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Abstract: A Black Hole (BH) is a spacetime region with a horizon and where geodesics converge to a
singularity. At such a point, the gravitational field equations fail. As an alternative to the problem
of the singularity arises the existence of Exotic Compact Objects (ECOs) that prevent the problem
of the singularity through a transition phase of matter once it has crossed the horizon. ECOs are
characterized by a closeness parameter or cutoff, ε, which measures the degree of compactness of the
object. This parameter is established as the difference between the radius of the ECO’s surface and the
gravitational radius. Thus, different values of ε correspond to different types of ECOs. If ε is very big,
the ECO behaves more like a star than a black hole. On the contrary, if ε tends to a very small value,
the ECO behaves like a black hole. It is considered a conceptual model of the origin of the cutoff for
ECOs, when a dust shell contracts gravitationally from an initial position to near the Schwarzschild
radius. This allowed us to find that the cutoff makes two types of contributions: a classical one
governed by General Relativity and one of a quantum nature, if the ECO is very close to the horizon,
when estimating that the maximum entropy is contained within the material that composes the shell.
Such entropy coincides with the Bekenstein–Hawking entropy. The established cutoff corresponds to
a dynamic quantity dependent on coordinate time that is measured by a Fiducial Observer (FIDO).
Without knowing the details about quantum gravity, parameter ε is calculated, which, in general,
allows distinguishing the ECOs from BHs. Specifically, a black shell (ECO) is undistinguishable from
a BH.
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1. Introduction

A Black Hole (BH) corresponds to a solution of the gravitational field equations that describes a
region where the spacetime curvature is so high that not even light can escape. There, the geodesic
lines converge to a point referred to as a singularity. Specifically, a BH is characterized by a singularity
surrounded by an event horizon, which hides the interior of the black holes from Fiducial Observers
(FIDOs) [1]. The fact that the geodesic lines meet at a point that is practically mathematical poses
enormous difficulties, since it is not possible to physically describe what occurs there; the field
equations are violated in the singularity, which is why the manifold is incomplete [2]. As an alternative
to the black hole paradigm arises the existence of Exotic Compact Objects (ECOs) [3], such as dark
stars or gravastars. The latter are characterized by a de Sitter interior spacetime and a Schwarzschild
exterior spacetime. On the border of the two regions, there is a thin shell of matter that coincides with
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the event horizon. In this type of model, the gravitational collapse is subject to a transition phase that
prevents future collapse [3–6].

Experimental evidence of Gravitational Waves (GWs) has been found for compact objects [7–9],
including the event GW190814, where the nature of a compact object is unknown and could be an exotic
compact object [10]. This has established a new field of observational astronomy, i.e., gravitational
wave astronomy, which enables the study of binary systems, such as ECO-ECO, BH-BH, and ECO-BH.

Abedi et al. analyzed the gravitational waves GW150914, GW151226, and LVT151012; then,
they suggested that GW signals arise due to merging BHs or ECO systems [11]. In addition,
Cardoso et al. showed that in some configurations, the coalescence of ECOs (compact boson stars)
might be almost indistinguishable from that of BHs [12].

ECOs are of great importance, not only in research about the nature and existence of astrophysical
BHs, but also the parameter ε that characterizes them would be associated with some basic scale of
quantum gravity [13]. The observation of the coalescence of compact objects based on the study of
gravitational radiation would aid in explaining the nature of quantum gravity. ECOs are inspired by
the quantum effects of BHs and seek to provide an answer to BH problems, such as information loss
and the singularity [14].

An ECO can be characterized by the closeness parameter:

ε = r− rSch, (1)

for r ∼ rSch, where r describes the position of the surface of the ECO and rSch = 2GM
c2 is the radius

associated with the event horizon [3,13]. This parameter allows quantifying how compact an ECO
is [15].

ε is a quantity depending on the observer that is associated with the Love numbers [13]:

ε = rSche−1/k, (2)

where k is one of the Love numbers. Hence, ε would allow distinguishing a BH from an ECO in
general, but it would also show that a BH would be undistinguishable from a black shell.

In Newtonian physics, Love numbers relate the mass multipole moments created by tidal forces
on a spherical body. These moments encode information on the body’s internal structure, and it can be
transported by the GWs. In other words, the deformity of an ECO induced by tidal forces is coded by
Love numbers and sensitively depends on the ECO’s internal structure. Determining Love numbers
implies understanding the physics of the ECO [16].

In the case of an ECO, the Love numbers are different from zero and are encoded in the
gravitational waves; in binary ECOs, they allow studying the behavior of matter with enormous
densities, and for a static BH type as the Schwarzschild type, they are null, which leads to the multipole
structure remaining undisturbed when immersedin a tidal field [17,18]. In 2017, Cardoso et al.
determined that a Schwarzschild BH in Chern–Simons gravity has Love numbers different from
zero [19]. We expect that by characterizing the ECOs through Love numbers, the Love relationships
contained in the GWs from the fusion of binary systems will allow understanding the behavior of
the matter subjected to enormous densities and the physics of the GWs themselves [18,20]. Recently,
Le Tiec et al. estimated the Love numbers for a Kerr BH, which would imply that they would be
susceptible to the deformity of an external tidal field and that such deformity could be detected in
GW-LIGO [21].

There are several conceptions of the parameter ε. Among others, Guo et al. obtained, for one
type of ECO referred to as a fuzzball, ε� GM close to rSch and, for a firewall, ε ∼ l2

p/GM [22]. It is
interesting to mention the results with significant quantum effects such as [14]:

ε =
tP
tH

lp, lp =

√
Gh̄
c3 , tP =

√
h̄G
c5 , tH =

GM
c3 . (3)
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Furthermore, for an ECO (black shell), a model is introduced that associates the creation of
particles and a closeness parameter [23]:

ε =

√
1− 2MG

c2r f
lp � lp, (4)

where r f is the radius limit of approach.
The instability of the ECOs and their implications in the GWs were proposed by B. Chen et al.,

where an ECO has a radius:

rECO = rs + ε, ∆ =

√
8GMε

c2 . (5)

where ∆ is a supplementary characterization of the compactness of the ECO [15]. Additionally, it has
been shown that ECOs are unstable due to the accretion of matter and to the influence of GWs on
gravitational collapse, resulting in, when ε ∼ lp, them necessarily converting into BHs. To prevent
gravitational collapse, ε� lp must be met, or the null conditions of energy are violated [24].

Black shells share the properties of radiation emission with the BHs when they are considered
quantum fields in the vicinities of the black shells. Any shell of a mass M that collapses until it is close
to its gravitational radius emits thermal radiation, with a radius limit given by [25]:

r f =
2GM

c2
(

1− ε2

l2
p

) . (6)

In the case of a closeness parameter ε→ 0, a Boson Star (BS) possesses properties analogous to a
BH, such as radiation at the Hawking temperature TH and a Bekenstein–Hawking entropy SBH [26,27].
For other types of ECOS, stability differs; for example, gravastar ECOs are more thermodynamically
stable in contrast to BHs [28].

Within the wide spectrum of ECOs registered in detail in [3], which includes white dwarfs and
neutron stars, to exotic objects such as quark stars, hybrid stars with gluon-plasma nuclei, superspinars,
wormholes, etc., the Gravastars (GSs) and the Boson Stars (BSs) stand out, which as the black shells,
are feasible alternatives to astrophysical BHs, but the GSs and BSs are unstable since they exhibit a
very unstable ergoregion and have a very short life [29].

Research on the nature of the ECOs goes beyond theoretical speculations because their study
is being developed with models conceived of for observation. It is important to know the available
observational methods to complete the compact object search scenario. A usual method to distinguish
a neutron star from a BH is based on measuring their mass. In the case of an ECO, if its mass is
greater than the Chandrasekhar limit, it is believed that the ECO is a BH. Nevertheless, luminosity
criteria associated with mass measurements and the angular momentum are not entirely reliable
methods given the broad spectrum of ECOs that could be found, which is why other techniques to
distinguish them are needed. A promising technique to identify ECOs from BHs lies in the observation
of GWs. It is thought that the study of GWs in the inspiral phase of the fusion of binary systems
allows determining their mass and the multipole moments distinguishing an ECO from a BH [30].
In 2016, Cardoso et al. studied the GW product of the fusion of two black shells of equal mass, and they
compared them to the GWs corresponding to two BHs. They found that under certain configuration,
the GW signals are almost undistinguishable [12]. Another method to distinguish ECOs from BHs was
proposed by Cardoso et al., where they considered that compact objects with rings of light are BHs,
given that the light rings are associated with the photon sphere at a radius r = 3GM

c2 , in contrast to the
ECOs that do not exhibit these luminous rings [30]. Current evidence leads to thinking that ECOs with
high angular momentums are similar to a Kerr BH, but without the formation of event horizons [31].

Based on this conceptualization of the ECOs in the observational context described, our main
purpose in this paper is to contribute to the characterization of the nature of the ECOs in terms of the
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closeness parameter ε. We propose a model that relates criteria from the quantum microscopic world
of compact objects with observations corresponding to the astrophysical macroscopic world, as a basis
for estimating ε.

With relativistic kinematic properties, referring to the observer’s notion, we model a type of ECO
referred to as a black shell, undistinguishable from a BH, and that is an alternative object to the BHs,
as would be observed by an FIDO.

ε was calculated based on quantum foundations that establish a connection with the notions of
quantum gravity through the Bekenstein–Hawking entropy and that exhibit a semi-classic and another
limit where the quantum effects are significant.

ε is a measure of the compactness of the ECOs, which we expect to be an indicator to classify and
distinguish compact objects in general, through the relationship existing between this parameter and
the Love numbers.

In Section 2, the quantum origin of the closeness parameter ε that characterizes the ECOs is
substantiated. Section 3, describes that kinematic nature of the cutoff parameter for a black shell.
The quantum model of the closeness parameter is introduced in Section 4, and Section 5 is devoted to
summarizing and discussing this paper.

2. Quantum Mechanical Foundation of the Cutoff for a Black Shell

Let there be a thin spherical dust shell that gravitationally contracts from a certain position r0 to
near its gravitational radius r(t2) = rSch + ε, at a finite time t2 measured by an FIDO observer.

The nature of the closeness parameter ε obeys a bound of a quantum nature and is closely related
to the shell’s entropy compacted close to the gravitational radius.

The origin of this entropy is understood in terms of the properties of the physical vacuum in strong
gravitational fields. In the case of BHs, an observer that is at rest with respect to the horizon sees the
zero-point fluctuations of physical fields as a thermal atmosphere around a BH [32]. An important
property of the BHs is that the entanglement entropy Sent coincides with the entropy of that thermal
atmosphere [33–37].

Sent may be a source of Bekenstein–Hawking entropy SBH for a species, if ε 6= 0 in the
expression [33,34,38]:

Sent ∼
A
4ε

, (7)

where A is a surface very close to the event horizon, with its proper altitude η related to the parameter
ε through the relationship:

ε =
1
2

κ0

c2 η2 (8)

and with η2 ∼ l2
p, κ0 being the surface gravity and lp the Planck length.

Depending on ε, without considering the dependency that SBH would have on all the fields
present in nature, in principle, it can be identified with Sent. In general, the two entropies differ in one
constant. What matters is that the surface of the shell collapsing coincides with area A in (7) and that it
can be interpreted in the same way as SBH .

Thus, the entropy associated with the shell is considered as the thermodynamic entropy of
equilibrium. This entropy corresponds to the information stored in the material that comes together to
form a black hole, compressed in one thin layer close to the gravitational radius. Since the entropy
for a given mass and area is maximized by the thermal equilibrium, we expect it to be the maximum
entropy that could be stored in the material before it crosses the horizon [39].

The fact that the entropy of a BH is also the maximum entropy that may be obtained through
the Bekenstein limit was one of the main observations that led to the holographic principle [40,41].
The maximum entropy stored in the shell is related to an upper bound in the information that is
understood in terms of quantum bounds that are based on the principles of quantum gravity [13,32,42].
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In terms of the expression (7), the estimate of ε is introduced, which is calculated from the
contribution of the area SA of Sent. This contribution is determined by the quantum condition [34,38]:

ε� ∆� r(t2), (9)

illustrated in Figure 1; ∆ is a measure of the integration region that leads to SA.

Figure 1. Configuration of the vicinity of the gravitational radius.

Calculating Sent, for simplicity, is done based on the scalar field in the vicinities of the shell when it
is very close to its gravitational radius, resorting to quantum field theory in a curved spacetime [33,38].
In this article, to perform this estimate, we use the particle description of quantum fields.

3. Kinetic Origin of the Cutoff Parameter for a Black Shell

The equation of movement of the shell with mass M in gravitation contraction, described in
Section 2, is expressed by [43]:

dR
dτ

=

√[
a +

M
2aR

]2
− 1 (10)

where a is the quotient between M and its mass at rest m, while τ is proper time in the frame of a
Freely Falling Observer (FFO).

The FIDO observer that measures the collapse time of the shell is in an asymptotically flat
spacetime region around the black shell:

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2dθ2 + r2 sin2 θdφ2, f (r) = 1− 2GM

c2r
. (11)

A simple solution to the equation of movement of the shell (10) can be expressed by the
function [5,44,45]:

r(t) = rSch + δre−t/τ̄ , (12)

where δr = r0 − rSch, τ̄ = 4GM
3c3 , and rSch = 2GM

c2 .
For an external observer, the kinematics of the shell is characterized by two clearly distinguishable

phases: one of rapid contraction, where the shell is far away from the gravitational radius, r(t0)� rSch,
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and a second quasi-stationary phase in the region where r(t) ∼ rSch, and the shell’s mass is concentrated
around the associated horizon.

The shell’s movement in the first phase of collapsing is classically described based on the General
Theory of Relativity (GTR). The collapsing phase close to the gravitational radius is adjusted by
introducing quantum effects within the framework of the quantum field theory in curved spacetime,
such that:

lim
t−→t2

r(t) = rSch + ε. (13)

The collapsing phase in the vicinity of the horizon is related to the classic phase according to
Figure 2, where the magnification of the vertical segment on the axis r(t), rSchr(t1), is shown in Figure 3.

Figure 2. Phase of rapid collapse.

Figure 3. Classical description of the gravitational collapse with a quantum bound.

In the gravitational background given by (11), Expression (7) is calculated in terms of the entropy:

S =
∫

V
sdV, (14)

where s is the entropy density of the thermal atmosphere in the vicinity of the shell, which is expressed
as a function of the energy density ρ and pressure P as:

s = βkB [ρ + P] , β =
1

kBT
(15)
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where kB is the Boltzmann constant and T is the local temperature given by:

T(r) =
T∞√

f (r(t))
(16)

for a uniform temperature T∞ in the asymptotically flat region.
In addition, the differential volume dV corresponds to:

dV =
4π√

f (r(t))
r2(t)dr(t). (17)

Entropy (14) has two contributions: one dependent on volume SV for r � rSch and another one
dependent on the area SA for r ∼ rSch:

S = SV + SA. (18)

The entropy density s for the contribution SA is calculated based on (15) resorting to the
ultrarelativistic approaches corresponding to high local temperatures, where:

P =
8π

h3c3 T4k4
B, ρ =

4π

h3c3 T4k4
B (19)

and with which we obtain [33,38,46,47]:

S =
16π

3h3c2T

∫ ∞

0

E3

eE/kBT − σ
dE, (20)

where E is energy, c is the speed of light, and h is Planck’s constant, with σ = +1 for bosons and
σ = −1 for fermions. In the model proposed, the several values of σ are those considering the helicities
of particles in nature, which are estimated to be more than 300 quantum fields N [32,33]. The study of
the entropy of a black hole when considering the helicities of particles leads to the problem of species,
which is still an open problem and is not clearly understood [32,33,48]. However, there are partial
studies of entropy for scalar fields (s = 0) [38,47,49,50] and fermionic fields (s = 1/2) [51] that confirm
the dependence of entropy on the horizon area.

SBH |σ=0,N=1 = SBH |σ=1,N=1 = SBH |σ=−1,N=1 =
1

4l2
p

A. (21)

This leads us to think that the entropy of a black hole is independent of the helicities of
particles [52]:

SBH |N=1,2,3...n =
1

4l2
p

A. (22)

From a mathematical point of view, the adoption of σ = 0 corresponds to the argument given
by Mukohyama–Israel; for the entropy density, it corresponds to the fact that the integral (20) [33]:
“The purely numerical integral has the value 3! multiplied by 1, π4

90 and 7π4

8∗90 for 0, 1 and−1 respectively”.
We take σ = 0.

From the expressions (14) and (20), we obtain:

SA =
16π

3h3c2

∫
V

dV
1
T

∫ ∞

0

E3

eE/kBT dE. (23)

Then, the magnitude of the volume element, according to (12), can be written as:

|dV| = 4π√
f (r(t))

r2
s δre−t/τ̄

τ̄
dt, (24)
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where the small summands are disregarded in the expression:

|dV| = 4π√
f (r(t))

[
r2

s δre−t/τ̄

τ̄
+

2rSchδr2e−2t/τ̄

τ̄
+

δr3e−3t/τ̄

τ̄

]
dt, (25)

since e−t/τ̄ � e−2t/τ̄ � e−3t/τ̄ .
Substituting (20) and (24) into (14),

SA =
16π

3h3c3

∫ 4π√
f (r(t))

r2
s δre−t/τ̄

τ̄
dt

1
τ

∫ ∞

0

E3

eE/kBT dE (26)

Finally, based on the local temperature (16), SA is expressed as:

SA =
32k4

Bc
h3

(
T3

∞

κ2
0

)
AHC1

4δr
, (27)

where A = 4πr2
Sch, and we introduce the definition of:

C1 =
1
τ̄

∫ t2

t1

et/τ̄dt. (28)

corresponding to the collapse time between r(t1) and r(t2) in the configuration of Figure 1.
The expression (27) corresponds to the known expression (7), where t1 determines the finite

nature of entropy in temporal terms, in contrast to ε, which in (7), does the same thing in spatial terms.
From (12) and (28), we obtain a relationship between the times measured by the FIDO observer

and the closeness parameter ε as modeled in Section 4.

4. Quantum Model of the Closeness Parameter

From the expressions (12) and (28):

−
∫ r(t2)

r(t1)

δr
(r− rSch)2 dr =

1
τ̄

∫ t2

t1

et/τ̄dt, (29)

where r(t1) = r(t2) + ∆ and r(t2) = rSch + ε.
By integrating (29), we obtain:

δr
[

1
ε
− 1

ε + ∆

]
= et2/τ̄ − et1/τ̄ .

According to (9), ε� ∆. Then,

δr
[

1
ε
− 1

∆

]
= et2/τ̄ − et1/τ̄ .

δr
[

∆− ε

∆ε

]
∼
[

∆
ε∆

]
δr = et2/τ̄ − et1/τ̄

ε =
δr

et2/τ̄ − et1/τ̄
. (30)

The classical expression (12) can be quantum-adjusted considering the following:



Symmetry 2020, 12, 2072 9 of 13

We expect that (12), at the limit when t → t2, according to the criterion (9), is like the limit
described by (13). In other words, according to (13) and (30):

r(t2) = rSch +
δr

et2/τ̄ − et1/τ̄
, (31)

which can be taken as a starting expression to generalize Expression (12), setting the value for t1 and
leaving t2 as a variable:

r(t) = rSch +
δr

et/τ̄ − et1/τ̄
, (32)

for which, it is required that t be finite and t > t1, corresponding to the time of collapse measured by
the FIDO.

From (32), it is possible to obtain a semi-classical limit if t2 � t1:

ε = εClas = δre−t2/τ̄ , (33)

where for the distant FIDO observer, we expect that:

ε� κ0l2
P.

The latter expression has a quantum origin due to the relationship that exists between t and ε

given by (29), provided t2 is finite. A totally classic result occurs when t2 tends continuously to infinity

and, consequently, ε tends to zero. For (33), we have τ̄ = 4GM
3c3 , and lp =

√
h̄G
c3 is the Planck length.

Therefore, we can write the cutoff parameter εECO as:

εECO = δr exp

[
−3h̄tu

4l2
p M

]
. (34)

Defining x = t
M , the Schwarzschild radius reduces to:

rSch =
2Gxt

c2 (35)

and the initial position of the black shell becomes r0 = nrSch, where n is n = 1, 2, . . ..
Then, the cutoff parameter is:

ε =
2Gxt

c2 [n− 1] exp

[
−3h̄x

4l2
p

]
. (36)

Therefore, we have:
lim
x→0

ε = 0, (37)

For massive ECOs, the cutoff parameter value εECO approaches zero.
t1 can be estimated considering that r(t2)� r0 and that r(t2) = rSch + ε ∼ rSch.
From (12) and:

∆ = r (t1)− r (t2)

so:
∆
δr

= e−t1/τ̄ − e−t2/τ̄

∆
r0 − rSch

∼ r2
s

r2
0
= e−t1/τ̄ − e−t2/τ̄ , (38)
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where:
∆

r(t2)
∼ r(t2)

r0
,

∆
rSch
∼ rSch

r0
⇒ ∆ ∼

r2
Sch
r0

. (39)

(30) can be written as:

ε =
δr

De(t1+t2)/τ̄
, (40)

with D = r2
s

r2
0
.

At the limit t1 � t2, (40) must coincide with (33). Comparing these last two expressions, we
obtain:

et1/τ̄ =
r2

0
r2

s
(41)

Then, from (30) and (41):

ε =
δr

et2/τ̄ − r2
0

r2
s

. (42)

In (42), we included a preliminary criterion given by (39) that can be adjusted observationally in
such a way that ε expressed by (42), which is clearly greater than its corresponding magnitude given
by (33), approaches κ0l2

p.
Comparing (33) and (42), we obtain:

εClas
ε

= 1−
r2

0
r2

s
e−t2/τ̄ ; (43)

thus, for (43), it is possible to define P = 1− r2
0

r2
s
e−t2/τ̄ . Therefore, (43) is reduced to:

εClas
ε

= P. (44)

P is subject to the following conditions:

• If P = PMax = 1, εClas = ε; therefore, the quantum effects are not relevant in estimating the cutoff.
• If P −→ 0, the quantum effects are very significant in estimating the cutoff.

5. Summary and Discussion

ECOs have become very important objects of research on the nature and existence of astrophysical
BHs, considering that these objects are not ruled out by the recent gravitational wave observations [10].
In addition, the closeness parameter ε that characterizes the ECOs would be associated with any basic
scale of quantum gravity [13]. In that context, this paper contributes to the conceptualization of the
origin of the cutoff parameter ε, with a model that characterizes the ECOs according to the frame of
the observer [53].

The model proposed consists of a thin spherical dust shell that gravitationally contracts from a
specific position r0 to close to its gravitational radius r(t2) = rSch + ε, at a finite time t2 measured in
the frame of an FIDO.

The cutoff makes two types of contributions: a classical one governed by General Relativity
and one of a quantum nature, if the ECO is very close to the horizon, when estimating that the
maximum entropy is contained within the material that composes the shell. Such entropy coincides
with the Bekenstein–Hawking entropy. The established cutoff corresponds to a dynamic quantity
dependent on the coordinate time that is measured by a Fiducial Observer (FIDO).

Based on the bound that determines the maximum information that the shell can store compressed
in a thin layer close to the gravitational radius, we estimate ε� κ0l2

p in a semi-classical approach and
a limit of ε tending to κ0l2

p when the quantum effects are significant.
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The maximum information associated with the shell is quantified with the contribution of area
SA to its entropy [39]. With this expression, we introduce a suggestive relationship between the
microscopic world and the macroscopic world.

Usually, SA is calculated in a non-divergent manner in terms of a cutoff ε, as shown in
Expression (7), and it is adjusted with a quantum gravity criterion to calculate the Bekenstein–Hawking
entropy SBH . In this article, we propose a divergence control in terms of a finite time t2, according to
the definition of C1 in (28). What is interesting is that the two criteria are related through the expression
(29) and, more specifically, based on (42). In other words, since the entropy SBH is proportional to the
shell’s entropy at the limit when r(t) ∼ rSch, astrophysical measurements of t2 and r0 would allow
estimating the cutoff ε. With this relationship, we have an observational criterion to compare the
assumptions made based on the principles of quantum gravity.

On the other hand, the estimates of ε can be compared with those respectively calculated in
the articles [14,22,23] and also related to the parameters of the different types of ECOs through the
relationship of ε with the Love numbers [13].

The ECO model being proposed depends on external observation and is compatible with BHs in
two senses: with respect to the FIDOs, this type of ECO is undistinguishable from a BH, and regarding
an FFO observer, the shell collapses into a BH. In this latter case, the explanation of SBH requires a
complete theory of quantum gravity. In the case of the description in terms of the external observers at
rest with respect to the associated horizon, without knowing the details about quantum gravity, it is
possible to interpret SBH as a thermodynamic entropy.

BH formation, maturity, and death are still not completely understood; total understanding
may establish the existence of a quantum gravity theory. Specifically, a BH is characterized by a
singularity surrounded by an event horizon, which hides the interior of the BH from Fiducial Observers
(FIDOs) [1,54]. This is key because it distinguishes a BH from other types of ECOs in the frame of an
FIDO. This implies that the geometry outside the ECO is consistent with that of a BH [3].

It is noteworthy to mention that the role of the FIDO is remarkable in this study since the cutoff
parameter is only measured by such observers [3,13].

This model can be improved if a dynamic spacetime, such as a Kerr spacetime, is considered
because the cutoff parameter in Equation (12) takes into account observational data [55,56].
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