomials
and the degenerate multi-poly-Genocchi polynomials introduced by Kim et al. [20], in this paper, we
have introduced a new generating function for the degenerate multi-poly-Euler polynomials, called the
type 2 degenerate multi-poly-Euler polynomials, by means of the degenerate multi-polyexponential
function as follows:

∞

∑
n=0

E
(k1,k2,··· ,kr)
n,λ (x)

tn

n!
=

Eik1,k2,··· ,kr ,λ
(
logλ(1 + 2t)

)
tr(eλ(t) + 1)r ex

λ(t).

Then, we have derived some useful relations and properties. In a special case, we have
investigated a correlation including the type 2 degenerate multi-poly-Euler polynomials and numbers,
and degenerate Whitney numbers. We have also analyzed several special circumstances of the results
derived in this paper.

In the plans, we will continue to study degenerate versions of certain special polynomials and
numbers and their applications to probability, physics and engineering in addition to mathematics.
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