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Abstract: In this paper the dynamical equation for propagating wave-fronts of gravitational signals
in classical general relativity (GR) is determined. The work relies on the manifestly-covariant
Hamilton and Hamilton–Jacobi theories underlying the Einstein field equations recently discovered
(Cremaschini and Tessarotto, 2015–2019). The Hamilton–Jacobi equation obtained in this way yields
a wave-front description of gravitational field dynamics. It is shown that on a suitable subset of
configuration space the latter equation reduces to a Klein–Gordon type equation associated with
a 4-scalar field which identifies the wave-front surface of a gravitational signal. Its physical role
and mathematical interpretation are discussed. Radiation-field wave-front solutions are pointed out,
proving that according to this description, gravitational wave-fronts propagate in a given background
space-time as waves characterized by the invariant speed-of-light c. The outcome is independent
of the actual shape of the same wave-fronts and includes the case of gravitational waves which
are characterized by an eikonal representation and propagate in a generic curved space-time along
a null geodetics. The same waves are shown: (a) to correspond to the geometric-optics limit of
the same curved space-time solutions; (b) to propagate in a flat space-time as plane waves with
constant amplitude; (c) to display also the corresponding form of the wave-front in curved space-time.
The result is consistent with the theory of the linearized Einstein field equations and the existence
of gravitational waves achieved in such an asymptotic regime. Consistency with the non-linear
Trautman boundary-value theory is also displayed.

Keywords: General Relativity Hamilton equations; General Relativity Hamilton–Jacobi theory;
wave-front theory; speed of propagation

PACS: 03.65.Ca; 03.65.Ta

1. Introduction

A number of basic issues remain still unsolved today regarding the theory of wave solutions for
the classical gravitational field dynamics to be achieved in the framework of the standard formulation
of general relativity (SF-GR); namely, the theory of the Einstein field equations [1]. These concern,
in particular, the prescription of the wave-front dynamics for gravitational signals and the related
problem of the determination of their speed of propagation. Indeed, both still represent theoretical
challenges after more than one hundred years since the mathematical foundations of the theory
originally were laid down (in 1915) by Einstein in terms of the famous Einstein–Hilbert variational
principle [2]. This occurs because, as explained below, the mathematical setting of the theory concerning
both its continuous Hamilton equations and the proper form of the corresponding Hamilton–Jacobi
formulation has remained undetermined until recently [3–5].
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Concerning, in particular, the wave theory itself, and the determination of the related wave-front
dynamics, both should be regarded:

• As consistency tests for the Einstein field equations specifically in reference with the determination
of its appropriate Hamiltonian variational representation. This is true especially in view of the
experimental evidence of gravitational waves reached after intensive and long-time efforts by
experimental astrophysics [6]. The matter concerns in particular highly non-linear phenomena
of GR that could be explored by studies of gravitational waves produced in compact binaries
mergers [7–10].

• As test-beds for theory of SF-GR itself, due to the possibility of still unexplored and yet to be
found experimental predictions and crucial observational implications [11,12].

• As theoretical frameworks for the interpretation of observational features characterizing
gravitational waves, with particular reference to the constraints that can be placed on their
speed of propagation [13], in turn permitting the implementation of additional confirmations to
SF-GR or restriction of the validity of alternative gravity theories [14–18].

Indeed, contrary to the case of the Maxwell equations for the classical electromagnetic field,
the Einstein equations for the space-time metric tensor are non-linear second-order PDEs, which,
in their proper tensor form, are not formally cast in terms of so-called wave equations. Nevertheless,
the concept of wave equation can acquire different meanings in the context of either classical mechanics
or field theory, which actually correspond to disparate mathematical problems [19]. Most frequently
this refers to a second-order linear PDE supplied with appropriate initial/boundary conditions. In its
invariant formulation this representation describes the dynamics of a 4-scalar or tensorial quantity
governed by the D’Alembertian differential operator (�). Such a category includes the Klein–Gordon
equation, either for massless or massive scalar fields, and also the Maxwell equations for the EM
4-potential. However, in the same context, a different kind of wave equation is provided by a first-order
PDE; namely, the Hamilton–Jacobi equation for a classical Hamiltonian system. It is well known that,
thanks to the symplectic nature of the canonical representation, its initial-value solution is completely
equivalent to that of an underlying set of first-order ODEs identified with the corresponding Hamilton
equations.

The case of GR is, however, peculiar, since the exact Einstein field equations seem to escape this
classification. Nevertheless, it was soon realized (originally by Einstein himself) that the corresponding
linearized gravitational field (LGF) equations for small-amplitude perturbations actually formally
recover a wave-type equation analogous to the one occurring in the case of Maxwell equations for
the electromagnetic 4-potential [20]. According to this kind of approach, the wave-like behavior
belongs to a perturbation—denoted as gravitational wave—of a given background space-time metric
tensor with respect to which the notions of covariance and manifest covariance (i.e., respectively,
the transformation and tensor properties) of the theory are prescribed. Notice that the consequent
perturbative representation of the metric tensor achieved in this way is peculiar. In fact, it actually
differs from the exact one provided by the solution of the complete nonlinear exact set of Einstein
equations, in terms of which exact reference frame (i.e., coordinate system) should be properly
prescribed. As such, the gravitational wave thus determined is actually regarded as a separate field
over the background one. This treatment permits, in principle, a straightforward representation of the
LGF equations indicated above [21]. For example, in its simplest treatment, upon introducing a metric
tensor decomposition of the type gµν = ηµν + εhµν with respect to the flat Minkowski background
space-time metric tensor ηµν which raises/lowers tensor indices, and upon letting ε � 1, it can be
shown that for a suitable choice of gauge condition the perturbation field hµν satisfies in vacuum the
LGF equation

�hµν = 0, (1)

where in such a context � ≡ ηαβ∂α∂β identifies the D’Alembertian operator in flat space-time. It is
then straightforward to show that analytical solutions of this equation for the linearized field hµν
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are expressed in terms of superposition of plane waves traveling at the speed of light c. Nowadays,
within the framework of linearized GR, additional realizations of the same gravitational wave equation
have been carried out, depending on the physical context to which they apply and the approximations
retained; e.g., including non-vacuum contributions, curvature effects due to the background space-time,
and self-interaction due to the energy-momentum density carried by the same waves [20].

Despite these outcomes, because of the mathematical structure of the Einstein equations, the issue
of the possible wave-like character of exact GR field equations, the existence of corresponding wave-like
solutions for the full metric tensor (i.e., without introducing any perturbative decomposition), and the
identification of their speed of propagation, involve a deeper understanding, which goes beyond the
framework of linearized theory, and at the same time, still preserves in a suitable sense the physical
interpretation in terms of gravitational waves. The problems of determining the existence of GR
exact non-linear wave solutions for the gravitational field, together with that of reaching an exact
mathematical proof of the corresponding wave-front speed of propagation for arbitrary gravitational
signals as well, represent fundamental theoretical concerns of GR [22]. These issues, to be regarded as
intimately connected, refer actually to two distinct problems:

Problem (1) The first one concerns the classical equations of space-time obtained by ignoring
possible quantum effects. In the context of SF-GR these equations are identified with the exact nonlinear
system of the Einstein field equations. For this purpose either the presence of vacuum, or more
generally of arbitrary local classical sources, needs to be taken into account. In addition, in both cases
the allowance is given for the presence of a non-vanishing classical cosmological constant. The latter is
regarded as a 4-scalar universal constant to be ultimately prescribed on phenomenological/theoretical
grounds of some sort (see also related discussion reported in reference [23]). Thus, the issue is whether,
upon due account of all such effects, the same equations may admit exact solutions in which either:
Problem 1a—can be interpreted exactly, i.e., in the whole space-time, as wave-like ones (exact wave-like
solutions); or Problem 1b—reproduces asymptotically, in a suitable sense, the gravitational waves
predicted by linearized theory, i.e., when the conditions of validity of the same perturbative scheme
apply (asymptotic wave-like solutions).

Regarding the second question, early progress was made in the late fifties thanks to the initial
efforts of people such as Bondi, Pirani, and Robinson [24–26]. A notable mention should be made to the
contributions by A. Trautman (1958 [27,28]) and by I. Robinson and A. Trautman (1960–1962 [29,30])
(for a review see also reference [22]) in which it was shown that, in analogy with the wave equation in
Maxwell’s theory, it is possible to formulate appropriate boundary conditions at infinity for the metric
tensor solution of the GR equations such that it coincides with a radiative field; namely, describing
outgoing gravitational waves carrying gravitational radiation. This effectively amounts to require that
at infinity the solution of the Einstein equations recovers the linearized GR theory in a flat background
space-time. However, the actual proof of existence of this type of solution for the metric tensor should
be reached in whole generality; i.e., without any asymptotic decomposition and imposing only the
aforementioned radiative boundary conditions, or by constructing explicitly exact wave-like solutions.
In this connection, it is worth pointing out recent investigations that have analyzed the role of the
cosmological constant on the detection of gravitational waves and their propagation in the de Sitter
space-time [31,32], as well as the related issue of radiation fields generated by accelerated charges in
similar cosmological scenarios [33].

Problem (2) The second problem, which remains still unsolved to date, is about the determination
of an invariant; i.e., 4−scalar, dynamical equation describing the propagation and evolution of
gravitational front-surfaces in the full nonlinear GR theory and whether this can be realized as a
wave equation according to the classification given above, so that the same front-surfaces can be
effectively interpreted as wave-fronts of the gravitational field. Thus, independently of the particular
solution of the Einstein field equations and without invoking a priori, any perturbative scheme, the
goal should be that of prescribing in a suitable way the corresponding wave-front equation holding for
the same solution and describing the dynamics of the gravitational wave-fronts. This should involve,
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in particular, the identification of the corresponding speed of propagation, showing whether or not
it coincides with the speed of light c. Of course, for consistency, a theory of this type should be in
agreement both with the wave-front dynamics of gravitational waves arising in the linearized GR
Einstein equations and with the radiative boundary conditions at infinity proposed by Trautman. In
addition, a theory of gravitational wave-fronts should necessarily satisfy the principle of manifest
covariance and should be able to treat the dynamics of wave-fronts as belonging to the full metric
tensor solution of the Einstein equations, for any kind of gravitational signal, not distinguishing
between background and perturbative wave tensors.

The subject of this paper deals primarily with Problem 2; namely, the determination of the
front dynamics of gravitational signals, the specification of their tensorial properties and their
identification as wave-fronts associated with generally non-linear solutions of the Einstein equations
for the metric tensor. In this context we adopt the definition of wave-fronts given by A.N. Temchin [34]:
“Mathematically, wave fronts are characteristic manifolds of the equations that describe the field.
On them there are discontinuities of the field functions or their derivatives, and a characteristic surface
can therefore separate a region of space in which there is as yet no field from one in which a field is
already present; the motion of such a surface corresponds very precisely to the notion of propagation
of disturbances”. However, as we intend to show below, another possible occurrence (of wave-front) is
the one in which, more generally, on the same surface, the background field tensor remains smooth
together with its partial derivatives. Thus, in principle, in both cases, the motion of such surfaces may
actually be assumed to identify the notion of propagation of gravitational disturbances.

This paper intends to contribute to a better understanding of the classical gravitational wave-front
dynamics in the framework of the standard formulation of GR (SF-GR); namely, the Einstein field
equations. The goal is to point out some crucial mathematical aspects of the problem, which are actually
related to the innermost nature of the Einstein equations; i.e., their Hamiltonian representation and
corresponding wave propagation phenomena. For this purpose the theoretical framework adopted
here is based on the synchronous variational theory of covariant classical gravity (CCG) recently
developed in series of papers (see reference [35] and also references [4,5]), which permits us to
formulate a continuum Hamiltonian representation of the Einstein field equations.

In contrast to earlier Hamiltonian representations to be found in prevailing literature [21,36],
and which ultimately date back to Dirac [37–41], a notable feature of CCG is that it is based on a
manifestly-covariant approach. In this sense, the concept of covariance requires the identification of
a “background” space-time with respect to which it can be expressed. The latter is represented
by a differential 4-dimensional manifold

{
Q4, ĝ

}
endowed with a corresponding background

symmetric metric tensor field ĝ ≡
{

ĝµν

}
, in such a way that the Hamiltonian theory of GR remains

self-consistently defined. Hence, GCC is realized by the construction of a manifestly-covariant
Hamiltonian structure {x, H} formed respectively by a suitable canonical state x = {g, π} and
Hamiltonian density H. Here, g and π are real tensor fields respectively identified with the variational
metric tensor, i.e., the generalized continuum Lagrangian coordinates, and the corresponding canonical
momentum. These are defined upon appropriate configuration and extended momentum spaces Ug

and Uπ . The Hamiltonian structure is defined in such a way that:

• Its Hamiltonian density and canonical variables are respectively identified with a 4-scalar
and 4-tensor with respect to the group of local point transformations which preserve the
differential-manifold structure of

{
Q4, ĝ

}
;

• g ≡
{

gµν

}
=
{

gνµ

}
is a symmetric second-order tensor, generally different from the background

metric tensor ĝ ≡
{

ĝµν

}
≡
{

ĝνµ

}
, while

π ≡
{

Πα
µν

}
≡
{

Πα
vµ

}
(2)

is a third-order 4-tensor, symmetric in the countervariant indexes, referred to as extended canonical
momentum.
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• It is frame-independent; i.e., it holds for arbitrary coordinate systems, and therefore does not
require a preliminary foliation of the space-time

{
Q4, ĝ

}
;

• It is constraint-free, in the sense that the continuum canonical variables are treated as independent.

Given these premises, we therefore consider here the problem of the physical conjecture that,
in the context of classical GR, gravitational signals or general perturbations of the metric field tensor
propagate with a well-definite invariant speed, and in particular, that they can be characterized by a
suitable front surface (namely, a surface associated with the front-propagation of gravitational signals)
which is endowed with a maximum speed of propagation coinciding with the speed of light c. Rather
than investigating per se solutions of the Einstein field equations in their customary representation as
a set of 2nd-order nonlinear PDEs for the components of the metric tensor, our aim was to carry out
the study in the context of the manifestly-covariant Hamiltonian theory of GR previously developed in
references [4,5]. This was realized in terms of a two-step approach. More precisely, first it is shown that
the same Hamiltonian structure {x, H} holding for the variational tensor field x is uniquely associated
with the Einstein field equations holding on the manifold

{
Q4, ĝ

}
. As a result, a set of dynamical

evolution equations (which identify the continuous Hamilton equations) are reached for the canonical
state, with the stationary solution x = {g ≡ g, π ≡ 0} satisfying identically the Einstein field equations.
Notably, as in conventional Hamiltonian theories, a related Hamilton–Jacobi theory is induced on the
configuration space Ug spanned by the variational metric tensor g. This permits us to determine an
appropriate Hamilton–Jacobi equation which is fully equivalent to same canonical equations. Second,
it is shown that the Hamilton–Jacobi equation determined in this way retains its customary meaning
as the equation of wave-front dynamics [5].

However, as discussed below, the same physical interpretation is preserved also in validity
of the “collapse condition” g = ĝ, π = π̂ ≡ 0, which means that it actually prescribes also
the wave-front surface dynamics which is associated with the background metric tensor field ĝ.
Since the same surface is necessarily associated with a 4-scalar equation, it follows, as explained
below, that in validity of the collapse condition the same equation can be cast in the form of a 4-scalar
Klein–Gordon wave equation for a real 4-scalar field S. Such an equation identifies, therefore, the
surface wave-front of the background gravitational metric-tensor ĝ; i.e., the dynamics associated with
the wave-front propagation of in principle arbitrary solutions ĝ ≡

{
ĝµν

}
of the Einstein field equations.

These wave-fronts are referred to here as “gravitational signals”. Notice that their meaning is not
purely mathematical, but their actual physical occurrence might in principle be tested.

The result, it must be stressed, does not require, however, that such solutions have necessarily
a wave-like form. In other words, it does not mean that gravitational waves, besides the linearized
theory, should exist also in a “fully non-linear” regime of the Einstein field equations (i.e., for arbitrary
solutions of the same equations). The proof instead concerns, here, the propagation of the said front
surfaces; i.e., “gravitational signals” only (and not the actual determination of the background field ĝ).
Nevertheless, although a surface of this type could propagate in a given background space-time as a
wave at speed of light, the metric tensor generated by its passage can only be obtained by solving the
Einstein field equations.

Concerning the speed of propagations of wave fronts, different cases with contrasting solutions
have been treated in the literature. For example, in the same work cited above, Temchin asserted
that the characteristic manifold of the equation for the free gravitational field is compatible with the
existence of wave fronts whose velocity may differ from the speed of light c [34]. On the other hand,
L.Ya Arifov [42] concluded that the velocity of a gravitational wave front in a synchronous frame of
reference (of which inertial systems in a Minkowski space-time are a special case) is constant and equal
to the fundamental velocity c. Furthermore, it is well-known that in the framework of linearized theory
of GR, and in the geometric-optic limit, gravitational waves are characterized by null wave vector kµ;
namely, such that in this approximation

gµνkµkν = 0. (3)
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By introducing the representation kµ = ∂SGW
∂xµ , one obtains the fundamental equation for

gravitational waves in the geometric optic limit, which reads

gµν ∂SGW
∂xµ

∂SGW
∂xν

= 0, (4)

where SGW is the so-called eikonal of the gravitational wave [1]. In particular, in such a framework,
the surfaces defined by the condition SGW = const. are customarily identified with wave-fronts of
the gravitational wave. However, a general unambiguous treatment of the problem holding for the
complete GR equations without restrictions to particular types of space-time solutions or choice of
reference frames and yielding a satisfactory proof of the physical properties of gravitational wave-front
dynamics is actually missing.

2. Lagrangian Formalism

In order to address the subject of the paper, the construction of suitable manifestly-covariant
Lagrangian and corresponding Hamiltonian representations of GR is required. The setting of the
theory is based here on a synchronous and manifestly-covariant variational formulation of the Einstein
field equations [35], which belongs to the class of so-called deDonder-Weyl approaches to continuum
field theory [43–49].

The functional is characterized by the adoption of superabundant variables. This is realized by the
distinction between a continuum background metric tensor ĝ =

{
ĝµν

}
and an independent variational

field g =
{

gµν

}
, both represented by symmetric 4-tensor fields with respect to the background

space-time
{

Q4, ĝ
}

. In particular, this means that while performing the variations in the variational
functional the components of gµν ≡ gνµ (and the corresponding conjugate momenta) are considered
all independent, while their extremal values (appearing in the Euler–Lagrange equations) are then
required to coincide with ĝµν ≡ ĝνµ. Concerning the notation, in the paper all hatted quantities refer
to functions of the background tensor ĝ. According to this picture, the covariance properties of the
theory are defined with respect to the background metric tensor ĝ, which therefore raises/lowers
tensor indices and has vanishing covariant derivatives. Instead, the variational tensor g identifies the
physical properties of gravitational field expressed through kinetic and potential contributions in the
corresponding Lagrangian function. In this sense, g has no geometrical interpretation, and therefore it
does not raise or lower indices, and its dynamical equations are determined by the Euler–Lagrange
equations following from the synchronous variational principle.

The manifestly-covariant variational formulation is based on the adoption of the
variational functional

SL

(
g, ∇̂g, ĝ

)
=
∫

dΩL
(

g, ∇̂g, ĝ
)

, (5)

with L ≡ L
(

g, ∇̂g, ĝ
)

being a smooth real 4-scalar Lagrangian, together with the related synchronous
variational principle

δSL

(
g, ∇̂g, ĝ

)
= 0. (6)

Here, δ is the synchronous variation operator indicated above, which for an arbitrary functional
variation δg = g− g1 ≡

{
gµν − g1µν

}
, with g =

{
gµν

}
and g1 =

{
g1µν

}
being two arbitrary symmetric

variational fields, coincides with the Lagrangian Frechet derivative; i.e.,

δ
∫

dΩL
(

g, ∇̂g, ĝ
)
= lim

α→0

∫
dΩL

(
g + αδg, ∇̂ (g + αδg) , ĝ

)
, (7)

while denoting by construction δĝ = ĝ− ĝ1, one requires δĝ ≡ 0. As far as the Lagrangian density L is
concerned, which appears in the variational functional, this is assumed:
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• A smooth real function of the generalized coordinate-field g ≡
{

gµν

}
and its covariant derivative

∇̂g ≡
{
∇̂αgµν

}
, with ∇̂α denoting the covariant derivative operator in which the Christoffel

symbols are associated to the background field ĝ;
• Coordinate-independent, in the sense that it does not explicitly depend on the 4-position r ≡ {rµ}

(however, the implicit dependence through g and ∇̂g still remains).

Therefore, it can be conveniently represented as

L
(

g, ∇̂g, ĝ
)
= LG

(
g, ∇̂g, ĝ

)
+ LΛ (g, ĝ) + LF (g, ĝ) , (8)

where all contributions are considered coordinate-independent. In particular, the contributions LG
and LΛ refer respectively to the so-called gravitational and cosmological-constant Lagrangian terms,
defined as follows (see also reference [50]):

LG

(
g, ∇̂g, ĝ

)
= −κgµνR̂µνh (g, ĝ) + κ

1
2
∇̂αgµν∇̂αgµν, (9)

LΛ (g, ĝ) = −2κΛh (g, ĝ) . (10)

Instead, the term LF in Equation (5) identifies the Lagrangian contribution carried by external
fields different from the gravitational one, which can be prescribed in non-vacuum configurations
and generates the stress-energy tensor Tµν according to the customary variational derivation [1].
The notations in the previous equations are standard ones; namely, R̂µν is the Ricci tensor defined with

respect to the background metric tensor ĝµν, κ identifies the constant κ = c3

16πG , Λ is the cosmological

constant, and h
(

Z, Ẑ
)

is the 4-scalar multiplicative factor.

h (g, ĝ) ≡
(

2− 1
4

gαβgαβ

)
, (11)

where by definition gαβgαβ 6= δα
α for variational curves. We notice, in particular, that the function

h (g, ĝ) originates from the invariance property of the Lagrangian and the use of superabundant
variables. Its synchronous variation warrants the manifest covariance property of the variational
theory and replaces the contribution arising from the variation of

√−g in asynchronous principles.
From the physical point of view the function h (g, ĝ) can be interpreted as a measure of the discrepancy
between the virtual (i.e., variational) fields gµν from the background tensor ĝµν for which instead,
identically, ĝµν ĝµν = 4, and is such that h (ĝ, ĝ) = 1.

A property to be mentioned is the inclusion in the Lagrangian function of the kinetic term
proportional to the square of the generalized field velocity ∇̂g. Such types of contributions are
necessarily ruled out in asynchronous principles, where by definition the variational metric tensor
shares the same properties of the extremal one, and in particular it is allowed to raise/lower indices,
so that identically, its covariant derivatives expressed in terms of Christoffel symbols are vanishing.
In contrast, the kinetic term in the synchronous principle reveals itself to be crucial since: (a) it
permits us to reach a representation of the Lagrangian for the gravitational field which has a structure
analogous to that of other classical continuum fields, pointing out the role of the customary Ricci
contribution to be a potential term; (b) it affords the derivation of corresponding classical Hamiltonian
and Hamilton–Jacobi theories for the Einstein field equations, according to the developments reported
in references [4,5]; (c) it is essential for the construction of a manifestly-covariant quantum gravity
theory with canonical quantization method [50,51].

3. Hamilton and Hamilton–Jacobi Representations

Based on the Lagrangian variational setting presented above, in this section both the Hamilton (H)
and Hamilton–Jacobi (HJ) theories holding for the variational tensor fields g and π are detailed. Notice
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that due to the choice (2) of the canonical momentum, these theories in reference [4] are referred to as
extended H and HJ representations of GR (a label here omitted for brevity). This refers to the adoption
of a representation in which the canonical state takes the form x ≡

{
gµν, Πα

µν

}
, with the canonical

momentum π ≡
{

Πα
µν

}
being a third-order 4-tensor. This allows one to display the relationship of

the synchronous approach with the background space-time metric tensor ĝµν and the extremal field
equations represented by the classical Einstein equations.

The Hamiltonian representation is realized by the classical Hamiltonian structure {x, H} which
is formed by an appropriate extended 4-tensor canonical state x ≡

{
gµν, Πα

µν

}
and a suitable 4-scalar

Hamiltonian density H (x, x̂), where gµν represents the Lagrangian coordinate expressed by the
second-order variational field 4-tensor of the gravitational field, and Πα

µν is its conjugate third-order

momentum 4-tensor. By construction the state x̂ ≡
{

ĝµν, Π̂α
µν ≡ 0

}
denotes the extremal state

associated with the background space-time. This Hamiltonian representation, due to the prescription
(2), is characterized by a canonical momentum (conjugate to the Lagrangian coordinates g) given by

Πα
µν = κ∇̂αgµν, (12)

which is non-vanishing, since gµν 6= ĝµν, and must therefore be considered non-extremal. On the
other hand, by construction, it follows that the extremal value of Πα

µν, namely, Π̂α
µν = κ∇̂α ĝµν vanishes

identically. The Hamiltonian density H = H (x, x̂) associated with the Lagrangian L
(

g, ∇̂g, ĝ
)

is then
provided by the Legendre transform

L
(

g, ∇̂g, ĝ
)
≡ Πα

µν∇̂αgµν − H (x, x̂) , (13)

and is found to be
H (x, x̂) = HG (x, x̂)− LΛ (g, ĝ)− LF (g, ĝ) , (14)

where in particular,

HG (x, x̂) ≡ 1
2κ

Πα
µνΠµν

α + κgµνR̂µνh. (15)

Thus, introducing the Hamiltonian action functional

SH (x, x̂) =
∫

dΩL (x, x̂) , (16)

with L (x, x̂) identifying now the Lagrangian density (13) expressed in canonical variables,
the synchronous Hamilton variational principle becomes

δSH (x, x̂) = 0, (17)

for which the variation is performed with respect to the canonical state; i.e., in terms of arbitrary
independent synchronous variations δx =

{
δgµν, δΠα

µν

}
. Hence, this means that now the synchronous

variation operator δ in Equation (17) is identified with the Hamiltonian Frechet derivative, so that:

δ
∫

dΩL (x, x̂) = lim
α→0

∫
dΩL (x + αδx, x̂) . (18)
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The corresponding variational derivatives yield the so-called extended continuum
Hamilton equations

∇̂αΠα
µν = −∂H (x, x̂)

∂gµν , (19)

∇̂αgµν =
1
κ

Πµν
α , (20)

so that the second one recovers as usual the definition of the canonical momentum. These equations
must be supplemented by suitable boundary conditions for the extended canonical state x ≡{

gµν, Πα
µν

}
, so that the Hamiltonian problem defined in this way is equivalent to the Einstein field

equations. More precisely, the connection is established provided gµν is identified with the extremal
solution ĝµν, so that respectively Π̂α

µν and ĝαβ satisfy, identically, the equation Π̂α
µν = 0 and the Einstein

equations.
In terms of the extended Hamiltonian structure it is possible to develop a theory of canonical

transformations yielding a corresponding manifestly-covariant extended Hamilton–Jacobi theory.
To this aim, we denote by x ≡

{
gβγ, Πα

βγ

}
and X ≡

{
Qβγ, Pα

βγ

}
the set of canonical conjugate variables

of the two canonical states related by a canonical transformation, whereby x̂ ≡
{

ĝαβ, Π̂α
µν = 0

}
and

the functional dependence of X is taken to be of the general form X = X (x, x̂, r).
The canonical map transforms the Lagrangian density L (x, x̂) ≡ L

(
g, ∇̂g, ĝ

)
given by

Equation (13) in terms of the equation

L (x, x̂) = LT

(
X, X̂, r

)
+ ∇̂αSα, (21)

where LT

(
X, X̂, r

)
is the transformed Lagrangian which is taken to be of the form

LT

(
X, X̂, r

)
= Pα

µν∇̂αQµν − K
(

X, X̂, r
)

. (22)

Here, K
(

X, X̂, r
)

is the transformed Hamiltonian function, while Sα = Sα (x, X, r) can
be interpreted as an arbitrary 4-vector mixed-variable generating function (gauge function)
of the canonical transformation. In particular, it is possible to prescribe Sα in terms of the
Legendre transformation

Sα = −QµνPα
µν + Sα

2 (g, P, r) , (23)

where in the second term on the rhs the internal repeated index α is dummy. As a consequence of the
previous equation, Equation (21) requires that the transformed Hamiltonian density K must be allowed
to be also explicitly dependent on the 4-position r. Then, the following transformation equations are
obtained:

Πα
µν =

∂Sα
2 (g, P, r)
∂gµν , (24)

Qµν =
∂Sα

2 (g, P, r)
∂Pα

µν
, (25)

K
(

X, X̂, r
)
= H (x, x̂) + ∇̂αSα

2 (g, P, r)
∣∣∣
(g,P)

, (26)

where in the second equation the summation on the index α is understood, while in the last term of the
third equation the condition on the covariant derivative must hold for each index α. Equations (24)
and (25) identify respectively half of the inverse and direct canonical transformations.
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Among the possible canonical transformations produced by a mixed-variable generating function
Sα that can be introduced, we consider the particular one which brings to transformed fields X which
are constant, in the sense that

∇̂αPα
µν =

[
Pα

µν, K
]

α
≡ 0, (27)

∇̂αQµν = [Qµν, K]α ≡ 0, (28)

where use is made of canonical Poisson bracket formalism (see reference [4]). The previous constraint
equations require that the transformed Hamiltonian K cannot depend on the transformed state X.
Hence, it can only be a function of the type K = K (x̂, r), and in particular, it can be proven that K can
always be defined in such a way that K (x̂, r) = 0; namely, it vanishes identically.

A particular realization of Equations (27) and (28) is provided by the identification X = x̂. As
a consequence, both Qµν and Pα

µν are necessarily functions of the background metric tensor ĝαβ only.
Therefore, from Equation (26), invoking also Equation (24), it follows that

H
(

g,
∂S2 (g, P, r)

∂g

)
+ ∇̂αSα

2 (g, P, r)
∣∣∣
(g,P)

= 0, (29)

to be denoted as continuum extended Hamilton–Jacobi equation for the Hamilton 4-vector generating function
Sα

2 (g, P, r) applying to the variational state gµν. Notice that the solution of Equation (29) must be
determined letting initially Pα

βγ 6= 0. From the previous equation, the 4-vector field Sα
2 can then be

prescribed by imposing the constraint equation as well:

Qµν =
∂Sα

2 (g, P, r)
∂Pα

µν

∣∣∣∣∣
P=0

. (30)

Provided the condition on the Hessian determinant det
∣∣∣∣ ∂2Sα

2 (g,P,r)
∂gµν∂Pα

µν

∣∣∣∣ 6= 0 is satisfied, Equation (30)

realizes an implicit equation for gβγ. This condition warrants the existence of the inverse canonical
transformation. In fact, once the generating function Sα

2 is determined by solving the Hamilton–Jacobi
equation, the vector Equation (30) together with Equation (24) yields the implicit function

gβγ = gβγ (ĝ, r) , (31)

whereby the canonical momenta are provided by Equation (24). Finally, as shown in references [4,5],
it can be proven that Equation (29) is equivalent to the set of extended Hamilton equations, which
means that the fields gβγ and Πβγ

α satisfy continuum canonical equations as well. This means that the
continuum extended Hamilton–Jacobi equation is equivalent to the continuum extended Hamilton
equations, and the solutions of the Hamilton–Jacobi problem are equivalent from a mathematical
point of view to the solutions of the set of canonical equations. Both equations hold in principle for
arbitrary canonical fields x, in which the variational 4-tensor gµν is still considered different from the
background metric tensor ĝµν.

4. Induced Hamilton–Jacobi Equation on {ĝ}

The extended Hamilton and Hamilton–Jacobi theories presented in previous sections apply to the
variational tensor field gµν defined in the corresponding 10−dimensional space Ug spanned by the
real symmetric tensor g =

{
gµν

}
, which in the synchronous variational approach is kept distinguished

and independent from the background metric tensor ĝµν. Nevertheless, classical Euler–Lagrange
or Hamilton equations can be shown to recover the Einstein field equations when the “projection”
on the space-time metric tensor ĝ =

{
ĝµν

}
is performed. For the continuum extended Hamilton
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equations, this is realized by setting that the following “collapse conditions” hold everywhere in the
space-time

{
Q4, ĝ

}
:

gµν = ĝµν, (32)

Πα
µν = 0, (33)

to be referred to in the following as the {ĝ} set, where the second equation follows from the
identification of canonical momentum in terms of the covariant derivative of gµν, which vanishes
for gµν = ĝµν due to metric conservation and Christoffel symbols definition. Notice that when the
fields gµν and Πα

µν are “collapsed” according to Equations (32) and (33), the solution of the continuous
Hamilton Equations (19) and (20) coincides identically with the same fields (32) and (33). In fact,
Equations (32) and (33) then imply:

− ∂H (x, x̂)
∂gµν =

[
∂

∂gµν

(
κgµνR̂µνh− LΛ (g, ĝ)− LF (g, ĝ)

)]
g=ĝ

= 0, (34)

which can be shown [50] to recover exactly the classical Einstein field equations for {ĝ}.
Given these premises, it is therefore meaningful to consider the analogous projection on {ĝ} of the

Hamilton–Jacobi equation and to study the implications for the wave-like description of the dynamics
of ĝµν. To this aim, we start from the extended Hamilton–Jacobi Equation (29). When the condition
(33) applies, from Equation (24) one has that

Πα
µν =

∂Sα
2

∂gµν = 0, (35)

Sα
2 (ĝ, P = 0, r) = Ŝα (ĝ, r) . (36)

Hence, when both conditions (32) and (33) apply simultaneously, the two 4-scalar contributions
entering the Hamilton–Jacobi Equation (29) reduce respectively according to the following relations:

H
(

g,
∂S2 (g, P, r)

∂g

)
→ Ĥ ≡ Ĥ (ĝ) , (37)

∇̂αSα
2 (g, P, r)

∣∣∣
(g,P)

→ ∇̂αŜα (ĝ, r) . (38)

The first one determines the Hamiltonian function on {ĝ}, in which the quadratic contribution of
the canonical momenta characteristic of the Hamiltonian theory vanishes identically in such a limit.
This limit quantity is denoted with the symbol Ĥ and for shortness of notation we only indicate the
functional dependence on the space-time metric tensor ĝµν to stress that there is no more dependence
on gµν here. It is nevertheless understood that the same Hamiltonian function can still depend on
external field contributions and on possible classical cosmological constant term according to the
definition (14). Concerning instead the relation (38), again we have introduced a short notation
by denoting the Hamilton principal function on {ĝ} as Ŝα. In conclusion, the projected extended
Hamilton–Jacobi equation on the configuration space-time becomes

Ĥ (ĝ) + ∇̂αŜα (ĝ, r) . = 0. (39)

This represents an equation for the 4-vector field Ŝα which depends only on space-time
contributions on ĝ due to the source Hamiltonian term Ĥ. By definition, the latter coincides with the
extremal value of the original Lagrangian function, since the kinetic term proportional to covariant
derivatives is null. The previous equation must be intended as a boundary-value problem (in the
domain D4 with boundary ∂D4) associated with the same PDE for the unknown real 4-vector field Ŝα,
with ĝµν to be considered prescribed (i.e., a solution of the Einstein equations). In particular, here we
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shall identify the boundary ∂D4 either with the improper set of D4, requiring that the same boundary
is asymptotically-flat, or with the boundary of the bounded subset of D4, denoted as DS where the
source term Ĥ (ĝ) is non-zero and bounded. In contrast, in vacuum one expects

Ĥ (ĝ) = 0 (40)

identically, so that the vector field Ŝα (ĝ, r) is necessarily divergence-free:

∇̂αŜα (ĝ, r) = 0. (41)

Notice that Equation (41) is identically fulfilled if Ŝα = Ŝα (ĝ), thanks to the chain rule, and
since by construction ∇̂α ĝµν = 0. The physical meaning of Ĥ is therefore that of carrying the set of
invariant 4-scalars of the Lagrangian fields, which in the case of the gravitational field is given by the
curvature Ricci 4-scalar R̂ ≡ ĝµνR̂µν. Hence, according to Equation (39), the dynamics of the field Ŝα is
determined by such invariant field densities, which are by definition observable quantities. It follows
that necessarily also Ŝα must be related to a suitable observable field, to be properly identified. In
particular, since Equation (39) is generated by a Hamilton–Jacobi equation for the wave-front 4-vector
Sα

2 on {ĝ}, one can expect that its projection on {ĝ} identifies the wave-front 4-vector field Ŝα associated
with the space-time dynamical tensor ĝµν. In fact, the projection of the extended Hamilton–Jacobi
cannot generate any new additional physical field besides those originally present in the Hamiltonian
function H. On the other hand, while external field contributions (e.g., due to the electromagnetic field)
can be included or not, the space-time metric term is always present, even in a flat space-time limit
through index saturation. Therefore, in view of these reasons for the Equation (39) to hold also in the
case of vacuum external fields, the wave-front 4-vector field Ŝα must be in some sense suitably related
to the wave-front dynamics associated with the gravitational space-time metric tensor ĝ. However,
as a final consideration, we notice that the same projected Hamilton–Jacobi equation inherits the
arbitrariness originally present in Equation (29) for the determination of the 4-vector field Sα

2 . In fact,
the 4-scalar Equation (39) cannot uniquely determine the four components of the 4-vector Ŝα, which
therefore, at this stage, remains undetermined. The issue of its unique prescription will be sorted out
in the next section.

5. Reduced Hamilton–Jacobi Theory on {ĝ}

The manifestly-covariant Hamilton–Jacobi theory determined by Equations (29) and (30) yields
a wave-like description for the dynamics of the continuum tensorial field gµν with respect to the
background metric tensor ĝµν whose solution is equivalent to that of underlying Hamilton or
Euler–Lagrange equations. This requires the determination of the Hamilton 4-vector generating
function Sα

2 , which in such a framework preserves the meaning of being a tensor related to
the field wave-front. Properties of such Hamilton–Jacobi wave theory and implications for its
manifestly-covariant quantization were studied in reference [5].

More precisely, in that work the problem of constructing a Hamilton–Jacobi theory for the
gravitational field gµν which takes a form suitable for its quantum representation and the development
of a corresponding manifestly-covariant quantum gravity theory was addressed. However, because
of the arbitrariness in the determination of the 4-vector function Sα

2 by the 4-scalar Hamilton–Jacobi
equation, it turns out that the extended formulation (of the type indicated above) is not appropriate
for this task, since a requisite to satisfy is that the canonical variables should have the same tensorial
dimension, with the Hamilton principal function being represented by a single 4-scalar real function.
The mathematical procedure identified in reference [5] to achieve this kind of representation is based
on the introduction of a suitable projection operator Σ, which is prescribed to act on the Hamilton
principal function in such a way to lower its tensorial order, while leaving unchanged the underlying
canonical structure of the theory. As a result, the action of Σ can generate a corresponding reduced
Hamilton–Jacobi theory which proves to be equivalent to the extended one. The operator Σ can be



Symmetry 2020, 12, 216 13 of 25

realized in terms of the 4-vector Σ ≡ Σα, so that the projection is interpreted as occurring along a
prescribed tensorial direction given by the same Σα. It must be stressed that the arbitrariness which
characterizes the Hamilton and Hamilton–Jacobi theories developed above for the determination of
the canonical tensorial momenta and Hamilton principal function appears as a characteristic feature
of the manifestly-covariant deDonder-Weyl type of approach to continuum field dynamics. As a
consequence, in such a framework the search for reduced-dimensional canonical theories arises as an
unavoidable step in order to gain further physical insight of the theory.

Given these considerations, we now revert our attention to the projected Hamilton–Jacobi
Equation (39), which includes the particular case of Equation (41), both obtained in the previous
section and holding on the configuration space-time of metric tensors ĝµν. This equation inherits from
the Hamilton–Jacobi Equation (29) holding for gµν the same type of arbitrariness in the definition of
the 4-vector Hamilton principal function. It is therefore necessary to identify a procedure to reduce
the tensorial order of the function Ŝα associated with the wave dynamics of the classical tensor ĝµν.
This amounts to assume a representation for Ŝα, in terms of a single 4-scalar unknown function S, that
must be of the type

Ŝα = ΣαS, (42)

with Σα being a suitable 4-vector field. This is realized either in terms of a real function or covariant
linear and local differential operator to be specified, while S = S (ĝ, r) is an unknown 4-scalar field to
be determined via the projected Hamilton–Jacobi Equation (39). Due to the arbitrariness of Σα and S it
follows that both functions are actually prescribed up to an arbitrary multiplicative scalar gauge and
hence can be equivalently represented as

Ŝα = κ1Σα 1
κ2

S, (43)

where for generality κ1 = κ1(ĝ, r) and κ2 = κ2(ĝ, r) identify in principle arbitrary 4-scalar real
functions. Thus, if Ŝα is gauge invariant (i.e., it is an observable) it follows that κ1(ĝ, r) = κ2(ĝ, r), and
in particular, in the case where Σα is a linear operator, it must commute with κ1(ĝ, r), so that necessarily
Σακ1(ĝ, r) = 0.

In order to reach an appropriate identification of Σα in Equation (42) we introduce a number of
physical and mathematical requirements that such a 4-vector should satisfy:

(1) In the framework of the projected Hamilton–Jacobi equation, the Hamilton principal function
Ŝα must be related to the wave-front dynamics of ĝµν, as discussed after Equation (39). This means
that the prescription of Σα must preserve the character of Equation (39) to be a wave-equation, in the
sense of the classification detailed in Section 1.

(2) For greater generality it is assumed that the function Ŝα defined on the set {ĝ} is not
continuously related to the Hamilton principal function Sα

2 (g, P, r) so that actually

lim
g→ĝ

Sα
2 (g, P, r) 6= Ŝα (ĝ, r) . (44)

(3) One notices that in the case of validity of the vacuum field Equation (41), a particular possible
realization for Σα is achieved be identifying it with a null constant 4-vector; namely, such that Σα = kα

and ∇αkα = 0 with kαkα = 0. From the physical standpoint this corresponds to the particular case
in which Ŝα describes a plane wave propagating with the speed of light c. However, the consistency
of such a particular solution should be verified a posteriori in terms of the more general collapsed
Equation (39).

(4) The prescription of Σα, however, should apply in both cases of vacuum and non-vacuum
sources in Equation (39); namely, respectively when Ĥ = 0 and Ĥ 6= 0. This means, therefore, that Σα

can only depend on ĝ and not on possible external field contributions.
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(5) The representation of Σα should permit the identification of the product ΣαS in terms of the
4-vector field determined by the propagation of the wave-front surface associated with ĝµν, should
be consistent with the small amplitude wave equation associated with the classical Einstein field
equations, and should include, in particular, the case of flat space-time given by the Minkowski tensor
ĝµν = ηµν.

Collecting all these requirements, and in particular, the last one, it is possible to verify that the
only admissible representation for Σα is provided by the choice

Σα ≡ ∇̂α, (45)

with ∇̂α denoting again the covariant derivative; i.e., defined with respect to the same background
metric tensor ĝµν via the related Christoffel symbols. Substituting Equation (45) into Equation (42)
yields, therefore,

Ŝα = ∇̂αS (ĝ, r) , (46)

so that effectively the initial arbitrariness of Ŝα is sorted out and the unknown function remains now
only the 4-scalar S, as is required for the consistency of Equation (39). Recalling the physical meaning
of the Hamilton–Jacobi equation in classical mechanics, in the following the function S will be referred
to as the space-time 4-scalar wave-front. The result (46) represents the sought solution to the problem
of the search for a reduced Hamilton–Jacobi theory on ĝµν. This outcome will be implemented in next
section to obtain a 4-scalar wave-front equation for the propagation of classical gravitational signals on
the space-time ĝµν.

6. The Klein–Gordon Gravitational Wave-Front Equation

In this section we derive the final form of the reduced Hamilton–Jacobi equation induced
on ĝµν, showing that upon resolving the indeterminacy on the representation of the Hamilton
principal function Ŝα according to the previous considerations, this can be realized by a generally
non-homogeneous Klein–Gordon type of differential equation for a 4-scalar field in curved space-time.
In this regard, the following proposition holds.

Theorem 1 (Klein–Gordon gravitational wave-front equation). Given validity of Equation (39) and the
representation (46), it follows that the generating function Ŝα ≡ Ŝα (ĝ, r) can be taken of the general form

Ŝα (ĝ, r) = ∇̂αS (ĝ, r) + σα (ĝ, r) , (47)

where, respectively, S (ĝ, r) and σα (ĝ, r) satisfy the equations

Ĥ (ĝ, r) +�S (ĝ, r) = 0, (48)

∇̂ασα (ĝ, r) = 0. (49)

Here, Ĥ ≡ Ĥ (ĝ, r) and � ≡ ĝαβ∇̂α∇̂β denotes the D’Alembertian differential operator in the
background curved space-time ĝαβ. Then, provided σα (ĝ, r) satisfies the boundary condition

σα (ĝ, r)|∂D4 = 0, (50)

necessarily, it coincides with the null solution; namely, σα (ĝ, r) ≡ 0. The Equation (48) is referred to as the
non-homogeneous Klein–Gordon gravitational wave-front equation for the space-time 4-scalar wave-front S
with source term given by the Hamiltonian Ĥ (r).

Proof. First, Equation (49) follows directly from the validity of Equation (48), when the decomposition
(47) is introduced in Equation (39). Second, since Equation (49) is a first-order PDE, Equation (50)
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is sufficient to warrant the uniqueness of the null solution in the whole domain. As a consequence,
the initial Hamilton–Jacobi Equation (39) reduces to Equation (48).

Notice that the term σα (ĝ, r) can represent in principle any function obtained by saturation of
higher-order tensors; for example, of the type σα (ĝ, r) = ∇̂βhβα (r), with hβα (r) being an arbitrary
smooth symmetric real tensor field. All contributions of this type are automatically ruled out by
the boundary condition indicated above, although it is obvious that such a choice is in principle
non-unique. The virtue of the decomposition (47) and of the boundary condition (50) is twofold:
(1) first it introduces the dependence in terms of the 4-scalar S (ĝ, r), to be denoted as the gravitational
wave-front function, as required by the considerations displayed in Section 5; (2) second, the related
hypersurfaces S (ĝ, r) = const. can in principle be associated with a wave-front surface propagating
gravitational signals in a background space-time ĝµν (r). Indeed, we notice that from the previous
considerations, it follows that only Equation (48) survives. The wave equation obtained in this way
must be supplied by suitable boundary conditions, which can be chosen to be the same ones prescribed
by Trautman in references [27,28] to extract radiation-field solutions from the Einstein field equations.
Accordingly, Equation (48) is identified with the non-homogeneous Klein–Gordon wave-like equation
for the real 4-scalar field S (ĝ, r). This determines the dynamics of the hypersurface S (ĝ, r) = const.
and its propagation direction, given by the 4-vector ∇̂αS (ĝ, r). Therefore, in this picture, S (ĝ, r) can
be interpreted as a physical observable associated with gravitational wave-dynamics generated by the
“potential energy density” Ĥ (ĝ, r).

A remark, however, must be made concerning the correct physical meaning of Equation (48),
in order to avoid misunderstandings. First, the 4-scalar field S (r) is uniquely related to the same
space-time metric tensor ĝµν (r) and expresses a property of its dynamics. Hence, it must not be
understood as an external scalar field dynamically evolving over a prescribed space-time according
to a linear wave equation and such that for it a linearity superposition principle applies. For the
same reason, it would be wrong to believe that the Klein–Gordon equation thus determined can be
complementary to the GR equations and/or can solve for the metric tensor itself. The physical meaning
of Equation (48) is as follows. First, the background space-time ĝµν (r) is provided as a solution of the
Einstein field equations. This allows for the definition of the D’Alembertian operator �. Then, if a
gravitational signal is generated and propagates in such a space-time, Equation (48) tells us that the
dynamical propagation of the wave-front associated with such a gravitational disturbance evolves
in the given background space-time with a wave character according to the Klein–Gordon wave
equation supplied by appropriate initial/boundary conditions [52]. In view of the definition adopted
in the present treatment for the wave-front surface (see the Introduction), intended as a discontinuity
surface separating two different space-times, one has that necessarily the propagation of the wave-front
S (ĝ, r) leaves behind its passage a new space-time metric tensor. Its precise determination can only be
obtained by solving the full set of non-linear Einstein field equations and the associated initial-value
mathematical problem. In this sense the superposition principle does not apply in such a case for the
gravitational 4-scalar wave-front S (r), consistent with the non-linear character of the Einstein field
equations. In fact, let us suppose that two wave-front surfaces of different origin cross each other on
some crossing domain. Each of them brings a new space-time solution, and the Einstein equations
must be consistently solved in order to calculate the resulting space-time metric tensor. The latter one
in fact is required in order to define the D’Alembertian operator. Hence, after crossing, the information
carried by each wave-front cannot simply sum-up, but can only be propagated according to the
Klein–Gordon equation after definition of the new differential operator and prescription of novel
initial/boundary conditions. From the physical point of view, unless particular perturbative schemes
or linearization techniques in weak field regimes can apply to the GR equations, the superposition
principle fails to hold in the gravitational case of Equation (48). Indeed, every 4-scalar field S (r),
although propagating with a wave differential equation, modifies the space-time and this in turn
affects the differential operator propagating its wave dynamics. This type of self-field interaction
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thus inhibits the possibility of realizing in the general case a linear superposition principle for the
gravitational wave-front surfaces.

Finally, as a note added in proof, it is interesting to report here an alternative derivation of the
Klein–Gordon Equation (48). Although apparently conceptually different, the new derivation is shown
to be equivalent to the one indicated above. For definiteness, let us consider here the general case of
non-vacuum fields with position-dependent sources for which the Hamiltonian density takes the form:

H = H
(

g,
∂S2 (g, P, r)

∂g
, r
)

; (51)

namely, it can also be dependent explicitly on the 4-position. Let us prove that in such a case the
Klein–Gordon Equation (48) follows directly from the H-J Equation (29). For this purpose we intend to
investigate the form of the same H-J Equation (29) under the action of suitable gauge transformations
which, instead, leave invariant the continuous Hamilton Equations (19) and (20).

One notices preliminarily that the same Hamilton equations are necessarily invariant with respect
to the action of the following two gauge transformations:

Sα
2 (g, P, r)→ Sα

2 (g, P, r) = Sα
2 (g, P, r) + ∇̂αS(ĝ, r)− Sα

2

(
ĝ, P̂ = 0, r

)
, (52)

H
(

g,
∂S2 (g, P, r)

∂g
, r
)
→ H

(
g,

∂S2 (g, P, r)
∂g

, r
)
− H

(
ĝ,

∂S2 (g, P, r)
∂g

∣∣∣∣
g=ĝ

, r

)
, (53)

where P denotes the transformed canonical momenta which are assumed independent of g =
{

gµν

}
,

and S(ĝ, r) is a priori an in principle arbitrary real and suitably smooth 4-scalar function. Let us
prove first the invariance of the same Equations (19)–(20) with respect to Equation (52). Indeed,
by construction denoting by ∂/∂gµν the partial derivative performed keeping constant ĝ =

{
ĝµν

}
,

it follows that

∂∇̂αS(ĝ, r)
∂gµν ≡ 0, (54)

∂Sα
2

(
ĝ, P̂, r

)
∂gµν = 0, (55)

while it is obvious that both ∇αS(ĝ, r) and Sα
2

(
ĝ, P̂, r

)
are also independent of (∂/∂gµν)Sα

2 (g, P, r).
This proves the invariance property for (52). Next, let us consider the Hamiltonian density
transformation (53). If follows that if the collapse condition g = ĝ holds identically,

then H
(

g, ∂S2(g,P,r)
∂g , r

)
− H

(
ĝ, ∂S2(g,P,r)

∂g

∣∣∣
g=ĝ

, r
)

vanishes, with ĝ denoting the solution of the Einstein

field equations. This requires for consistency that in the canonical equation for the momentum (19) the
further requirement (to be referred to as collapse condition for the momentum)

∇̂αΠα
µν

∣∣∣
g=ĝ

= ∇̂α

∂Sα
2

(
g, P̂, r

)
∂gµν

∣∣∣∣∣∣
g=ĝ

= 0 (56)

should hold too. Hence, provided Equation (56) is fulfilled, (53) indeed realizes a gauge transformation
for the Hamilton Equations (19) and (20). We omit here for brevity the detailed discussion about the
validity of such an equation. Next, we consider the effect of the same gauge transformations on the H-J
Equation (29). Despite the gauge property indicated above, it is immediate to show that the 4-scalar
function S(ĝ, r) is actually not arbitrary; i.e., once the same H-J Equation (29) is taken into account.
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In fact, thanks to the previous gauge transformations and the aforementioned invariance property, it is
obvious that the same H-J equation can be equivalently rewritten as:

H
(

g,
∂S2 (g, P, r)

∂g
, r
)
− H

(
ĝ,

∂S2 (g, P, r)
∂g

∣∣∣∣
g=ĝ

, r

)
+ ∇̂αSα

2 (g, P, r)
∣∣∣
(g,P)

= 0. (57)

As a consequence, upon considering the “collapse” condition, i.e., letting g = ĝ in the previous
equation, and upon noting that the second term in the previous equation reduces exactly to

∇̂αSα
2 (g, P, r)

∣∣∣
(g,P)

≡ �S(ĝ, r), (58)

one concludes that the 4-scalar real function S(ĝ, r) must necessarily satisfy the homogeneous
Klein–Gordon equation

�S(ĝ, r) = 0. (59)

This shows that, provided Equation (53) realizes a gauge transformation (which in turn
requires validity of Equation (56)), then even in the case of non-vanishing non-vacuum sources
the non-homogeneous Equation (48) actually reduces to the homogeneous form (59).

Hence, excluding the trivial case S(ĝ, r) ≡ 0 and provided the same 4-scalar function S(ĝ, r) is
twice differentiable and with continuous second partial derivatives, the same function can therefore be
viewed as a surface wave-function. In other words, according to such hypothesis the equation

S(ĝ, r) = const. (60)

can be interpreted as a wave-front surface, while Equation (59) identifies the corresponding
wave-front equation describing its space-time propagation in the space-time

{
Q4, ĝ

}
. Incidentally,

what anticipated now becomes obvious, namely that, in contrast to the customary definition
(see reference [34]), the front-surface defined by Equation (60) does not require in principle that the
background metric tensor ĝ should exhibit a discontinuity on the same surface. The first circumstance
occurs, for example, if the surface wave-front corresponds to the propagation of the background
space-time solution in a subdomain of a different space-time, for example a space-time which,
before propagation takes place, is locally flat. However, more generally even if no discontinuity occurs,
the propagation of the wave-front surface (60) may still occur, as corresponds to the propagation of an
arbitrary smooth and finite width “gravitational signal”.

Nevertheless, as discussed in the next section, if the space-time
{

Q4, ĝ
}

is asymptotically flat one
expects that at infinity the wave-front S(ĝ, r) must necessarily recover the customary small-amplitude
gravitational wave form typical of the Einstein LGF equations.

7. Radiation-Field Solutions

In this section we analyze some mathematical aspects of the solutions of the wave Equation (48),
showing, in particular, that these include radiation fields. First we notice that the wave Equation (48)
is generally non-linear in terms of the metric tensor ĝµν (r), and it is exact, i.e., no asymptotic
approximations have been invoked for its construction. Hence, in principle it can be used to describe
non-linear phenomena in the gravitational field wave dynamics. In order to illustrate this point,
we represent the solution of Equation (48) in the form

S (ĝ, r) = SR (ĝ, r) + SS (ĝ, r) , (61)

where respectively the “source” field SS (ĝ, r) denotes a particular solution of the inhomogeneous
Equation (48) for the given source term Ĥ (ĝ, r), while the “radiation” field SR (ĝ, r) is a solution of the
corresponding homogeneous equation. In fact, the general solution of the boundary-value problem
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associated with the Klein–Gordon equation is necessarily of the type (61). In particular, here we shall
impose different boundary conditions for SS (ĝ, r) and SR (ĝ, r).

Let us first construct explicitly the solution for SS (ĝ, r). In this case we require that SS (ĝ, r) is
prescribed at infinity; namely,

SS (ĝ, r)|∂D4 = 0. (62)

Thanks to such a boundary condition, Equation (48) can be formally solved in terms of the
Hadamard Green function GH (r, r′), yielding

SS (r) = −
∫

D4
dΩGH

(
r, r′
)

Ĥ
(

ĝ, r′
)

. (63)

We notice that from Equation (63) the wave-front at 4-position rµ depends non-locally on ĝ (r),
and therefore, due to the Einstein causality principle, only the retarded Hadamard Green function must
be retained in the integral appearing on the rhs of Equation (63). Notice that Equation (63) contains
in principle the non-linear effects arising from all the prescribed sources Ĥ (ĝ, r′) (both vacuum and
non-vacuum sources).

Let us now consider the problem of determining SR (ĝ, r). This satisfies by construction the
homogeneous real Klein–Gordon equation

�SR (ĝ, r) = 0. (64)

This equation is analogous to the wave equation for the electromagnetic radiation in vacuum. Its
solution must therefore be associated with gravitational wave-like signals propagating in vacuum.
Notably, this means that these wave solutions must propagate at the speed of light c. To determine
explicitly their precise form, one has to prescribe appropriate boundary conditions. In principle
these can be defined both at infinity (on ∂D4), and on the boundary of suitable bounded subsets ∂DS,
requiring generally that in both cases

SR (ĝ, r)|∂D4 = SR,∂D4 (ĝ, r) 6= 0, (65)

SR (ĝ, r)|∂DS
= SR,∂DS (ĝ, r) 6= 0, (66)

where on the rhs SR,∂D4 (ĝ, r) and SR,∂DS (ĝ, r) denote suitable 4-scalar fields. Then, generally,
a non-trivial solution of Equation (64) may exist. On the other hand, if both boundary conditions for
SR (ĝ, r) vanish, then only SS (ĝ, r) survives.

To provide a physical interpretation of the vacuum wave equation, we consider the case of a
solution characterized by a discontinuous wave front occurring on the hypersurface separating the
domain DW , which encloses DS where the field SR has propagated, from the complementary set
Dext, where instead SR is assumed everywhere constant. For definiteness, we consider an eikonal
representation for SR, requiring that ∇̂αSR is given by the real part of

∇̂αSR =
(
∇̂αψ

)
AeiψΘ (ψo − ψ) . (67)

Here, the notation is as follows. First, ψ = ψ (r) is a real 4-scalar field, which in the domain Dext

takes the constant value ψo. Furthermore, we assume that ψ and A are defined (i.e., are bounded)
everywhere in D4, together with their first and second covariant derivatives which exist everywhere
except on the boundary ∂D4 (smoothness assumption). In particular, let us assume that ψ is bounded
from above in D4, with sup (ψ) = ψo. Therefore, by a proper choice of the constant ψo, we can always
assume that in the internal domain ψ ≤ ψo. In addition, A = A (ĝ, r) is generally a complex field,
while Θ (z) is the weak Heaviside function, which is equal to 1 for z ≥ 0 and 0 for z < 0. We notice that
the eikonal representation given above warrants that in the internal domain, including ∂DW , ∇̂αSR
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has the same direction of the eikonal wave-vector, consistent with the physical interpretation given
above. It follows that Equation (64) requires

∇̂α∇̂αSR = ∇̂α
((
∇̂αψ

)
AeiψΘ (ψo − ψ)

)
=

(
∇̂α∇̂αψ

)
AeiψΘ (ψo − ψ)

+
(
∇̂αψ

) (
∇̂α A

)
eiψΘ (ψo − ψ)

+i
(
∇̂αψ∇̂αψ

)
AeiψΘ (ψo − ψ)

−
(
∇̂αψ∇̂αψ

)
Aeiψδ (ψo − ψ) = 0. (68)

Thanks to the assumption of smoothness of the fields A and ψ, it follows necessarily that on the
boundary ∂DW the constraint

∇̂αψ∇̂αψ = 0 (69)

must hold. This effectively is equivalent to consider the geometric-optics limit to evaluate the wave
solution of Equation (64), whereby Equation (69) represents the fundamental wave-front equation
for the wave-front ψ applying in such a case. In fact, under the same smoothness assumptions, the
information carried by the wave-front SR is essentially the same as the one carried by ψ in the eikonal
representation of the solution and satisfying Equation (69). This result establishes the connection
with the classical theory of gravitational waves characterized by a wave-front equation provided by
Equation (4) in which the 4-scalar wave-front is SGW . Therefore, in the geometric-optics limit from
one side the front-surfaces SR = const. are well approximated by the eikonal condition ψ = const.,
while at the same time these correspond also to plane front-wave surfaces of gravitational waves in
which SGW = const., so that in this limit ψ ∼ SGW . From the physical point of view, it means that in
the geometric-optics limit both the wave-front and the solution of the perturbed metric tensor exhibit a
wave-like behavior.

It is then immediate to determine the physical interpretation of Equation (69). In fact, let us
introduce a tetrad basis of unit orthogonal 4-vectors (aµ, bµ, cµ, dµ), with aµ being time-like and
(bµ, cµ, dµ) space-like unit 4-vectors. Then, in the same tetrad the metric tensor ĝµν can be locally
represented as ηµν, while following the customary geometric-optics interpretation ∇̂αψ is projected as

∇̂µψ = k0aµ + k1bµ + k2cµ + k3dµ, (70)

where we denote k0 ≡ ω/c, with ω being the mode frequency, and k ≡ (k1, k2, k3) is the mode wave
3−vector. Thus, it follows that Equation (69) yields the dispersion relation

∇̂αψ∇̂αψ = −ω2

c2 + |k|2 = 0, (71)

which relates the magnitude of the mode-wave 3−vector, and hence its wavelength defined by λ = 1
|k| ,

to the mode frequency ω. As a consequence the phase velocity is equal to the speed of light; namely,
λω = c. This proves that, in the geometric-optics limit, in the asymptotic case of flat space-time and in
the absence of source fields, the wave-like solutions provided by the Klein–Gordon Equation (48) for
the gravitational wave-front S can effectively be represented as planar waves propagating gravitational
signals at the speed of light c [52].

In the internal domain, on the other hand, Equation (68) reduces to(
∇̂α∇̂αψ

)
Aeiψ +

(
∇̂αψ

) (
∇̂α A

)
eiψ + i

(
∇̂αψ∇̂αψ

)
Aeiψ = 0, (72)
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where now generally ∇̂αψ∇̂αψ 6= 0. Hence, in such a set, the perturbation may not generally propagate
with the phase velocity equal to the speed of light c, although its phase velocity cannot exceed it. On the
other hand, in the geometric-optics limit, namely in which λ→ 0, the dominant term in the previous
equation is the third one on the lhs. Therefore, in the same limit, one recovers again Equation (69) also
in the internal domain.

From the previous considerations it follows that there are two distinct physical mechanisms which
can give rise to gravitational wave-fronts propagating at the speed of light c: the first one arises when a
discontinuity occurs for the wave-vector ∇̂αSR, namely in the transition between internal and external
domains. The second one instead is related to the asymptotic validity of geometric optics. This implies
that, while in the first case the “amplitude” of the perturbation A remains finite (as the eikonal ψ),
in the second one it must be considered infinitesimal. The latter case justifies the adoption of the
linearized Einstein equation first introduced by Einstein himself. As a consequence, in such a case the
well-known asymptotic theory of gravitational waves of this type applies. In addition, in the same
geometric-optics limit the wave-front solution recovers the gravitational radiation theory provided by
Trautman in terms of boundary-value to the GR equations extracting radiation fields for the metric
tensor solution. In conclusion, Equations (63) and (64) are associated respectively with two different
sources of gravitational wave-front solutions, where the precise nature of the perturbation carried
by SS depends intrinsically on the sources and the prescribed boundary conditions. This analysis
shows that, in classical GR, the existence of underlying Hamilton and Hamilton–Jacobi theories to
the Einstein field equations allows one to derive a first-principle proof that gravitational signals are
characterized by wave-fronts propagating at the speed of light c.

As a final point, we address here the issue of whether in a curved space-time, i.e., in the
presence of non-vanishing classical sources, gravitational signals, including, in particular, gravitational
waves, still propagate with the speed of light c as in the case of flat space-time. We show that
gravitational waves actually do propagate along null geodetics even in such a case of curved space-time.
For definiteness, let us look for a complex, eikonal-type solution of the homogeneous Klein–Gordon
Equation (59); namely, of the form

S(ĝ, r) = φ(ĝ, r) exp {iF(ĝ, r)} . (73)

This requires therefore that the eikonal F(ĝ, r) and the factor φ(ĝ, r) satisfy respectively the PDE’s

∇̂µ

(
∇̂µφ

φ

)
+
∇̂µφ∇̂µφ

φ
≡
∇̂µ∇̂µφ

φ
= 0, (74)

∇̂µ∇̂µF + 2∇̂µF∇̂µ ln φ = 0. (75)

Let us therefore denote ∇̂µF = kµ, so that in the curved space-time
{

Q4, ĝ
}

the contra-variant
component is ∇̂µF = ĝµν∇̂νF = ĝµνkν = kµ, and furthermore require that the eikonal solution (73)
identifies a wave propagating along null geodetics. This implies that kµ must identify a tangent 4-vector
to a null geodetics and therefore it coincides itself with a tangent null 4-vector. Hence, by construction
kµ must fulfill the set of constraint equations

kµkµ = 0,
∇µkµ = 0.

(76)

As a further consequence, in this case Equation (75) becomes

kµF∇µ ln φ = 0, (77)
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while Equation (74) remains unchanged. A particular solution of Equations (74)–(76) for (φ, F) is
therefore provided by

F =
∫ r

ro
drµkµ ≡ ∑

µ=0,3

∫ rµ

rµ
o

drµkµ(ĝ, r), (78)

φ = φ(F), (79)

where
∫ r

ro
drµkµ denotes a path integral along the null geodetics along which the wave-front propagates.

Incidentally, this path-integral solution is a characteristic non-local effect originating from the wave
propagation in a curved space-time. Notice that, while in an arbitrary space-time

{
Q4, ĝ

}
the tangent

null 4-vector kµ is generally of the form kµ = kµ(ĝ, r), with ĝ ≡ ĝ(r), in the case the same space-time
is flat (or becomes asymptotically flat on the boundary of the space-time), kµ reduces obviously to a
constant (in the sense of Equation (76)), as the coefficient of the exponential factor φ. Therefore, in such
a limit and with these prescriptions, Equation (73) describes the luminal wave-front of a plane wave,
i.e., a wave-front which propagates at the speed of light c. Instead, in a curved space-time

{
Q4, ĝ

}
and allowing also φ = φ(F), Equation (73) identifies more generally the wave-front of a gravitational
signal characterized by a non-uniform exponential factor φ.

The connection between the two space-time representations indicated above can be rigorously
established by means of a non-local point transformation (NLPT; see reference [53]). In fact, let us
introduce the NLPT rµ → Rµ(r, [r]) determined by prescribing a 4-displacement transformation of the
form

dRµ = drα Mµ
α (r, [r]), (80)

with Mµ
α (r, [r]) denoting a non-singular and generally non-local transformation matrix and [r] a

suitable non-local dependence. Then, let us requires that the same NLPT generates the teleparallel
transformation which maps an accessible subdomain of the curved space-time

{
Q4, ĝ(r)

}
into the

flat Minkowski space-time
{

Q4
o , η
}

(with η denoting the tensor η ≡
{

ηµν

}
= diag {1,−1,−1,−1, }).

This requires necessarily the validity of the matrix constraint equation

ηµν = (M−1)α
µ(M−1)

β
ν ĝαβ(r), (81)

a condition which warrants also the isometric condition ĝαβ(r)drαdrβ = ηjkdRjdRk. Equation (81) then
determines non-uniquely the inverse transformation matrix (M−1)α

j (and hence in turn Mµ
α too).

Now let us consider the action of the teleparallel NLPT defined in this way on the product
drµkµ(ĝ, r). This is defined with respect to

{
Q4, ĝ(r)

}
, while drµ and kµ(ĝ, r) respectively identify the

4-position displacement and the local tangent 4-vector to the null geodetics, both prescribed with
respect to the same space-time. Then, the same scalar product can be equivalently written as

drµkµ(ĝ, r) = drα Mν
α

(
M−1

)β

ν
kβ(ĝ, r) = dRµKµ, (82)

where drα Mν
α = dRν and

(
M−1)β

ν
kβ(ĝ, r) = Kν now identify the 4-position displacement and tangent

null 4-vector in the transformed (Minkowski) space-time. Thus, up to an arbitrary additive constant
the identity

F =
∫ r

drµkµ = RµKµ (83)

holds. This conclusion proves therefore that:

• Provided the exponential coefficient φ is a constant, i.e., it is independent of F (see Equation (79)),
a wave-front which in a curved space-time is of the type (73) and with eikonal (78), is represented
by a plane wave in the corresponding Minkowski teleparallel representation.
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• In both cases the wave-front propagates along the corresponding null geodetics, so that its speed
of propagation coincides with the speed of light c.

• The non-local contribution to the wave-front solution of the Klein–Gordon equation in curved
space-time can be absorbed into an analogous non-local contribution defining the teleparallel
transformation to flat space-time, where the wave solution has a local character.

The analysis performed above pertains to classical gravitational disturbances and their speed
of propagation. Remarkably, thanks to its general character (the homogeneous Klein–Gordon
Equation (59) which holds both to vacuum and non-vacuum sources), the present derivation applies
also to small-amplitude gravitational wave solutions, as predicted by the Einstein LGF equations.
In particular, either the exact wave-front represented by the eikonal solution (73) or the asymptotic
behavior of a generic wave-front surface still exhibits the character of a wave-like profile, as typical of
non-trivial solutions of the same Klein–Gordon equation. In addition, in the geometric-optics limit,
the wave-front profile is safely approximated with speed-of-light planar waves, a property which
therefore marks the rigorous connection with the classical prediction of the linearized GR theory
regarding the existence of gravitational waves.

8. Concluding Remarks

The identification of the Hamiltonian setting of the Einstein equations represents a crucial
aspect for the proper treatment of the two theoretical issues set in the introduction; namely, first the
prescription of the dynamics of the wave-front of gravitational signals, and second, the determination
of the corresponding speed of propagation for arbitrary background field metric tensors ĝ ≡

{
ĝµν

}
;

i.e., solutions of the Einstein field equations. In this paper such a Hamiltonian setting has been
identified with the manifestly-covariant Hamiltonian representation of GR in the so-called extended
form. This means that in such a representation, the conjugate momenta are represented by the
components of a third-order 4-tensor; i.e., the extended canonical momentum π ≡

{
πα

µν

}
. Hence,

the same tensor field π and the conjugate Lagrangian coordinates, represented by the symmetric
tensor field g ≡

{
gµν

}
, are solutions of a suitable synchronous Hamiltonian variational principle. This

allows also the identification of the equivalent manifestly-covariant Hamilton–Jacobi theory, equally
cast in extended form. Remarkably, its validity has been shown to extend also to the collapse case
{g, π} = {ĝ, π̂ = 0} in which the Einstein field equations hold.

Based on these premises in this paper the two theoretical issues of GR indicated above have been
answered as follows:

• First, an exact GR-non-linear gravitational wave-front equation has been determined for the
gravitational field, which has been identified with the 4-scalar Klein–Gordon equation for the
wave-front surface.

• Second, at the same time, the mathematical proof that for arbitrary gravitational signals these
wave-fronts propagate—both in vacuum (i.e., in the absence of sources) and in an arbitrary curved
space-time—at the speed of light, has been reached.

• Third, the theory developed here holds also in the case of a non-vanishing cosmological constant,
to be considered as a classical universal constant 4-scalar.

The theoretical outcomes reported in this paper represent a first-principle proof of the fact that,
underlying the set of non-linear Einstein field equations, wave-like dynamics exist for the propagation
of gravitational disturbances governed by a Hamilton–Jacobi wave-theory. Indeed, although the
same Einstein field equations for the metric tensor ĝ apparently formally escape any representation
or classification in terms of wave equations, it has been proven here that the wave-front dynamics
actually exhibit such a wave behavior, satisfying a Klein–Gordon type of wave equation, while the
invariant speed of propagation of classical gravitational disturbances is the speed of light c. These
conclusions hold in general for any generic background metric tensor ĝ and are independent of the
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existence of gravitational wave solutions for the same metric tensor and the presence of a classical
cosmological constant. Nevertheless, the consistency with the theory of gravitational waves, with
spatial reference to the case of geometric-optics limit, has been established.

Such results have deep physical implications because they extend to arbitrary non-linear solutions
ĝ of the Einstein field equations, while being also in agreement with the predictions based on the theory
of the linearized gravitational field (LGF) formulated by Einstein himself in terms of his namesake
equations. However from the mathematical viewpoint, wave fronts are characteristic manifolds of
the exact Einstein equations that describe the gravitational field tensor ĝ. As far as the wave-front
propagation is concerned, two cases can in principle be distinguished. In the first one the characteristic
front-surface can separate a region of space in which there is as yet no field from one in which a field is
already present. In this case there are discontinuities in ĝ or of its partial derivatives, so that the same
front surface can separate a region of space in which there is as yet no field from one in which a field is
already present. This is the classical definition of wave-front to be found in the literature. However, as
pointed out here, another possible occurrence (second case) is the one in which, more generally, the
front surface may still be regular for ĝ, so that the tensor field remains smooth together with its partial
derivatives on the same surface.

These conclusions are promising from the theoretical standpoint also. In fact, they are based
on a novel representation of the variational formulation of the Einstein field equations, in terms of a
synchronous variational principle. Its basic feature is that of being, just like the same Einstein equations,
manifestly-covariant in character. This permits us to display in a perspicuous and intuitive way the
Hamiltonian character of GR, unveiling at the same time also its basic properties with particular
reference to the role of gravitational signals and their speed of propagation. As such the present theory
represents also a convenient pathway for the formulation of the corresponding quantum theory of GR.
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