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Abstract: This work is devoted to the modeling and investigation of the architecture design for the
delayed recurrent neural network, based on the delayed differential equations. The usage of discrete
and distributed delays makes it possible to model the calculation of the next states using internal
memory, which corresponds to the artificial recurrent neural network architecture used in the field
of deep learning. The problem of exponential stability of the models of recurrent neural networks
with multiple discrete and distributed delays is considered. For this purpose, the direct method of
stability research and the gradient descent method is used. The methods are used consequentially.
Firstly we use the direct method in order to construct stability conditions (resulting in an exponential
estimate), which include the tuple of positive definite matrices. Then we apply the optimization
technique for these stability conditions (or of exponential estimate) with the help of a generalized
gradient method with respect to this tuple of matrices. The exponential estimates are constructed on
the basis of the Lyapunov–Krasovskii functional. An optimization method of improving estimates is
offered, which is based on the notion of the generalized gradient of the convex function of the tuple
of positive definite matrices. The search for the optimal exponential estimate is reduced to finding
the saddle point of the Lagrange function.

Keywords: recurrent neural network; delayed differential equations; exponential estimation;
optimization method; generalized gradient.

1. Introduction

Breakthrough results in the field of deep machine learning are obtained nowadays using recurrent
neural networks (RNN). In particular, the construction of machine learning models for problems of
image recognition with captioning, natural language processing and translation, was made possible by
recurrent neural networks with Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU).
The paper [1] offers a description of such models using ordinary differential equations. Further research
has to be related to the systems with time delays as they are modeling the memory within the network
units. In [2] drawing from concepts in signal processing, they formally derived the canonical RNN
formulation from differential equations.
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Here our study of the RNN model is based on the system with multiple discrete and distributed
time-varying delays

ẋ(t) =− Ax(t) +
r1

∑
k=1

W1,kg(x(t− hk(t))) +
r2

∑
m=1

W2,m

∫ t

t−τm(t)
g(x(θ))dθ, (1)

where x(t) ∈ Rn is the state vector, A = diag(a1, a2, ..., an) is a diagonal matrix with positive
entries ai > 0. For the i-th neuron 1/ai can be interpreted as the activity decay constant (or time
constant). W1,k = (w1,k

ij )n×n, k = 1, r1, W2,m = (w2,m
ij )n×n, m = 1, r2 are the synaptic connection weight

matrices. The entries of W1,k and W2,m may be positive (excitatory synapses) or negative (inhibitory
synapses). g(x(t)) = [g1(x(t)), g2(x(t)), ..., gn(x(t))]> ∈ Rn is the non-decreasing activation function,
which belongs to sector non-linear function class defined by

gj(0) = 0 and 0 ≤
gj(ξ1)− gj(ξ2)

ξ1 − ξ2
≤ lj, lj > 0, (2)

ξ1, ξ2 ∈ R, ξ1 6= ξ2, j ∈ 1, n and x = 0 is a fixed point of Equation (1). We let L = diag(l1, l2, ..., ln) is a
diagonal matrix with positive entries lj > 0.

The system (1) includes discrete and distributed time-varying delays, which are described with
the help of the second and the third terms correspondingly.
The bounded differentiable functions hk(t) represent discrete delays of system with

0 ≤ hk(t) ≤ hM,k,

and
ḣk(t) ≤ hD,k < 1, (3)

k = 1, r1, t > 0. Delays hk(t) and τm(t) have physical meaning as “controllable memory” if previous
states of neurons effects on output only during some time intervals. hM,k and hD,k are bounds of the
delay and its derivative for discrete delays.

The bounded functions τm(t) represent distributed delays of system with 0 ≤ τm(t) ≤ τM,m,
m = 1, r2.

The bounded functions hk(t) and τm(t) represent axonal signal transmission delays.
The condition (3) for derivative ḣk(t) will be applied when estimating the upper right derivative
of Lyapunov–Krasovskii functional (see, for example, [3]).

The initial conditions associated with system (1) are assumed to be

x(s) =φ(s), s ∈ [−τM, 0],

τM := max
{

hM,k, k = 1, r1, τM,m, m = 1, r2
}

,
(4)

where φ(s) ∈ C[−τM, 0].
Given any φ(s) ∈ C[−τM, 0], under the assumption (2), there exists a unique trajectory of (1)

starting from φ [4].
Here we use the Hopfield neural network model, which includes a diagonal matrix A with

positive entries, that shows the self-connection of the neuron. That is the next state of the neuron
is dependent on its current state and outputs of eventually all neurons. Such a diagonal matrix is
traditionally applied in stability research of continuous-time RNNs [5]. On the other hand, if we used
arbitrary matrix A, we would assume the next state of a neuron is dependent on its current state as
well as the states of all other neurons, which means that the internal states of all neurons are accessible
from outside. It contradicts that, for example, in the case of the LSTM unit only the hidden state vector
(also known as the output vector) is seen.
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Following the work [2], we may give the interpretation of the model (1) from the viewpoint
of signal processing, leading us to “canonical” and “non-canonical” RNNs. Namely, we have x(t),
the state signal vector; g(x(t)), the readout signal vector, which is a warped version of the state
signal vector; the bias parameters are omitted without loss of generality since they can be used in the
transformation resulting in the homogeneous system (1). Initial state φ(s), s ∈ [−τM, 0] is considered
as an input signal, thus, modeling one-to-many RNN architecture. In more general many-t0-many
case, input signal vector u(t), t > 0 can be used during the work of the RNN as an “input sequence”.

Although RNNs can actually be described using difference equations, it makes sense to consider
continuous-time equations that describe the operation of RNNs. This is due to the fact that differential
equations make it possible to better describe and understand the dynamic processes that occur.
In addition, with the help of differential equations it is possible to explicitly obtain the conditions for
stabilization of recurrent neural networks. This is of great importance in the design of recurrent neural
networks. Ref. [5] provide a comprehensive review of the research on the continuous-time recurrent
neural networks focusing on the stability of Hopfield and Cohen–Grossberg neural networks.

Note also that the corresponding recurrent neural networks can be obtained by discretizing the
models based on differential equations. Thus, work [2] shows the way to construct a RNN of the LSTM
type starting from the corresponding model based on differential equations with delay and further
through the discretization of the so-called canonical RNN.

Recurrent neural network models have been considered from the 1980s, after the pioneering
work of Hopfield [6] modeling each neuron as a linear circuit consisting of a resistor and a capacitor.
Two approaches can be differed when investigating the models of recurrent neural networks in
the class of delayed differential equations. The first way means research of local stability with
the help of comparison with the linearised system [7–10]. The conditions of the Hopf bifurcation
were obtained in [10,11]. The second approach (which is called the direct Lyapunov’s method) uses
Lyapunov–Krasovkii functionals [3]. It allows us to get stability conditions constructively, which are
formulated in the form of linear-matrix inequalities (LMIs). These stability conditions can be improved
with the help of optimization of parameters of Lyapunov–Krasovskii functionals.

Exponential estimates of the solutions are very important when investigating the models of RNNs
because they show the rate of convergence of calculations when recognizing input data. In the previous
works [12,13], indirect method was developed allowing us to get exponential estimates in some general
cases of the RNN models. It results in the numerical solution of quasipolynomial equation. It gives us
a clear value of exponential decay, which, unfortunately, does not admit optimization and so, cannot
be improved. In order to overcome this shortcoming, here we develop an optimization technique,
which is based on the direct method for Liapunov–Krasovskii functionals of the special kind.

2. Exponential Estimate

Let Ωn ⊂ Rn×n be a set of all symmetric positive definite matrices. It is an open convex cone because:

(a) convexity—for any P1 ∈ Ωn, P2 ∈ Ωn, x ∈ Rn, and ξ ∈ [0, 1] we have x>(ξP1 + (1− ξ)P2)x =

ξx>P1x + (1− ξ)x>P2x > 0;

(b) cone—for any P ∈ Ωn, x ∈ Rn, and η > 0 we have ηx>Px > 0.

Ω̄1
n is the part of the cone Ωn contained inside the unit sphere, i.e., Ω̄1

n := {P ∈ Ωn : ‖P‖ ≤ 1}.
Here ‖P‖ is Frobenius norm of the matrix P ∈ Ωn.

Lemma 1. Reference [14] For any constant matrix U ∈ Ωn, scalar β > 0, vector function u : [0, β] → Rn

such that the integrations concerned are well-defined, then

( ∫ β

0
u>(s)ds

)
U
( ∫ β

0
u(s)ds

)
≤ β

∫ β

0
u>(s)Uu(s)ds.
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Lemma 2. Reference [15] Given any real matrices W1, W2, W3 with appropriate dimensions and a scalar β > 0,
W3 ∈ Ωn, then the following inequality holds

W>1 W2 + W>2 W1 ≤ βW>1 W3W1 + β−1W>2 W−1
3 W2.

In the following definitions, we assume that the trivial solution of (1) be the unique equilibrium
point of the model (1).

Definition 1. The trivial solution of (1) is globally asymptotically stable if for every solution x(t) to the initial
value problem (1)–(4), we have x(t)→ 0 as t→ ∞.

Definition 2. If there exist constants α > 0, K > 0, and T > 0 such that every solution x(t) to the initial
value problem (1)–(4) always satisfies ‖x(t)‖ ≤ Ke−αt for all t > T, then the trivial solution of (1) is said to be
globally exponentially stable.

Our research is based on the following Lyapunov–Krasovskii functional, which is an extension of
the one offered in the work [3] for the case of multiple delays

V[xt(·)] = e2αtx>(t)Px(t) +
r1

∑
k=1

∫ t

t−hk(t)
e2αsg>(x(s))Qkg(x(s))ds

+
r2

∑
m=1

τM,m

∫ 0

−τM,m

∫ t

t+θ
e2αsg>(x(s))Smg(x(s))dsdθ,

(5)

where unknown constant α > 0 and matrices P, Qk, k = 1, r1, Sm, m = 1, r2 belong to Ωn. Here we use
traditional denotation of the element of the solution of (1) as the vector-interval xt(·) := {x(t + θ)|θ ∈
[−τM, 0]} ∈ C[−τM, 0].

Theorem 1. We assume that system (1) satisfies the following condition.
H1. Let there exist constant α > 0 and matrices P, Qk, k = 1, r1, Sm, m = 1, r2, which belong to

relint(Ω̄1
n), such that the symmetric matrix

Γ :=

[
Γ11 Γ12

Γ21 Γ22

]
,

Γ11 := −2αP + A>P + PA− L
( r1

∑
k=1

Qk + τ2
M,m

r2

∑
m=1

Sm

)
L ∈ Ωn,

Γ12 :=
[

eαhM,1√
1− hD,1

PW1,1 · · · eαhM,r1√
1− hD,r1

PW1,r1 eατM,1 PW2,1 · · · eατM,r2 PW2,r2

]
∈ Rn×n(r1+r2),

Γ21 := Γ>12 ∈ Rn(r1+r2)×n,

Γ22 :=



Q1 Θ
. . .

Qr1

S1
. . .

Θ Sr2


∈ Ωn(r1+r2)

,

Θ ∈ Rn×n is matrix of zeroes,
(6)
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belong to Ωn(1+r1+r2)
.

Then the trivial solution of (1) is globally asymptotically stable.

Proof. Estimating right upper derivative of the functional V[xt(·)] along the solution of the system (1),
we get

dV+[xt(·)]
dt

≤ e2αt{x>(t)[2αP− A>P− PA]x(t)

+
[ r1

∑
k=1

g>(x(t− hk(t)))W>1,kPx(t) + x>(t)P
r1

∑
k=1

W1,kg(x(t− hk(t)))
]

+
[ r2

∑
m=1

∫ t

t−τm(t)
g>(x(θ)dθ)W>2,mPx(t) + x>(t)P

r2

∑
m=1

W2,m

∫ t

t−τm(t)
g(x(θ))dθ

]
}

+
r1

∑
k=1

e2αt{g>(x(t))Qkg(x(t))

− e−2αhk(t)g>(x(t− hk(t)))Qkg(x(t− hk(t)))(1− hD,k)}

+
r2

∑
m=1

τM,m{τM,me2αtg>(x(t))Smg(x(t))

− e2α(t−τM,m)
∫ t

t−τm(t)
g>(x(s))Smg(x(s))ds}.

(7)

Applying Lemmas 1 and 2 for estimating counterparts of (7), we have

r1

∑
k=1
{g>(x(t− hk(t)))W>1,kPx(t) + x>(t)PW1,kg(x(t− hk(t)))}

=
r1

∑
k=1

[e−αhM,k (1− hD,k)
1/2g>(x(t− hk(t)))][eαhM,k (1− hD,k)

−1/2W>1,kPx(t)]

+ [eαhM,k (1− hD,k)
−1/2x>(t)PW1,k][e−αhM,k (1− hD,k)

1/2g(x(t− hk(t)))]

≤
r1

∑
k=1
{e2αhM,k (1− hD,k)

−1x>(t)PW1,kQ−1
k W>1,kPx(t)

+ e−2αhM,k (1− hD,k)g>(x(t− hk(t)))Qkg(x(t− hk(t)))},

and

r2

∑
m=1
{
∫ t

t−τm(t)
g>(x(θ))dθW2,m>Px(t) + x>(t)PW2,m

∫ t

t−τm(t)
g(x(θ))dθ}

=
r2

∑
m=1
{[e−ατM,m

∫ t

t−τm(t)
g>(x(θ))dθ][eατM,m W>2,mPx(t)]

+ [eατM,m x>(t)PW2,m][
∫ t

t−τm(t)
g(x(θ))dθe−ατM,m ]}

≤
r2

∑
m=1
{e−2ατM,m

( ∫ t

t−τm(t)
g>(x(θ))dθ

)
Sm

( ∫ t

t−τm(t)
g(x(θ))dθ

)
+ e2ατM,m x>(t)PW2,mS−1

m W>2,mPx(t)}

≤
r2

∑
m=1
{τM,me−2ατM,m

∫ t

t−τm(t)
g>(x(θ))Smg(x(θ))dθ

+ e2ατM,m x>(t)PW2,mS−1
m W>2,mPx(t)}.
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Finally we get

dV+[xt(·)]
dt

≤ e2αtx>(t){2αP− A>P− PA

+
r1

∑
k=1

[
e2αhM,k (1− hD,k)

−1PW1,kQ−1
k W>1,kP + LQkL

]
+

r2

∑
m=1

[
e2ατM,m PW2,mS−1

m W>2,mP + τ2
M,mLSmL

]
}x(t)

≤ −e2αtx>(t){Γ11 − Γ12Γ−1
22 Γ21}x(t)

= −e2αtx>(t)Γ/Γ22x(t),

(8)

where Γ/Γ22 := Γ11 − Γ12Γ−1
22 Γ21 is the Schur complement of Γ in Γ22. From the Schur complement it

follows that the right side of (8) is negative definite if and only if Γ ∈ Ωn(1+r1+r2)
[16].

Corollary 1. Provided that the condition H1 holds the trivial solution of (1) is globally exponentially stable as follows

‖x(t)‖ ≤ γ(α)|φ|τM e−αt, t > 0, (9)

where

γ(α) :=λ−1/2
min (P)

(
λmax(P) +

r1

∑
k=1

λmax(Qk)l2
max

1− e−2αhM,k

2α

+
r2

∑
m=1

τM,mλmax(LSmL)
2ατM,m − 1 + e−2ατM,m

4α2

)1/2
,

lmax :=max{l1, . . . , ln},

λmin(·) and λmax(·) are minimal and maximal eigenvalues of the matrix. Here we use denotions of ‖ · ‖ as
Euclidean norm in Rn and |x(·)|τM := sups∈[−τM ,0] ‖x(s)‖ as the uniform convergence norm in C[τM, 0].

Proof. Firstly note that the inequality

2ατM,m + e−2ατM,m ≥ 1,

enables us that the square root expression in γ(α) is nonnegative for α > 0. From Theorem 1 it follows
that V[xt(·)] ≤ V[φ(·)]. Hence, we get

λmin(P)‖x(t)‖2 ≤ e−2αtV[xt(·)] ≤ e−2αtV[φ(·)]

≤ e−2αt
(

φ>(0)Pφ(0) +
r1

∑
k=1

∫ 0

−hM,k

e2αsg>(x(s))Qkg(x(s))ds

+
r2

∑
m=1

τM,m

∫ 0

−τM,m

∫ 0

θ
e2αsg>(φ(s))Smg(φ(s))dsdθ

)
≤ e−2αt

(
λmax(P) +

r1

∑
k=1

λmax(Qk)l2
max

∫ 0

−hM,k

e2αsds

+
r2

∑
m=1

τM,mλmax(LSmL)
∫ 0

−τM,m

∫ 0

θ
e2αsdsdθ

)
|φ|2τM

= e−2αt
(

λmax(P) +
r1

∑
k=1

λmax(Qk)l2
max

1− e−2αhM,k

2α

+
r2

∑
m=1

τM,mλmax(LSmL)
2ατM,m − 1 + e−2ατM,m

4α2

)
|φ|2τM

.
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Finally, it yields
λmin(P)‖x(t)‖2 ≤ e−2αtγ(α)|φ|2τM

.

3. Optimization Method

The condition H1 describes the main stability result. The matrix Γ presents operator, which is linear
with the respect to the tuple of matrices

[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
. At the same time, the dependence

of Γ on α is nonlinear. α is the parameter determining the exponential decay rate. Since optimization of
Γ with the respect to

[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
may be considered as linear matrix inequality, we can

reduce the problem of the construction of exponential estimate like (9) to the convex programming.
It is natural to assume that “the more positive definite” is the matrix Γ, the “more asymptotically stable”
is the trivial solution. In turn, the solution is “more exponentially” stable. The positive definiteness
of the matrix Γ is described with the help of minimum eigenvalue. Thus we result in the following
optimization problem.

Further we apply optimization technique developed earlier for linear systems in [17]. Given α > 0
we search the tuple of matrices (P, Q1, . . . , Qr1 , S1, . . . , Sr2) as a solution of the optimization problem[

P?, Q?
1 , . . . , Q?

r1
, S?

1 , . . . , S?
r2

]
= arg inf[

P, Q1, . . . , Qr1 ,
S1, . . . , Sr2

]
∈ ∏1+r1+r2

i=1 Ω̄1
n

ψ0
[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
.

(10)

Here ψ0
[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
= −λmin(Γ

[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
).

We give some general conditions of existence of a solution of problem (10).

Definition 3. The inner product of the tuples of matrices
[
P1, Q1,1, . . . , Qr1,1, S1,1, . . . , Sr2,1

]
,[

P2, Q1,2, . . . , Qr1,2, S1,2, . . . , Sr2,2
]
∈ ∏1+r1+r2

i=1 Ω̄1
n is

〈
[
P1, Q1,1, . . . , Qr1,1, S1,1, . . . , Sr2,1

]
,
[
P2, Q1,2, . . . , Qr1,2, S1,2, . . . , Sr2,2

]
〉

:=
n

∑
i,j=1

(
p1

ij p
2
ij +

r1

∑
k=1

q1
ij,kq2

ij,k +
r2

∑
m=1

s1
ij,ms2

ij,m

)
,

where Pδ = {pδ
ij}, Qk,δ = {qδ

ij,k}, Sm,δ = {sδ
ij,m}, i, j = 1, n, k = 1, r1, m = 1, r2, δ = 1, 2.

Definition 4. The generalized gradient of the convex function ψ0
[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
at

the interior point
[
P0, Q1,0, . . . , Qr1,0, S1,0, . . . , Sr2,0

]
∈ ∏1+r1+r2

i=1 Ω̄1
n is the tuple of matrices[

D0, E1,0, . . . , Er1,0, F1,0, . . . , Fr2,0
]
∈ ∏1+r1+r2

i=1 Rn×n such that for all (P, Q1, . . . , Qr1 , S1, . . . , Sr2) ∈
∏1+r1+r2

i=1 Ω̄1
n we have

ψ0
[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
− ψ0

[
P0, Q1,0, . . . , Qr1,0, S1,0, . . . , Sr2,0

]
≥ 〈
[
D0, E1,0, . . . , Er1,0, F1,0, . . . , Fr2,0), (P− P0, Q1 −Q1,0, . . . , Qr1 −Qr1,0, S1 − S1,0, . . . , Sr2 − Sr2,0

]
〉.

Let Γ
[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
be a linear matrix-valued operator that maps the tuple of matrices[

P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
∈ ∏1+r1+r2

i=1 Ω̄1
n into the n(1+ r1 + r2)× n(1+ r1 + r2) symmetric matrices Γ.

Denote by ∆ij ∈ Rn×n the matrix in which the entries at positions (i, j) and (j, i) are units, and all
the rest are zeroes.
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Lemma 3. The generalized gradient of the function ψ0
[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
=

−λmin(Γ
[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
) at the interior point

[
P0, Q1,0, . . . , Qr1,0, S1,0, . . . , Sr2,0

]
∈

∏1+r1+r2
i=1 Ω̄1

n is the tuple of matrices
[
D0, E1,0, . . . , Er1,0, F1,0, . . . , Fr2,0

]
, where D0 = {d0

ij}, Ek,0 = {e0
ij,k},

Fm,0 = { f 0
ij,m}, i, j = 1, n, k = 1, r1, m = 1, r2 such that

d0
ij =

{
−z>0 Γ(∆ij, Θ1, . . . , Θr1+r2)z0, if i = j,

− 1
2 z>0 Γ(∆ij, Θ1, . . . , Θr1+r2)z0, if i 6= j,

e0
ij,k =

{
−z>0 Γ(Θ, Θ1, . . . , Θk−1, ∆ij, Θk+1, . . . , Θr1 , Θr1+1, . . . , Θr1+r2)z0, if i = j,

− 1
2 z>0 Γ(Θ, Θ1, . . . , Θk−1, ∆ij, Θk+1, . . . , Θr1 , Θr1+1, . . . , Θr1+r2)z0, if i 6= j,

f 0
ij,m =

{
−z>0 Γ(Θ, Θ1, . . . , Θr1 , Θr1+1, . . . , Θm−1, ∆ij, Θm+1, . . . , Θr1+r2)z0, if i = j,

− 1
2 z>0 Γ(Θ, Θ1, . . . , Θr1 , Θr1+1, . . . , Θm−1, ∆ij, Θm+1, . . . , Θr1+r2)z0, if i 6= j,

(11)

where Θv is matrix Θ at position v,
z0 is the unit eigenvector corresponding to λmin(Γ(P0, Q1,0, . . . , Qr1,0, S1,0, . . . , Sr2,0)).

Proof. Consider for z ∈ Rn(1+r1+r2)

ψ0
[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
− ψ0

[
P0, Q1,0, . . . , Qr1,0, S1,0, . . . , Sr2,0

]
= − min

‖z‖=1
{z>Γ

[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
z}+ min

‖z‖=1
{z>Γ

[
P0, Q1,0, . . . , Qr1,0, S1,0, . . . , Sr2,0

]
z}.

Assume the first quadratic form reaches its minimal value at z = z1, and the second one at z = z0.
Then subtracting and adding the expression z>0 Γ(P, Q1, . . . , Qr1 , S1, . . . , Sr2)z0, we get

ψ0
[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
− ψ0

[
P0, Q1,0, . . . , Qr1,0, S1,0, . . . , Sr2,0

]
= −z>0

(
Γ
[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
− Γ

[
P0, Q1,0, . . . , Qr1,0, S1,0, . . . , Sr2,0

])
z0

+ z>0 Γ
[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
z0 − z>1 Γ

[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
z1.

Since z>0 Γ
[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
z0 ≥ z>1 Γ

[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
z1, we have

ψ0
[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
− ψ0

[
P0, Q1,0, . . . , Qr1,0, S1,0, . . . , Sr2,0

]
≥ −z>0

(
Γ
[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
− Γ

[
P0, Q1,0, . . . , Qr1,0, S1,0, . . . , Sr2,0

])
z0.

Finally we use in the last inequality the representation of the matrices in the form

P = ∑
1≤i≤j≤n

pij∆ij, Qk = ∑
1≤i≤j≤n

qij,k∆ij, Sm = ∑
1≤i≤j≤n

sij,m∆ij,

and the linearity of Γ with respect to (P, Q1, . . . , Qr1 , S1, . . . , Sr2), which allows us to get the presentation
of the generalized gradient in the form (11).

When solving (10), we pass from a constrained problem to an unconstrained one. We define the
penalty functions

ψ1(B) = λmax(B)− 1, ψ2(B) = −λmin(B), B ∈ Ωn,
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and the corresponding Lagrange function

L(P, Q1, . . . , Qr1 , S1, . . . , Sr2 , u) := ψ0(P, Q1, . . . , Qr1 , S1, . . . , Sr2)

+ ∑
δ=1,2

(
uP,δψδ(P) +

r1

∑
k=1

uQk ,δψδ(Qk) +
r2

∑
m=1

uSm ,δψδ(Sm)
)

,
(12)

where u = {uP,1, uQ1,1, . . . , uQr1 ,1, uS1,1, . . . , uSr2 ,1, uP,2, uQ1,2, . . . , uQr1 ,2, uS1,2, . . . , uSr2 ,2} ∈ R2(1+r1+r2)

are non-negative Lagrange multipliers.

Theorem 2. Provided that the condition H1 holds, the function ψ0
[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
attains its

minimum at the point
[
P0, Q1,0, . . . , Qr1,0, S1,0, . . . , Sr2,0

]
∈ ∏1+r1+r2

i=1 Ω̄1
n if and only if the point

(P0, Q1,0, . . . , Qr1,0, S1,0, . . . , Sr2,0, u0), where

u0 =(u0
P,1, u0

Q1,1, . . . , u0
Qr1 ,1, u0

S1,1, . . . , u0
Sr2 ,1, u0

P,2, u0
Q1,2, . . . , u0

Qr1 ,2, u0
S1,2, . . . , u0

Sr2 ,2)
>,

is a saddle point of the Lagrange function (12).

Proof. The objective function ψ0(·) and the constraint functions ψ1(·), ψ2(·) are convex for the matrices
P, Q1, . . . , Qr1 , S1, . . . , Sr2 ∈ Ωn. It follows from the convexity of maximum eigenvalue and the
concavity of minimum eigenvalue of a symmetric matrix (see Example 3.10 in [18]). When proving the
convexity of the function ψ0 with respect to

[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
∈ ∏1+r1+r2

i=1 Ωn we also use the
linear dependence of the operator Γ on

[
P, Q1, . . . , Qr1 , S1, . . . , Sr2

]
.

Due to the Karush–Kuhn–Tucker conditions for convex problems it is left to show that Slater
conditions hold [18] (page 244). By virtue the assumption H1 there exists a tuple of matrices[
P̄, Q̄1, . . . , Q̄r1 , S̄1, . . . , S̄r2

]
∈ ∏1+r1+r2

i=1 Ωn ∩ dom(ψ0) such that

ψδ(P̄) < 0, ψδ(Q̄1) < 0, . . . , ψδ(Q̄r1) < 0, ψδ(S̄1) < 0, . . . , ψδ(S̄r2) < 0, δ = 1, 2,

is satisfied, and the Slater condition is true, which concludes the proof.

4. Conclusions

The work is devoted to modeling and investigation of the architecture design for the delayed
recurrent neural network basing on the delayed differential equations. The usage of discrete and
distributed delays makes it possible to model the calculation of the next states using internal
memory, which corresponds to the artificial recurrent neural network architecture used in the field of
deep learning.

The paper proposes a method for constructing an exponential estimate of the solution of a model
of a recurrent neural network using the Lyapunov–Krasovskii functional. This estimate is reduced to
solving the corresponding linear matrix inequality. This is the most costly operation in terms of the
computational complexity, however, this is where we can apply the optimization approach to find the
optimal set of matrices from the viewpoint of the exponential estimate.

In contrast to the indirect method of constructing exponential estimates, which was proposed in
previous works [12,13], in this study, the method based on the Lyapunov–Krasovskii functional allows
the optimization of the estimate within the compact domain of positive definite matrices.

To this end, the concept of a generalized gradient of a convex function on a set of positive definite
matrices is introduced. The constructive form of the generalized gradient for the minimal eigenvalue
of the matrix Γ is presented. The Lagrange function for the unconditional optimization problem is
constructed. In this case, the search for the optimal exponential estimate is reduced to finding the
saddle point of the Lagrange function.
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