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Abstract: In this paper, we define soft ω-open sets and strongly soft ω-open sets as two new classes
of soft sets. We study the natural properties of these types of soft sets and we study the validity
of the exact versions of some known results in ordinary topological spaces regarding ω-open sets
in soft topological spaces. Also, we study the relationships between the ω-open sets of a given
indexed family of topological spaces and the soft ω-open sets (resp. strongly soft ω-open sets) of
their generated soft topological space. These relationships form a biconditional logical connective
which is a symmetry. As an application of strongly soft ω-open sets, we characterize soft Lindelof
(resp. soft weakly Lindelof) soft topological spaces.
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1. Introduction

The soft set introduced by Molodtsov [1] is applied in many fields such as economics, engineering,
social science, medical science, etc. It is used as a tool for dealing with uncertain objects. The theory
of soft sets has been introduced and studied by several researchers (see [2,3]). Authors [1,4] applied
soft sets in many areas such as Riemann integration, Perron integration, smoothness of function,
operation research, game theory, probability and theory of measurements. Authors [5] applied soft
sets in decision-making problems. The notion of soft topological spaces is introduced in [6]. Then
researchers modified several concepts of classical topological spaces to include soft topological spaces,
some recently published soft topological papers are appeared in [7–26]. For the purpose of improving
some known topological theorems, Hdeib [27] introduced the notion of ω-closed sets as a weaker
notion of closed sets as follows: Let (X,=) be a topological space and A a subset of X. A point x ∈ X is
called a condensation point of A if for each open set U with x ∈ U, the set U ∩ A is uncountable. A is
called an ω-closed subset of X if it contains all its condensation points, A is called an ω-open subset
of X if X− A is ω-closed. As a known characterization of ω-openness, A is ω-open if and only if for
each x ∈ A there exists U ∈ = and a countable set C ⊆ X such that x ∈ U − C ⊆ A. The family of all
ω-open subsets of X is denoted by =ω. It is well known that =ω forms a topology on X finer than
=. Also, it is known that the collection {U − C : U ∈ = and C is a countable subset of X} is a base for
=. Using ω-open sets, Lindelöfness has been characterized in [27], several continuity concepts have
been introduced and studied in [28–30], and several generalizations of paracompactness have been
introduced and studied in [31]. Also, some modifications of both ω-open and ω-closed sets appear
in [32–36]. The area of research related to ω-open sets is still hot (see [37–43]), and the door is still open
to use ω-open for the purpose of generalizing some known topological concepts or improving some
known topological results.

When we define a reasonable generalization of soft open sets in topological spaces, we hope that
this will open the door for a number of future related research. For example, as a generalization of

Symmetry 2020, 12, 265; doi:10.3390/sym12020265 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://dx.doi.org/10.3390/sym12020265
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/2/265?type=check_update&version=2


Symmetry 2020, 12, 265 2 of 22

soft open sets in soft topological spaces, soft semiopen sets were defined in [44], then many related
research articles have appeared, for instance, [45–50]. In this paper, we will modify the definition of
ω-open sets in classical topological spaces in order to define soft ω-open sets and strongly soft ω-open
sets as two new classes of soft sets. We will study the natural properties of these types of soft sets, and
we will study the validity of the exact versions of some known results in ordinary topological spaces
regarding ω-open sets in soft topological spaces. Also, we will study the relationships between the
ω-open sets of a given indexed family of topological spaces and the soft ω-open sets of their generated
soft topological space. These relationships form a biconditional logical connective which is a symmetry.
As an application, we characterize soft Lindelof (resp. soft weakly Lindelof) soft topological spaces via
strongly soft ω-open sets.

This paper is organized as follows:
In Section 2, we introduce some basic definitions and results which we use them in our research.
In Section 3, we introduce and investigate soft ω-open sets as a class of soft sets which contains

the class of soft open sets.
In Section 4, we introduce and investigate strongly soft ω-open sets as a class of soft sets which

lies between the class of soft open sets and the class of soft ω-open sets.
In Section 5, In this section, we use strongly soft omega open sets to characterize soft Lindelof soft

topological spaces.
In Section 6, we define and investigate soft weakly Lindelof soft topological spaces. In particular,

we characterize soft weakly Lindelof sets STS’s which are strongly soft anti-locally countable via
sω-open sets.

2. Preliminaries

In this section, we introduce some basic definitions and results which we use them in our paper.

Definition 1. [1] Let X be an initial universe and A be a set of parameters. A soft set over X relative to A is
a function F : A −→ P (X). The family of all soft sets over X relative to A will be denoted by SS (X, A).

Definition 2. [2] Let F, G ∈ SS (X, A). (1) F is a soft subset of G, denoted by F⊆̃G, if F(a) ⊆ G(a) for each
a ∈ A.

(2) F and G are said to be soft equal, denoted by F = G if F⊆̃G and F⊆̃G.
(3) Union of F and G is denoted by F∪̃G and defined to be the soft set F∪̃G ∈ SS (X, A) where(

F∪̃G
)
(a) = F(a) ∪ G (a) for each a ∈ A.

(4) Intersection of F and G is denoted by F∩̃G and defined to be the soft set F∩̃G ∈ SS (X, A) where(
F∩̃G

)
(a) = F(a) ∩ G (a) for each a ∈ A.

(5) The difference of F and G is denoted by F− G and defined to be the soft set F− G ∈ SS (X, A) where
(F− G) (a) = F(a)− G (a) for each a ∈ A.

Definition 3. [51] Let ∆ be an arbitrary index set and {Fα : α ∈ ∆} ⊆ SS (X, A).

(a) The union of these soft sets is the soft set denoted by
⋃̃

α∈∆
Fα and defined by

( ⋃̃
α∈∆

Fα

)
(a) =

⋃
α∈∆

Fα (a)

for each a ∈ A.

(b) The intersection of these soft sets is the soft set denoted by
⋂̃

α∈∆
Fα and defined by

( ⋂̃
α∈∆

Fα

)
(a) =⋂

α∈∆
Fα (a) for each a ∈ A.

Definition 4. [2] Let F ∈ SS (X, A).
(a) F is called a null soft set over X relative to A, denoted by 0A, if F (a) = ∅ for each a ∈ A.
(b) F is called an absolute soft set over X relative to A, denoted by 1A, if F (a) = X for each a ∈ A.
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Definition 5. [52] Let F ∈ SS (X, A). F is called a soft point over X relative to A if there exist e ∈ A and
x ∈ X such that

F (a) =

{
{x} if a = e
∅ if a 6= e

.

We denote F by ex. The family of all soft points over X relative to A is denoted by SP (X, A).

Definition 6. [21] Let X be an initial universe and let A be a set of parameters. For any a ∈ A and Y ⊆ X,
the soft set F ∈ SS(X, A) defined by

F (b) =

{
Y if b = a
∅ if b 6= a

will be denoted by aY.

Proposition 1. [52] Let ax, by ∈ SP (X, A). Then ax = by iff x = y and a = b.

Definition 7. [52] Let F ∈ SS (X, A) and ex ∈ SP (X, A). Then ex is said to belong to F (notation: ex∈̃F) if
ex⊆̃F or equivalently: ex∈̃F iff x ∈ F (e).

Proposition 2. [21] F ∈ SS (X, A)− {0A} iff there is ax ∈ SP (X, A) such that ax∈̃F.

Proposition 3. [52] Let F, G ∈ SS (X, A). Then the following are equivalent:
(a) F⊆̃G.
(b) For all ax ∈ SP (X, A), ax∈̃F implies ax∈̃G.

Definition 8. [52] Let F ∈ SS (X, A). The set {ax : ax∈̃F} will be denoted by Pt (F).

It is clear that SP (X, A) = Pt (1A).

Proposition 4. [52] Let X be an initial universe and A be a set of parameters. Then for any F, G ∈ SS (X, A),
F⊆̃G iff Pt (F) ⊆ Pt (G).

Definition 9. [6] Let τ ⊆ S(X, A). Then τ is called a soft topology on X relative to A if
(1) 0A, 1A ∈ τ,
(2) the union of any number of soft sets in τ belongs to τ,
(3) the intersection of any two soft sets in τ belongs to τ.

The triplet (X, τ, A) is called a soft topological space (STS) over X relative to A. The members of
τ are called soft open sets in (X, τ, A) and their complements are called soft closed sets in (X, τ, A).

Proposition 5. [6] Let (X, τ, A) be a STS. Then the collection {F(a) : F ∈ τ} defines a topology on X for
every a ∈ A. This topology will be denoted by τa .

In this paper, the closure of a subset Y ⊆ X in the topological space (X, τa ) mentioned in
Proposition 5 will be denoted by Ya.

Definition 10. [53] Let (X, τ, A) be a soft topological space. A subcollection B of τ is called a soft base of τ if
every member of τ can be expressed as a union of members of B.

Proposition 6. [54] Let (X, τ, A) be a STS and let B ⊆ τ. Then B is a soft base for τ if for every F ∈ τ−{0A}
and every ax∈̃ F, there exists G ∈ B such that ax∈̃G⊆̃ F.
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Definition 11. [6] Let (X, τ, A) be a STS and let G ∈ SS(X, A). The soft closure of G in (X, τ, A) is denoted
by Clτ(G) and defined by

Clτ(G) = ∩̃
{

F : F is soft closed with G⊆̃F
}

.

Definition 12. [21] Let X be an initial universe and let A be a set of parameters. Let {=a : a ∈ A} be an
indexed family of topologies on X. Then the soft topology {F ∈ SS (X, A) : F (a) ∈ =a for all a ∈ A} will be
denoted by

⊕
a∈A
=a.

For any topological space (X,=) and any set of parameters A, denote the family
{F ∈ SS (X, A) : F (a) ∈ = for all a ∈ A} by τ (=).

Proposition 7. [21] Let X be an initial universe and let A be a set of parameters. Let {=a : a ∈ A} be an
indexed family of topologies on X. Then the family {aY : a ∈ A and Y ∈ =a} is a soft base of

⊕
a∈A
=a.

Proposition 8. [21] Let X be an initial universe and let A be a set of parameters. Let {=a : a ∈ A} be an

indexed family of topologies on X. Then
(⊕

a∈A
=a

)
b
= =b for all b ∈ A.

3. Soft Omega Open Sets

In this section, we introduce and investigate soft ω-open sets as a class of soft sets which contains
the class of soft open sets.

Definition 13. [52] Let G ∈ SS(X, A). Then G is called a countable soft set if for all a ∈ A, the set G (a) is
countable. The collection of all countable soft sets from SS(X, A) will be denoted by CSS(X, A).

Definition 14. Let (X, τ, A) be a STS and let G ∈ SS(X, A). Then G is called a soft ω-open set if for all ax ∈̃
G, there exist F ∈ τ and H ∈ CSS(X, A) such that ax ∈̃F− H ⊆̃G. The collection of all soft ω-open sets in
(X, τ, A) will be denoted by τω.

Theorem 1. Let (X, τ, A) be a STS and let G ∈ SS(X, A). Then G is soft ω-open if and only if for every ax ∈̃
G there exist F ∈ τ such that ax ∈̃ F and F− G ∈ CSS(X, A).

Proof. Necessity. Suppose that G is soft ω-open. Let ax ∈̃ G, then there exist F ∈ τ and H ∈ CSS(X, A)

such that ax ∈̃ F− H ⊆̃G. Thus ax ∈̃ F ∈ τ. Also, since F− H ⊆̃G, then F− G ⊆̃H and so F− G ∈
CSS(X, A).

Sufficiency. Suppose that for every ax ∈̃ G there exist F ∈ τ such that ax ∈̃ F and F − G ∈
CSS(X, A). Let ax ∈̃ G, then there exist F ∈ τ such that ax ∈̃ F and F − G ∈ CSS(X, A). Put H =

F−
(
G∪̃ax

)
. Then H ∈ CSS(X, A) and ax ∈̃F− H ⊆̃G. It follows that G is soft ω-open.

Notation 1. For a STS (X, τ, A), denote the collection {F− H : F ∈ τ and H ∈ CSS(X, A)} by τc.

Theorem 2. Let (X, τ, A) be a STS. Then
(a) τ ⊆ τc ⊆ τω.
(b) (X, τω, A) is a STS.
(c) τc is a base for τω.
(d) Countable soft sets are soft closed in (X, τω, A).

Proof. (a) Since 0A ∈ CSS(X, A), then τ = {F− 0A : F ∈ τ} ⊆ τc. On the other hand, τc ⊆ τω

is obvious.
(b) (1) Since 0A, 1A ∈ τ, then by (a) 0A, 1A ∈ τω.



Symmetry 2020, 12, 265 5 of 22

(2) Let F, G ∈ τω and let ax ∈̃ F∩̃G. Then ax∈̃F and ax∈̃G. Then by Theorem 1, there exist
H, W ∈ τ such that ax∈̃H∩̃W ∈ τ and H − F, W − G ∈ CSS(X, A). It is not difficult to check that(
H∩̃W

)
−
(

F∩̃G
)
. Thus by Theorem 1, F∩̃G ∈ τω.

(3) Let {Gα : α ∈ ∆} ⊆ τω and let ax∈̃
⋃̃

α∈∆
Gα. Then there is β ∈ ∆ such that ax∈̃Gβ. So, there exist

F ∈ τ and H ∈ CSS(X, A) such that ax ∈̃F− H ⊆̃Gβ⊆̃
⋃̃

α∈∆
Gα. Therefore,

⋃̃
α∈∆

Gα ∈ τω.

(c) Obvious.
(d) Follows because by (a), τc ⊆ τω.

Theorem 3. Let X be an initial universe, A be a set of parameters and let τ = {0A} ∪
{1A − H : H ∈ CSS(X, A)}. Then (X, τ, A) is a STS.

Proof. (1) By definition of τ, 0A ∈ τ. Since 0A ∈ CSS(X, A), then 1A = (1A − 0A) ∈ τ.
(2) Let 1A − H, 1A − K ∈ τ − {0A}. Then H∪̃K ∈ CSS(X, A) and (1A − H) ∩̃ (1A − K) =(

1A −
(

H∪̃K
))
∈ τ.

(3) Let {1A − Hα : α ∈ ∆} ⊆ τ − {0A}. Then ∩̃ {Hα : α ∈ ∆} ∈ CSS(X, A) and so
∪̃ {1A − Hα : α ∈ ∆} = 1A− ∩̃ {Hα : α ∈ ∆} ∈ τ.

Definition 15. Let (X, τ, A) be a STS. Then {0A} ∪ {1A − H : H ∈ CSS(X, A)} will be called the
cocountable soft topology and will be denoted by coc(X, A).

Proposition 9. For any STS (X, τ, A), coc(X, A) ⊆ τc.

Proof. Obvious.

Theorem 4. For any STS (X, τ, A), the following are equivalent:
(a) coc(X, A) ⊆ τ.
(b) τ = τc.
(c) τ = τω.

Proof. (a) =⇒ (b): Suppose that coc(X, A) ⊆ τ. We need only to show that τc ⊆ τ. Let G ∈ τ

and H ∈ CSS(X, A). Then G − H = G∩̃ (1A − H). Since coc(X, A) ⊆ τ, then 1A − H ∈ τ and so
G− H ∈ τ. It follows that τc ⊆ τ.

(b) =⇒ (c): Suppose that τ = τc. Then τc is a soft topology. By Theorem 2 (c), it follows that
τc = τω and hence τ = τω.

(c) =⇒ (a): Suppose that τ = τω . Then by Proposition 9 and Theorem 2 (a), we have coc(X, A) ⊆
τc ⊆ τω = τ.

Corollary 1. Let X be an initial universe and A be a set of parameters. Then (coc(X, A))ω = coc(X, A).

Theorem 5. For any STS (X, τ, A) we have τω = (τω)ω.

Proof. By Proposition 9 and Theorem 2 (a), we have coc(X, A) ⊆ τc ⊆ τω. Then by Theorem 4,
it follows that τω = (τω)ω.

Theorem 6. Let (X, τ, A) and (X, σ, A) be two STS’s. If τ ∪ coc(X, A) ⊆ σ, then τc ⊆ σ.

Proof. Let F− H ∈ τc, where F ∈ τ and H is a countable soft set. Since F ∈ τ, 1A − H ∈ coc(X, A)

and τ ∪ coc(X, A) ⊆ σ, then F, 1A − H ∈ σ and so F∩̃ (1A − H) = F− H ∈ σ.

Corollary 2. Let (X, τ, A) and (X, σ, A) be two STS’s. If τ ∪ coc(X, A) ⊆ σ, then τω ⊆ σ.
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Proof. Follows from Theorem 6 and Theorem 2 (c).

Lemma 1. [55] Let (X, τ, A) be a STS and let B be a soft base for τ. Then for every a ∈ A, the family
{F (a) : F ∈ B} forms a base for the topology τa on X.

Theorem 7. Let (X, τ, A) be a STS. Then for all a ∈ A, (τa)ω = (τω)a.

Proof. Let a ∈ A. To show that (τa)ω ⊆ (τω)a, it is sufficient to see that U − C ∈ (τω)a for all U ∈ τa

and a countable subset C ⊆ X. Let U ∈ τa and let C be a countable subset of X. Since U ∈ τa,
then there is F ∈ τ such F (a) = U. Let H = aC, then H ∈ CSS(X, A). Since we have F − H ∈ τω,
then (F− H) (a) = F (a)− H (a) = U − C ∈ (τω)a. To show that (τω)a ⊆ (τa)ω , by Theorem 2 (c) and
Lemma 1 it is sufficient to show that {(F− H) (a) : F ∈ τ and H ∈ CSS(X, A)} ⊆ (τa)ω. Let F ∈ τ

and H ∈ CSS(X, A), then (F− H) (a) = F (a)− H (a) with F (a) ∈ τa and H (a) is a countable subset
of X which implies that (F− H) (a) ∈ (τa)ω.

Corollary 3. Let (X, τ, A) be a STS. If G ∈ τω, then for all a ∈ A we have G (a) ∈ (τa)ω.

Proof. Let G ∈ τω and let a ∈ A. Then G (a) ∈ (τω)a and by Theorem 7 we have G (a) ∈ (τa)ω.

Lemma 2. [21] Let X be an initial universe and let A be a set of parameters. Let {=a : a ∈ A} be an indexed
family of topologies on X. If Ba is a base for =a for all a ∈ A, then {aY : a ∈ A and Y ∈ Ba} is a soft base of⊕
a∈A
=a.

Theorem 8. Let X be an initial universe and let A be a set of parameters. Let {=a : a ∈ A} be an indexed

family of topologies on X. Then
(⊕

a∈A
=a

)
ω

=
⊕

a∈A
(=a)ω.

Proof. To show that
(⊕

a∈A
=a

)
ω

⊆ ⊕
a∈A

(=a)ω, by Theorem 2 (c) it is sufficient to show that(⊕
a∈A
=a

)
c
⊆ ⊕

a∈A
(=a)ω. Let F ∈ ⊕

a∈A
=a and H be a countable soft set. Then for every a ∈ A,

F (a) ∈ =a and H (a) is a countable subset of X and so (F− H) (a) = F (a) − H (a) ∈ (=a)ω.
Thus, F − H ∈ ⊕

a∈A
(=a)ω. For every a ∈ A, {U − C : U ∈ =a and C is a countable subset of X}

is a base for (=a)ω, so by Lemma 2 {aU−C : a ∈ A, U ∈ =a and C is a countable subset of X}

is a soft base for
⊕

a∈A
(=a)ω. Thus, to show that

⊕
a∈A

(=a)ω ⊆
(⊕

a∈A
=a

)
ω

it

is sufficient to show that {aU−C : a ∈ A, U ∈ =a and C is a countable subset of X} ⊆(⊕
a∈A
=a

)
ω

. Note that {aU−C : a ∈ A, U ∈ =a and C is a countable subset of X} =

{aU − aC : a ∈ A, U ∈ =a and C is a countable subset of X}, which ends the proof.

Lemma 3. [21] If (X,=) is a topological space and A is any set of parameters, then (τ (=))a = = for all
a ∈ A.

Corollary 4. If (X,=) is a topological space and A is any set of parameters, then (τ (=))ω = τ (=ω) for all
a ∈ A.
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Proof. For each a ∈ A, set =a = =. Then τ (=) = ⊕
a∈A
=a and by Theorem 8

(τ (=))ω =

(⊕
a∈A
=a

)
ω

=
⊕
a∈A

(=a)ω

= τ (=ω) .

Definition 16. The STS (X, τ, A) is called a soft p-space if the countable intersection of soft open sets is
soft open.

Definition 17. [56] A STS (X, τ, A) is called soft T1 if for any two soft points ax, ay ∈ SP(X, A) with x 6= y,
there exist G, F ∈ τ such that ax∈̃G− F and ay∈̃F− G.

Lemma 4. [56] A STS (X, τ, A) is soft T1 if for every soft point ax ∈ SP(X, A) is soft closed.

Theorem 9. If (X, τ, A) is soft T1 and soft p-space, then τ = τω.

Proof. By Theorem 2 (a), τ ⊆ τω. To show that τω ⊆ τ, by Theorem 2 (c) it is sufficient to show that
τc ⊆ τ. Let F ∈ τ and let H ∈ CSS(X, A). Since (X, τ, A) is soft T1, then by Lemma 4 ax soft closed for
all ax∈̃H, and so F− ax ∈ τ for all ax∈̃H. Since (X, τ, A) is soft T1, then ∩̃

ax∈̃H
(F− ax) ∈ τ. Therefore,

F− H = ∩̃
ax∈̃H

(F− ax) ∈ τ.

Definition 18. A STS (X, τ, A) is called soft locally countable if for ax ∈ SP(X, A) there exists G ∈
CSS(X, A) ∩ τ such that ax∈̃G.

Theorem 10. A STS (X, τ, A) is soft locally countable if and only if SP(X, A) ⊆ τc.

Proof. Necessity. Suppose that (X, τ, A) is soft locally countable. Let ax ∈ SP(X, A), then by soft local
countability of (X, τ, A), there exists G ∈ CSS(X, A) ∩ τ such that ax∈̃G. Then G− ax ∈ CSS(X, A)

and so, ax = G− (G− ax) ∈ τc.
Sufficiency. Suppose that SP(X, A) ⊆ τc. Let ax ∈ SP(X, A). Then ax ∈ τc and so there is F ∈ τ

and H ∈ CSS(X, A) such that ax = F−H. Then F ∈ CSS(X, A)∩ τ with ax∈̃F. It follows that (X, τ, A)

is soft locally countable.

Corollary 5. A STS (X, τ, A) is soft locally countable if and only if (X, τω, A) is a discrete STS.

Corollary 6. If (X, τ, A) is a STS with X is countable, then (X, τω, A) is a discrete STS.

Theorem 11. For any STS (X, τ, A), (X, τω, A) is soft T1.

Proof. Follows from Theorem 2 (d) and Lemma 4.

Definition 19. [56] A STS (X, τ, A) is called soft T2 if for any two soft points ax, ay ∈ SP(X, A) with x 6= y,
there exist G, F ∈ τ such that ax∈̃G, ay∈̃F and G∩̃F = 0A.
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Theorem 12. If (X, τ, A) is a soft T2 STS, then (X, τω, A) is soft T2.

Proof. Let ax, ay ∈ SP(X, A) with x 6= y. Since (X, τ, A) is soft T2, then there exist G, F ∈ τ such that
ax∈̃G, ay∈̃F and G∩̃F = 0A. By Theorem 2 (a), τ ⊆ τω and so G, F ∈ τω which ends the proof that
(X, τω, A) is soft T2.

The following example shows that the converse of Theorem 2 need not to be true in general:

Example 1. Let X = N, A = R and τ = {1A, 0A}. By Corollary 5, (X, τω, A) is a discrete STS. Thus,
(X, τω, A) is soft T2. On the other hand, it is clear that (X, τ, A) is not soft T2.

Definition 20. A STS (X, τ, A) is called soft anti-locally countable if for every F ∈ τ − {0A}, F /∈
CSS (X, A).

Theorem 13. A STS (X, τ, A) is soft anti-locally countable if and only if (X, τω, A) is soft anti-locally countable.

Proof. Necessity. Suppose to the contrary that (X, τ, A) is soft anti-locally countable and there is
G ∈ τω − {0A} with G ∈ CSS(X, A). Choose ax ∈̃ G. There are F ∈ τ and H ∈ CSS(X, A) such that
ax ∈̃ F− H⊆̃G, and so F⊆̃H∪̃G which implies that F ∈ CSS(X, A). Since F ∈ τ − {0A} and (X, τ, A)

is soft anti-locally countable, then we have a contradiction.
Sufficiency. Is obvious.

Lemma 5. Let (X, τ, A) be a STS and let M ∈ SS (X, A). Then ax ∈̃ Clτ(M) if and only if for all F ∈ τ with
ax∈̃F we have F ∩̃ M 6= 0A.

Proof. Necessity. Suppose that ax ∈̃ Clτ(M) and suppose to the contrary that there is F ∈ τ with ax∈̃F
we have F ∩̃ M = 0A. Since F ∩̃ G = 0A, then M ⊆̃ 1A − F. So, Clτ(M)⊆̃ 1A − F. Since ax ∈̃ Clτ(M),
then ax ∈̃1A − F, a contradiction.

Sufficiency. Suppose to the contrary that ax ∈̃ (1A − Clτ(M)) ∈ τ. Then by assumption,
(1A − Clτ(M)) ∩̃ M = 0A, a contradiction.

Theorem 14. Let (X, τ, A) be soft anti-locally countable. Then for all G ∈ τω, Clτ(G) = Clτω (G).

Proof. Let (X, τ, A) be soft anti-locally countable and let G ∈ τω. Clearly that Clτω (G) ⊆̃ Clτ(G).
Conversely, suppose to the contrary that there is ax∈̃Clτ(G)− Clτω (G). Since M ∈ τω such that ax∈̃M
but G∩̃ M = 0A. Choose F ∈ τ and H ∈ CSS(X, A) such that ax ∈̃ F−H⊆̃M. Thus, G∩̃ (F− H) = 0A
and hence G∩̃ F⊆̃H which implies that G∩̃ F ∈ CSS(X, A). Since ax∈̃Clτ(G), then F∩̃G 6= 0A. Since
F∩̃G ∈ τω − {0A} and by Theorem 13 (X, τω , A) is soft anti-locally countable, then F∩̃G /∈ CSS(X, A),
a contradiction.

The following example shows that Theorem 14 is no longer true if the assumption of being soft
anti-locally countable is omitted:

Example 2. Consider X = Z, A = R, a = 2 and x = 3 and let G = ax. Let τ = {0A, 1A, G}. Then ax ∈ τ

⊆ τω, we see that Clτ(G) = 1A but Clτω (G) = G 6= 1A.

The following example shows in Theorem 14 that the assumption ’G ∈ τω’ can not be dropped:

Example 3. Consider (R, τ (=u) ,Z) where =u is the usual topology on R. Let G ∈ SS (R,Z) where
G (x) = Q− {x} for all x ∈ Z. Since G ∈ CSS (R,Z), then by Theorem 2 (d) G is soft closed in (X, τω, A),
and so Cl(τ(=u))ω

(G) = G. On the other hand, it is not difficult to check that Clτ(=u)(G) = 1A.
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Notation 2. Let X be a non empty set, A be a set of parameters, Y be a non empty subset of X. If F ∈ SS (X, A),
then FY ∈ SS(Y, A) is defined by FY (a) = F (a) ∩Y.

Definition 21. [57] Let (X, τ, A) be a STS and Y be a non empty subset of X. Then τY = {FY : F ∈ τ} is
said to be the soft relative topology on Y and (Y, τY, A) is called a soft subspace of (X, τ, A).

Lemma 6. Let (X, τ, A) be a STS and Y be a non empty subset of X. If B is a soft base for τ, then {GY : G ∈ B}
is a soft base for τY.

Proof. Straightforward.

Theorem 15. Let (X, τ, A) be a STS and Y be a non empty subset of X. Then (τY)ω = (τω)Y.

Proof. To see that (τY)ω ⊆ (τω)Y, by Theorem 2 (c) it is sufficient to show that (τY)c ⊆ (τω)Y. Let
G ∈ (τY)c. Then there are F ∈ τ and H ∈ CSS(Y, A) such that G = FY − H. Let M ∈ CSS(X, A)

where M (a) = H (a) for all a ∈ A. Then G = FY − MY = (F−M)Y. Since F − M ∈ τω, then
G ∈ (τω)Y. To show that (τω)Y ⊆ (τY)ω, by Lemma 6 and Theorem 2 (c) it is sufficient to show that
{(F− H)Y : F ∈ τ and H ∈ CSS(X, A)} ⊆ (τY)ω. Let F ∈ τ and H ∈ CSS(X, A). Then (F− H)Y =

FY − HY with FY ∈ τY and HY ∈ CSS(Y, A). Hence, (F− H)Y ∈ (τY)ω.

4. Strongly Soft Omega Open Sets

In this section, we introduce and investigate strongly soft ω-open sets as a class of soft sets which
lies between the class of soft open sets and the class of soft ω-open sets.

Definition 22. Let G ∈ SS(X, A). The set {a ∈ A : G (a) 6= ∅} is called the support of G and is denoted
Supp (G).

Definition 23. Let G ∈ SS(X, A). Then G is called a strongly countable soft set if G is a countable soft set
and Supp (G) is countable. The set of all countable soft sets from SS(X, A) will be denoted by SCSS(X, A).

Proposition 10. Let G ∈ SS(X, A). Then G ∈ SCSS(X, A) if and only if the set {ax : ax∈̃G} is countable.

Proof. Straightforward.

Proposition 11. Let X be an initial universe and A be a set of parameters. Then SCSS(X, A) ⊆ CSS(X, A).

Proof. Straightforward.

The following example shows in Proposition 11 that SCSS(X, A) 6= CSS(X, A) in general:

Example 4. Consider F ∈ SS(N,R) with F (a) = {1} for all a ∈ R. Then F ∈ CSS(X, A)− SCSS(X, A).

Theorem 16. Let X be an initial universe and A be a set of parameters. Then SCSS(X, A) = CSS(X, A) if
and only if A is countable.

Proof. Necessity. Suppose that SCSS(X, A) = CSS(X, A). Pick x ∈ X. Let F ∈ SS(X, A) where
F (a) = {x} for all a ∈ A. Then F ∈ CSS(X, A). Since SCSS(X, A) = CSS(X, A), then F ∈ SCSS(X, A).
So Supp(F) is countable. Since Supp(F) = A, then A is countable.

Sufficiency. Suppose that A is countable. By Proposition 11, SCSS(X, A) ⊆ CSS(X, A). Let F ∈
CSS(X, A). Then Supp(F) ⊆ A. Since A is countable, then Supp(F). It follows that F ∈ CSS(X, A).
Therefore, CSS(X, A) ⊆ SCSS(X, A) and hence SCSS(X, A) = CSS(X, A).
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Definition 24. Let (X, τ, A) be a STS and let G ∈ SS(X, A). Then G is called a strongly soft ω-open set if for
all ax ∈̃ G, there exist F ∈ τ and H ∈ SCSS(X, A) such that ax ∈̃F− H ⊆̃G. The collection of all strongly
soft ω-open sets in (X, τ, A) will be denoted by τsω.

Theorem 17. Let (X, τ, A) be a STS and let G ∈ SS(X, A). Then G is strongly soft ω-open if and only if for
every ax ∈̃ G there exist F ∈ τ such that ax ∈̃ F and F− G ∈ SCSS(X, A).

Proof. Necessity. Suppose that G is soft ω-open. Let ax ∈̃ G, then there exist F ∈ τ and H ∈ SCSS(X, A)

such that ax ∈̃ F − H ⊆̃G. Thus ax ∈̃ F ∈ τ. Since F − H ⊆̃G, then F − G ⊆̃H and so F − G ∈
SCSS(X, A).

Sufficiency. Suppose that for every ax ∈̃ G there exist F ∈ τ such that ax ∈̃ F and F − G ∈
SCSS(X, A). Let ax ∈̃ G, then there exist F ∈ τ such that ax ∈̃ F and F− G ∈ SCSS(X, A). Put H =

F− G. Then H ∈ SCSS(X, A) and F− H ⊆̃G. It follows that G is strongly soft ω-open.

Notation 3. For a STS (X, τ, A), denote the collection {F− H : F ∈ τ and H ∈ SCSS(X, A)} by τsc.

Theorem 18. Let (X, τ, A) be a STS. Then
(a) τ ⊆ τsc ⊆ τsω.
(b) (X, τsω, A) is a STS.
(c) τsc is a base for τsω.
(d) Strongly countable soft sets are soft closed in (X, τsω, A).
(e) τsc ⊆ τc.
(f) τsω ⊆ τω.

Proof. (a) Since 0A ∈ SCSS(X, A), then τ = {F− 0A : F ∈ τ} ⊆ τsc. On the other hand, τsc ⊆ τsω

is obvious.
(b) (1) Since 0A, 1A ∈ τ, then by (a) 0A, 1A ∈ τsω.
(2) Let F, G ∈ τsω and let ax ∈̃ F∩̃G. Then ax∈̃F and ax∈̃G. Then by Theorem 17, there exist

H, W ∈ τ such that ax∈̃H∩̃W ∈ τ and H − F, W − G ∈ SCSS(X, A). It is not difficult to check that(
H∩̃W

)
−
(

F∩̃G
)
. Thus by Theorem 17, F∩̃G ∈ τsω.

(3) Let {Gα : α ∈ ∆} ⊆ τsω and let ax∈̃
⋃̃

α∈∆
Gα. Then there is β ∈ ∆ such that ax∈̃Gβ. So, there exist

F ∈ τ and H ∈ SCSS(X, A) such that ax ∈̃F− H ⊆̃Gβ⊆̃
⋃̃

α∈∆
Gα. Therefore,

⋃̃
α∈∆

Gα ∈ τsω.

(c) Obvious.
(d) Follows because by (a), τsc ⊆ τsω.
(e) Straightforward.
(f) Follows from (c), (e) and Theorem 2 (b).

The following example shows that the inclusion in Theorem 18 (f) cannot be replaced by equality,
in general.

Example 5. Let X be a set which contains at least two distinct points, A be an uncountable set of parameters,
and τ = {1A, 0A}. Pick x, y ∈ X with x 6= y and choose b ∈ A. Consider the soft set defined by F (a) = {x}
for all a ∈ A. Then 1A − F ∈ τc ⊆ τω with by∈̃1A − F. On the other hand, if 1A − F ∈ τsω, then there
are G ∈ τ and H ∈ SCSS(X, A) such that by ∈̃G− H ⊆̃1A − F. So G = 1A and 1A − H ⊆̃1A − F which
implies that F ⊆̃H. Since Supp (F) = A, then Supp (H) = A is uncountable, but Supp (H) is countable.
Therefore, 1A − F /∈ τsω.

Theorem 19. Let (X, τ, A) be a STS.
(a) If A is countable, then τω = τsω.
(b) If coc(X, A) ⊆ τ, then τω = τsω.
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Proof. (a) Suppose that A is countable. Then by Theorem16, SCSS(X, A) = CSS(X, A). So τsc = τc

and by Theorems 2 (c) and 18 (c) it follows that τω = τsω.
(b) Suppose that coc(X, A) ⊆ τ. Then by Theorem 4, τω = τ. So by Theorem 18 (a) τω = τ ⊆ τsω .

Also, by Theorem 18 (f) we have τsω ⊆ τω.

The following example shows that the implication in Theorem 19 (a) is not reversible, in general:

Example 6. Let X be an initial universe, A be an uncountable set of parameters and let τ = coc(X, A).
Then by Theorem 19 (b), τω = τsω.

The following example shows that the implication in Theorem 19 (b) is not reversible, in general:

Example 7. Let X = R, A = N and τ = {1A, 0A}. Then by Theorem 19 (a) we have τω = τsω . On the other
hand, it is clear that coc(X, A) is not a subset of τ.

Theorem 20. Let X be an initial universe, A be a set of parameters and let τ = {0A} ∪
{1A − H : H ∈ SCSS(X, A)}. Then (X, τ, A) is a STS.

Proof. (1) By definition of τ, 0A ∈ τ. Since 0A ∈ SCSS(X, A), then 1A = (1A − 0A) ∈ τ.
(2) Let 1A − H, 1A − K ∈ τ − {0A}. Then H∪̃K ∈ SCSS(X, A) and (1A − H) ∩̃ (1A − K) =(

1A −
(

H∪̃K
))
∈ τ.

(3) Let {1A − Hα : α ∈ ∆} ⊆ τ − {0A}. Then ∩̃ {Hα : α ∈ ∆} ∈ SCSS(X, A) and so
∪̃ {1A − Hα : α ∈ ∆} = 1A− ∩̃ {Hα : α ∈ ∆} ∈ τ.

Definition 25. Let (X, τ, A) be a STS. Then {0A} ∪ {1A − H : H ∈ CSS(X, A)} will be called the strongly
cocountable soft topology and will be denoted by scoc(X, A).

Proposition 12. For any STS (X, τ, A), scoc(X, A) ⊆ τsc.

Proof. Obvious.

Theorem 21. For any STS (X, τ, A), the following are equivalent:
(a) scoc(X, A) ⊆ τ.
(b) τ = τsc.
(c) τ = τsω.

Proof. (a) =⇒ (b): Suppose that scoc(X, A) ⊆ τ. We need only to show that τsc ⊆ τ. Let G ∈ τ

and H ∈ SCSS(X, A). Then G− H = G∩̃ (1A − H). Since scoc(X, A) ⊆ τ, then 1A − H ∈ τ and so
G− H ∈ τ. It follows that τsc ⊆ τ.

(b) =⇒ (c): Suppose that τ = τsc. Then τsc is a soft topology. By Theorem 18 (c), it follows that
τsc = τsω and hence τ = τsω.

(c) =⇒ (a): Suppose that τ = τsω. Then by Proposition 12 and Theorem 18 (a), we have
scoc(X, A) ⊆ τsc ⊆ τsω = τ.

Corollary 7. Let X be an initial universe and A be a set of parameters. Then (scoc(X, A))sω = scoc(X, A).

Theorem 22. For any STS (X, τ, A) we have τsω = (τsω)sω.

Proof. By Proposition 4.17 and Theorem 4.10 (a), we have scoc(X, A) ⊆ τsc ⊆ τsω. Then by Theorem
21, it follows that τsω = (τsω)sω.

Theorem 23. For any STS (X, τ, A) we have τω = (τsω)ω = (τω)sω.
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Proof. By Theorem 18(a) and (f) we have τ ⊆ τsω, τω ⊆ (τω)sω, τsω ⊆ τω and (τω)sω ⊆ (τω)ω = τω.
Thus, we have τω ⊆ (τsω)ω, τω ⊆ (τω)sω, (τsω)ω ⊆ (τω)ω = τω and (τω)sω ⊆ τω. Therefore,
τω = (τsω)ω = (τω)sω.

Theorem 24. Let (X, τ, A) and (X, σ, A) be two STS’s. If τ ∪ scoc(X, A) ⊆ σ, then τsc ⊆ σ.

Proof. Let F − H ∈ τsc, where F ∈ τ and H ∈ SCSS(X, A). Since F ∈ τ, 1A − H ∈ scoc(X, A) and
τ ∪ scoc(X, A) ⊆ σ, then F, 1A − H ∈ σ and so F∩̃ (1A − H) = F− H ∈ σ.

Corollary 8. Let (X, τ, A) and (X, σ, A) be two STS’s. If τ ∪ scoc(X, A) ⊆ σ, then τsω ⊆ σ.

Proof. Follows from Theorem 24 and Theorem 18 (c).

Theorem 25. Let (X, τ, A) be a STS. Then for all a ∈ A, (τa)ω = (τsω)a.

Proof. Let a ∈ A. To show that (τa)ω ⊆ (τsω)a, it is sufficient to see that U − C ∈ (τsω)a for all
U ∈ τa and a countable subset C ⊆ X. Let U ∈ τa and let C be a countable subset of X. Since U ∈ τa,
then there is F ∈ τ such F (a) = U. Let H = aC, then H ∈ SCSS(X, A). Since we have F − H ∈
τsω, then (F− H) (a) = F (a)− H (a) = U − C ∈ (τsω)a. To show that (τsω)a ⊆ (τa)ω, by Theorem
2 (c) and Lemma 1 it is sufficient to show that {(F− H) (a) : F ∈ τ and H ∈ SCSS(X, A)} ⊆ (τa)ω.
Let F ∈ τ and H ∈ SCSS(X, A), then (F− H) (a) = F (a) − H (a) with F (a) ∈ τa and H (a) is a
countable subset of X which implies that (F− H) (a) ∈ (τa)ω.

Corollary 9. Let (X, τ, A) be a STS. If G ∈ τsω, then for all a ∈ A we have G (a) ∈ (τa)ω.

Proof. Let G ∈ τsω and let a ∈ A. Then G (a) ∈ (τsω)a and by Theorem 25 we have G (a) ∈ (τa)ω .

Corollary 10. Let (X, τ, A) be a STS. Then for all a ∈ A, (τω)a = (τsω)a.

Proof. Follows from Theorems 7 and 25.

Theorem 26. Let X be an initial universe and let A be a set of parameters. Let {=a : a ∈ A} be an indexed

family of topologies on X. Then
(⊕

a∈A
=a

)
sω

=
⊕

a∈A
(=a)ω.

Proof. To show that
(⊕

a∈A
=a

)
sω

⊆ ⊕
a∈A

(=a)ω, by Theorem 18 (c) it is sufficient to show that(⊕
a∈A
=a

)
sc
⊆ ⊕

a∈A
(=a)ω. Let F ∈ ⊕

a∈A
=a and H ∈ SCSS(X, A). Then for every a ∈ A,

F (a) ∈ =a and H (a) is a countable subset of X and so (F− H) (a) = F (a) − H (a) ∈ (=a)ω.
Thus, F − H ∈ ⊕

a∈A
(=a)ω. For every a ∈ A, let {U − C : U ∈ =a and C is a countable subset of X}

is a base for (=a)ω, so by Lemma 2 {aU−C : a ∈ A, U ∈ =a and C is a countable subset of X}

is a soft base for
⊕

a∈A
(=a)ω. Thus, to show that

⊕
a∈A

(=a)ω ⊆
(⊕

a∈A
=a

)
ω

it

is sufficient to show that {aU−C : a ∈ A, U ∈ =a and C is a countable subset of X} ⊆(⊕
a∈A
=a

)
sω

. Note that {aU−C : a ∈ A, U ∈ =a and C is a countable subset of X} =

{aU − aC : a ∈ A, U ∈ =a and C is a countable subset of X}, which ends the proof.

Corollary 11. Let X be an initial universe and let A be a set of parameters. Let {=a : a ∈ A} be an indexed

family of topologies on X. Then
(⊕

a∈A
=a

)
sω

=

(⊕
a∈A
=a

)
ω

.
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Proof. Follows from Theorems 8 and 26.

Corollary 12. If (X,=) is a topological space and A is any set of parameters, then (τ (=))sω = τ (=ω).

Proof. For each a ∈ A, set =a = =. Then τ (=) = ⊕
a∈A
=a and by Theorem 26,

(τ (=))sω =

(⊕
a∈A
=a

)
sω

=
⊕
a∈A

(=a)ω

= τ (=ω) .

Corollary 13. If (X,=) is a topological space and A is any set of parameters, then (τ (=))sω = (τ (=))ω.

Proof. Follows from Corollaries 4 and 11.

Theorem 27. If (X, τ, A) is soft T1 and soft p-space, then τ = τω.

Proof. Follows from Theorems 9, 18 (a) and 18 (f).

Definition 26. A STS (X, τ, A) is called strongly soft locally countable if for ax ∈ SP(X, A) there exists
G ∈ SCSS(X, A) ∩ τ such that ax∈̃G.

Theorem 28. A STS (X, τ, A) is strongly soft locally countable if and only if SCSS(X, A) ∩ τ is a soft base
for (X, τ, A).

Proof. Necessity. Suppose that (X, τ, A) is strongly soft locally countable. Let F ∈ τ − {0A} and let
ax∈̃F. Since (X, τ, A) is strongly soft locally countable, then there is G ∈ SCSS(X, A) ∩ τ such that
ax∈̃G. Then we have G∩̃F ∈ SCSS(X, A) ∩ τ with ax∈̃G∩̃F⊆̃F. This shows that SCSS(X, A) ∩ τ is
a soft base for (X, τ, A).

Sufficiency. Suppose that SCSS(X, A) ∩ τ is a soft base for (X, τ, A). Let ax ∈ SP(X, A).
Then ax∈̃1A and so there is G ∈ SCSS(X, A) ∩ τ such that ax∈̃G⊆̃1A. This shows that (X, τ, A)

is strongly soft locally countable.

Theorem 29. A STS (X, τ, A) is strongly soft locally countable if and only if SP(X, A) ⊆ τsc.

Proof. Necessity. Suppose that (X, τ, A) is strongly soft locally countable. Let ax ∈ SP(X, A), then by
strong soft local countability of (X, τ, A), there exists G ∈ SCSS(X, A) such that ax∈̃G. Then G− ax ∈
SCSS(X, A) and so, ax = G− (G− ax) ∈ τsc.

Sufficiency. Suppose that SP(X, A) ⊆ τsc. Let ax ∈ SP(X, A). Then ax ∈ τsc and so there is F ∈ τ

and H ∈ SCSS(X, A) such that ax = F− H. Then F ∈ SCSS(X, A) with ax∈̃F. It follows that (X, τ, A)

is strongly soft locally countable.

Corollary 14. A STS (X, τ, A) is strongly soft locally countable if and only if (X, τsω, A) is a discrete STS.

Corollary 15. If (X, τ, A) is a STS with X and A are countable, then (X, τsω, A) is a discrete STS.

Theorem 30. For any STS (X, τ, A), (X, τsω, A) is soft T1.
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Proof. Follows from Theorem 18 (d) and Lemma 4.

Theorem 31. If (X, τ, A) is a soft T2 STS, then (X, τsω, A) is soft T2.

Proof. Let ax, ay ∈ SP(X, A) with x 6= y. Since (X, τ, A) is soft T2, then there exist G, F ∈ τ such that
ax∈̃G, ay∈̃F and G∩̃F = 0A. By Theorem 4 (a), τ ⊆ τsω and so G, F ∈ τsω which ends the proof that
(X, τsω, A) is soft T2.

The following example shows that the converse of Theorem 31 need not to be true in general:

Example 8. Let X = N, A = Z and τ = {1A, 0A}. By Corollary 15, (X, τsω, A) is a discrete STS. Thus,
(X, τsω, A) is soft T2. On the other hand, it is clear that (X, τ, A) is not soft T2.

Definition 27. A STS (X, τ, A) is called strongly soft anti-locally countable if for every F ∈ τ − {0A},
F /∈ SCSS (X, A).

Theorem 32. A STS (X, τ, A) is soft anti-locally countable if and only if (X, τsω, A) is strongly soft
anti-locally countable.

Proof. Necessity. Suppose to the contrary that (X, τ, A) is soft anti-locally countable and there is
G ∈ τsω − {0A} with G ∈ SCSS(X, A). Choose ax ∈̃ G. There are F ∈ τ and H ∈ SCSS(X, A) such
that ax ∈̃ F − H⊆̃G, and so F⊆̃H∪̃G which implies that F ∈ SCSS(X, A). Since F ∈ τ − {0A} and
(X, τ, A) is strongly soft anti-locally countable, then we have a contradiction.

Sufficiency. Is obvious.

Theorem 33. Let (X, τ, A) be strongly soft anti-locally countable. Then for all G ∈ τsω , Clτ(G) = Clτsω (G).

Proof. Let (X, τ, A) be strongly soft anti-locally countable and let G ∈ τsω. Clearly that Clτsω (G) ⊆̃
Clτ(G). Conversely, suppose to the contrary that there is ax∈̃Clτ(G)− Clτsω (G). There is M ∈ τsω

such that ax∈̃M but G∩̃ M = 0A. Choose F ∈ τ and H ∈ SCSS(X, A) such that ax ∈̃ F− H⊆̃M. Thus,
G∩̃ (F− H) = 0A and hence G∩̃ F⊆̃H which implies that G∩̃ F ∈ SCSS(X, A). Since ax∈̃Clτ(G),
then F∩̃G 6= 0A. Since F∩̃G ∈ τsω − {0A} and by Theorem 32 (X, τsω, A) is strongly soft anti-locally
countable, then F∩̃G /∈ SCSS(X, A), a contradiction.

The following example shows that Theorem 33 is no longer true if the assumption of being
strongly soft anti-locally countable is omitted:

Example 9. Consider X = Z, A = N, a = 2 and x = 3 and let G = ax. Let τ = {0A, 1A, G}. Then ax ∈ τ

⊆ τsω, we see that Clτ(G) = 1A but Clτsω (G) = G 6= 1A.

The following example shows in Theorem 33 that the assumption ’G ∈ τsω’ can not be dropped:

Example 10. Consider (R, τ (=u) ,Z) where =u is the usual topology on R. Let G ∈ SS (R,Z) where
G (x) = Q − {x} for all x ∈ Z. Since G ∈ SCSS (R,Z), then by Theorem 18 (d) G is soft closed in
(X, τsω, A), and so Cl(τ(=u))sω

(G) = G. On the other hand, it is not difficult to check that Clτ(=u)(G) = 1A.

Theorem 34. Let (X, τ, A) be a STS and Y be a non empty subset of X. Then (τY)sω = (τsω)Y.

Proof. To see that (τY)sω ⊆ (τsω)Y, by Theorem 18 (c) it is sufficient to show that (τY)sc ⊆ (τsω)Y.
Let G ∈ (τY)sc. Then there are F ∈ τ and H ∈ SCSS(Y, A) such that G = FY − H. Let M ∈
SCSS(X, A) where M (a) = H (a) for all a ∈ A. Then G = FY −MY = (F−M)Y. Since F−M ∈ τsω,
then G ∈ (τsω)Y. To show that (τsω)Y ⊆ (τY)sω, by Lemma 6 and Theorem 18 (c) it is sufficient
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to show that {(F− H)Y : F ∈ τ and H ∈ CSS(X, A)} ⊆ (τY)ω. Let F ∈ τ and H ∈ SCSS(X, A).
Then (F− H)Y = FY − HY with FY ∈ τY and HY ∈ SCSS(Y, A). Hence, (F− H)Y ∈ (τY)sω.

5. Soft Lindelof STS’s and Soft Sω-Open Sets

In this section, we use strongly soft omega open sets to characterize soft Lindelof STS’s.

Definition 28. [58] Let (X, τ, A) be a STS and let σ ⊆ SS (X, τ).
(1) σ is called a soft open cover of (X, τ, A) if σ ⊆ τ and

⋃̃
{F : F ∈ σ} = 1A.

(2) A countable subfamily of a soft open cover σ of (X, τ, A) is called a countable subcover of σ, if it is also
a soft open cover of (X, τ, A).

(3) (X, τ, A) is called soft Lindelof if every soft open cover of (X, τ, A) has a countable subcover.

Lemma 7. Let (X, τ, A) be a STS and let B be a soft base of τ. Then (X, τ, A) is soft Lindelof if and only if
every soft open cover σ of (X, τ, A) with σ ⊆ B has a countable subcover.

Proof. Necessity. It is obvious
Sufficiency. Suppose that every soft open cover σ of (X, τ, A) with σ ⊆ B has a countable subcover.

Let σ be a soft open cover of (X, τ, A) with σ ⊆ τ − {0A}. For every F ∈ σ, there is BF ⊆ B
such that

⋃̃
{G : G ∈ BF} = F. Let µ = {G : G ∈ BF, F ∈ σ}. Then

⋃̃
{G : G ∈ µ} = 1A and by

assumption, there is a countable subcover ρ of µ. For each G ∈ ρ, choose F (G) ∈ σ such that G ⊆̃F (G).
Then {F (G) : G ∈ ρ} is a countable subcover of σ.

Theorem 35. A STS (X, τ, A) is soft Lindelof if and only if (X, τsω, A) is soft Lindelof.

Proof. Necessity. Suppose that (X, τ, A) is soft Lindelof. By Theorem 18 (c), τsc is a soft base of τsω , so by
Lemma 7 it is sufficient to show that every soft open cover σ of (X, τsω , A) with σ ⊆ τsc has a countable
subcover. Let σ be a soft open cover of (X, τsω , A) with σ ⊆ τsc, say σ = {Fα−Hα : α ∈ ∆}with Fα ∈ τ

and Hα ∈ SCSS (X, τ) for all α ∈ ∆. Then {Fα : α ∈ ∆} is a soft open cover of (X, τ, A). Since (X, τ, A)

is soft Lindelof, then there is a countable subset ∆1 ⊆ ∆ such that {Fα : α ∈ ∆1} is also a soft open
cover of (X, τ, A). Put H =

⋃̃{Hα : α ∈ ∆1}. Then H is strongly soft countable. For each ax∈̃H, take
α (ax) ∈ ∆ such that ax∈̃Fα(ax) − Hα(ax). Therefore, {Fα − Hα : α ∈ ∆1} ∪

{
Fα(ax) − Hα(ax) : ax∈̃H

}
is

a countable subcover of σ. It follows that (X, τsω, A) is soft Lindelof.
Sufficiency. It is obvious.

Corollary 16. Let (X, τ, A) be a STS, where τ = scoc(X, A) is soft Lindelof.

Proof. Consider (X, σ, A) where σ = {0A, 1A}. Then (X, σ, A) is obviously soft Lindelof. So by
Theorem 35, (X, σsω, A) is soft Lindelof. Since σsω = scoc(X, A), then (X, τ, A) is soft Lindelof.

Theorem 36. Let (X, τ, A) be a STS. If (X, τω, A) is soft Lindelof, then (X, τ, A) is soft Lindelof.

Proof. Follows because by Theorem 2 (a) we have τ ⊆ τω.

Theorem 37. Let (X, τ, A) be a STS where τ = coc(X, A). Then (X, τ, A) is soft Lindelof if and only if A
is countable.

Proof. Necessity. Suppose that (X, τ, A) is soft Lindelof and suppose to the contrary that A is
uncountable. Pick x◦ ∈ X and let H ∈ CSS(X, A) where H (a) = {x◦}. For each a ∈ A,
let Ga = (1A − H) ∪̃ax◦ . Then {Ga : a ∈ A} is a soft open cover of (X, τ, A) which contains no
countable subcover. Thus, (X, τ, A) is not soft Lindelof which is a contradiction.
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Sufficiency. Suppose that A is countable. Consider (X, σ, A) where σ = {0A, 1A}. Then
σω = coc(X, A) and σsω = scoc(X, A). So by Theorem 19 (a) coc(X, A) = scoc(X, A). Therefore,
by Corollary 16 (X, τ, A) is soft Lindelof.

The following example shows that the converse of Theorem 36 is not true in general:

Example 11. Let X be a non empty set and let be an uncountable of parameters. Let τ = {0A, 1A}. Then clearly
that (X, τ, A) is soft Lindelof. On the other hand since τω = coc(X, A) and A is uncountable, then by
Theorem 37 (X, τω, A) is not soft Lindelof.

Theorem 38. Let X be an initial universe and let A be a set of parameters. Let {=a : a ∈ A} be an indexed

family of topologies on X. Then
(

X,
⊕

a∈A
=a, A

)
is soft Lindelof if and only if A is countable and (X,=a) is

Lindelof for all a ∈ A.

Proof. Necessity. Suppose that
(

X,
⊕

a∈A
=a, A

)
is soft Lindelof. Since {aX : a ∈ A} is a soft open cover

of
⊕

a∈A
=a, it contains a countable subcover {aX : a ∈ A1} where A1 is a countable subset of A. It is

not difficult to show that A1 = A and hence A is countable. Let b ∈ A. To show that (X,=b) is
Lindelof, letM⊆ =b with ∪ {M : M ∈ M}. Let σ = {bM : M ∈ M} ∪ {aX : a ∈ A− {b}}. Then σ is

a soft open cover of the soft Lindelof STS
(

X,
⊕

a∈A
=a, A

)
and so it has a countable subcover ρ. It is

not difficult to show that there is a countable subfamilyM1 ofM such that ρ = {bM : M ∈ M1} ∪
{aX : a ∈ A− {b}}. Therefore,M1 is a countable subcover ofM and hence (X,=b) is Lindelof.

Sufficiency. Suppose that A is countable and (X,=a) is Lindelof for all a ∈ A. Let B =

{aY : a ∈ A and Y ∈ =a}. By Proposition 7, B is a soft base of
⊕

a∈A
=a. We apply Lemma 7. Let σ

be a soft open cover of
(

X,
⊕

a∈A
=a, A

)
with σ ⊆ B. For each a ∈ A, let σa = {Y ⊆ X : aY ∈ σ}.

Then for all a ∈ A, σa is an open cover of the Lindelof topological space (X,=a) and so σa contains
a countable subcover ρa. Let ρ = {aY : a ∈ A and a ∈ ρa}. Since A is countable, then ρ is countable.

Therefore, ρ is a countable subcover of σ. It follows that
(

X,
⊕

a∈A
=a, A

)
is soft Lindelof.

Theorem 39. Let X be an initial universe and let A be a set of parameters. Let {=a : a ∈ A} be an indexed
family of topologies on X. Then the following are equivalent:

(a)
(

X,
(⊕

a∈A
=a

)
ω

, A
)

is soft Lindelof.

(b)
(

X,
⊕

a∈A
=a, A

)
is soft Lindelof.

(c)
(

X,
(⊕

a∈A
=a

)
sω

, A
)

is soft Lindelof.

Proof. (a) =⇒ (b): Follows by Theorem 36.
(b) =⇒ (c): Follows by Theorem 35.
(c) =⇒ (a): Follows by Corollary 11.

6. Soft Weakly Lindelof STS’s

In this section, we define and investigate soft weakly Lindelof STS’s. In particular, we characterize
soft weakly Lindelof sets STS’s which are strongly soft anti-locally countable via sω-open sets.

Definition 29. [59] A STS (X, τ, A) is called soft separable if there is F ∈ SCSS (X, A) such that 1A =

Clτ(F).
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Definition 30. A STS (X, τ, A) is called soft weakly Lindelof if every soft open cover σ of (X, τ, A) contains
a countable subfamily ρ such that 1A = Clτ(

⋃̃{F : F ∈ ρ}).

Definition 31. [60] A topological space (X,=) is called weakly Lindelof if every soft open coverM of (X,=)
contains a countable subfamilyM1 such that X =

⋃{M : M ∈ M1}.

Theorem 40. Every soft Lindelof STS is soft weakly Lindelof.

Proof. Let (X, τ, A) be soft Lindelof and let σ be a soft open cover of (X, τ, A). Since (X, τ, A) is soft
Lindelof, then there is a countable subfamily γ of σ which is also a soft open cover of (X, τ, A). Thus,
we have

1A =
⋃̃
{F : F ∈ γ}⊆̃Clτ(

⋃̃
{F : F ∈ γ})

and hence 1A = Clτ(
⋃̃{F : F ∈ γ}). This shows that (X, τ, A) is soft weakly Lindelof.

Theorem 41. Every soft separable STS is soft weakly Lindelof.

Proof. Let (X, τ, A) be soft separable. Let σ be a soft open cover of (X, τ, A). Since (X, τ, A) is soft
separable, then there is a G ∈ SCSS (X, A) such that 1A = Clτ(G). For every ax∈̃G, choose Fax ∈ σ

such that ax∈̃Fax . Then {Fax : ax∈̃G} is a countable subfamily of σ. Moreover,

1A = Clτ(G) = Clτ(
⋃̃
{ax : ax∈̃G})⊆̃Clτ(

⋃̃
{Fax : ax∈̃G}).

and hence 1A = Clτ(
⋃̃
{Fax : ax∈̃G}). This shows that (X, τ, A) is soft weakly Lindelof.

Lemma 8. [6] Let (X, τ, A) be a STS and F ∈ SS(X, A). Then for all a ∈ A, F (a)
a ⊆ (Clτ(F)) (a).

Theorem 42. Let (X, τ, A) be a STS. If A is countable and (X, τa) is weakly Lindelof for all a ∈ A,
then (X, τ, A) is soft weakly Lindelof.

Proof. Let σ be a soft open cover of (X, τ, A). For each a ∈ A, {F (a) : F ∈ σ} is an open cover of
(X, τa) and by assumption there is a countable subfamily σa of σ such that ∪ {F (a) : F ∈ σa}

a
= X.

Let γ = {F : F ∈ σa, a ∈ A}. Then σ1 is a countable subfamily of σ. By Lemma 8, or each a ∈ A,

X = ∪ {F (a) : F ∈ σa}
a

⊆ ∪{F (a) : F ∈ γ}a

=
(
∪̃ {F : F ∈ γ}

)
(a)

a

⊆
(
Clτ(∪̃ {F : F ∈ γ})

)
(a) .

It follows that Clτ(∪̃ {F : F ∈ γ}) = 1A. Hence (X, τ, A) is soft weakly Lindelof.

Corollary 17. If A is countable and {(X,=a) : a ∈ A} is a family of weakly Lindelof topological spaces, then(
X,

⊕
a∈A
=a, A

)
is soft weakly Lindelof.

Proof. For each b ∈ A, by Proposition 8,
(⊕

a∈A
=a

)
b
= =b and so

(
X,
(⊕

a∈A
=a

)
b

)
is weakly Lindelof.

Thus, by Theorem 42, we have
(

X,
⊕

a∈A
=a, A

)
is soft weakly Lindelof.

The following Example will shows that the converse of Theorem 42 need not to be true in general:
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Example 12. Let X be an uncountable set and let A be a set of parameters contains at least two points.
Fix x ∈ X and a ∈ A. Let τ = {0A} ∪ {F ∈ SS (X, A) : ax∈̃F}. Then

(a) (X, τ, A) is a STS.
(b) (X, τ, A) is soft weakly Lindelof.
(c) (X, τb) is a discrete topological space and hence it is not weakly Lindelof for all b 6= a.

Proof. (a) (1) By definition of τ, 0A ∈ τ. Also, since obviously ax ∈̃1A, then 1A ∈ τ.
(2) Let F, G ∈ τ − {0A}. Then ax ∈̃ F and ax∈̃G. So ax ∈̃ F∩̃G and hence F∩̃G ∈ τ.
(3) Let {Gα : α ∈ ∆} ⊆ τ − {0A}. Then ax∈̃

⋃̃
α∈∆

Gα and so
⋃̃

α∈∆
Gα ∈ τ.

(b) Let σ be a soft open cover of (X, τ, A). Choose F ∈ σ − {0A} and let ρ = {F}. Then ρ is
a countable subfamily of σ with 1A = Clτ(F). It follows that (X, τ, A) is soft weakly Lindelof.

(c) Straightforward.

Lemma 9. Let (X, τ, A) be a STS, where A = {a}. Then F (a)
a
= (Clτ(F)) (a).

Proof. Suppose to the contrary that F (a)
a 6= (Clτ(F)) (a). Then by Lemma 8, there is x ∈

(Clτ(F)) (a)− F (a)
a
. So, we have ax∈̃aX−F(a)

a ∈ τ and ax∈̃Clτ(F). Thus, aX−F(a)
a ∩̃F 6= 0A. Choose

ay∈̃aX−F(a)
a ∩̃F. Then y ∈

(
X− F (a)

a) ∩ F (a) which is a contradiction.

Theorem 43. Let (X, τ, A) be a STS, where A = {a}. Then (X, τ, A) is soft weakly Lindelof if and only if the
topological space (X, τa) is weakly Lindelof.

Proof. Necessity. Suppose that (X, τ, A) is soft weakly Lindelof. LetM be an open cover of (X, τa).
Then {aM : M ∈ M} is a soft open cover of (X, τ, A) and so there is a countable subfamilyM1 ⊆M
such that Clτ(∪̃ {aM : M ∈ M1}) = 1A

Sufficiency. Suppose that (X, τa) is weakly Lindelof. Let σ be a soft open cover of (X, τ, A). Then
{F (a) : F ∈ σ} is an open cover of (X, τa) and so there is a countable subfamily γ of σ such that
∪ {F (a) : F ∈ γ}a

= X. By Lemma 9, we have
(
Clτ(∪̃ {F : F ∈ γ})

)
(a) = ∪ {F (a) : F ∈ γ}a

= X.
It follows that Clτ(∪̃ {F : F ∈ γ}) = 1A. Hence, (X, τ, A) is soft weakly Lindelof.

Theorem 44. Let (X, τ, A) be a STS, where A = {a}. Then (X, τ, A) is soft separable if and only if the
topological space (X, τa) is separable.

Proof. Necessity. Suppose that (X, τ, A) is soft separable. Then there is F ∈ SCSS (X, A) such that
1A = Clτ(F). Since A = {a}, then there is a countable subset Y ⊆ X such that F = aY. We are
going to show that Ya

= X. If Ya 6= X, then there is x ∈ X − Ya ∈ τa. So, there is G ∈ τ such
that G (a) = X − Ya and hence G = aX−Ya . Since ax ∈ G ∈ τ and ax ∈ Clτ(F), then G∩̃F 6= 0A.

But G∩̃F = aX−Ya ∩̃aY = a(X−Ya
)∩Y = a∅ = 0A. It follows that Ya

= X and hence (X, τa) is separable.

Sufficiency. Similar to the necessity part.

The following example shows that the converse of Theorem 40 is not true in general:

Example 13. Let S be the Sorgenfrey line and (X,=) be the Cartesian product topological space S× S. It is well
known that (X,=) is a separable topological space that is not Lindelof. Let A = {a} and let τ = {aU : U ∈ =}.
Then (X, τ, A) is a STS with τa = =. Thus, by Theorems 44 and 38 (X, τ, A) is soft separable that is not soft
Lindelof. Therefore, by Theorem 41 (X, τ, A) is soft weakly Lindelof that is not soft Lindelof.

The following example shows that the converse of Theorem 41 is not true in general:

Example 14. Let X be an uncountable set and let = be the cocountable topology on X. It is well known that
(X,=) is a Lindelof topological space that is not separable. Let A = {a} and let τ = {aU : U ∈ =}. Then
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(X, τ, A) is a STS with τa = =. Thus, by Theorems 44 and 38 (X, τ, A) is soft Lindelof that is not soft separable.
Therefore, by Theorem 40 (X, τ, A) is soft weakly Lindelof that is not soft separable.

Lemma 10. Let (X, τ, A) be a STS and let B be a soft base of τ. Then (X, τ, A) is soft weakly Lindelof
if and only if every soft open cover σ of (X, τ, A) with σ ⊆ B contains a countable subfamily ρ such that
1A = Clτ(

⋃̃{F : F ∈ ρ}).

Proof. Necessity. It is obvious
Sufficiency. Suppose that every soft open cover σ of (X, τ, A) with σ ⊆ B contains a countable

subfamily ρ such that 1A = Clτ(
⋃̃{F : F ∈ ρ}). Let σ be a soft open cover of (X, τ, A) with σ ⊆ τ −

{0A}. For every F ∈ σ, there is BF ⊆ B such that
⋃̃
{G : G ∈ BF} = F. Let µ = {G : G ∈ BF, F ∈ σ}.

Then
⋃̃
{G : G ∈ µ} = 1A and by assumption, µ contains a countable subfamily ρ such that 1A =

Clτ(
⋃̃{G : G ∈ ρ}). For each G ∈ ρ, choose F (G) ∈ σ such that G ⊆̃F (G). Then {F (G) : G ∈ ρ} is a

countable subfamily of σ. Also,

1A = Clτ(
⋃̃
{G : G ∈ ρ})⊆̃Clτ(

⋃̃
{F (G) : G ∈ ρ})

which shows that 1A = Clτ(
⋃̃
{F (G) : G ∈ ρ}). It follows that (X, τ, A) is soft weakly

Lindelof.

Theorem 45. Let (X, τ, A) be a strongly soft anti-locally countable. Then (X, τ, A) is soft weakly Lindelof if
and only if (X, τsω, A) is soft weakly Lindelof.

Proof. Necessity. Suppose that (X, τ, A) is soft weakly Lindelof. By Theorem 18 (c), τsc is a soft base of
τsω, so by Lemma 10 it is sufficient to show that every soft open cover σ of (X, τsω, A) with σ ⊆ τsc

contains a countable subfamily ρ such that 1A = Clτ(
⋃̃{F : F ∈ ρ}). Let σ be a soft open cover of

(X, τsω, A) with σ ⊆ τsc, say σ = {Fα − Hα : α ∈ ∆} with Fα ∈ τ and Hα ∈ SCSS (X, τ) for all α ∈ ∆.
Then {Fα : α ∈ ∆} is a soft open cover of (X, τ, A). Since (X, τ, A) is soft weakly Lindelof, then there is
a countable subset ∆1 ⊆ ∆ such that Clτ(

⋃̃{Fα : α ∈ ∆1}) = 1A is also a soft open cover of (X, τ, A).
Put H =

⋃̃{Hα : α ∈ ∆1}. Then H is strongly soft countable. For each ax∈̃H, take α (ax) ∈ ∆ such that
ax∈̃Fα(ax) − Hα(ax). Therefore, {Fα − Hα : α ∈ ∆1} ∪

{
Fα(ax) − Hα(ax) : ax∈̃H

}
is a countable subfamily

of σ and by Theorem 33,

1A = Clτ(
⋃̃
{Fα : α ∈ ∆1})⊆̃Clτ({Fα − Hα : α ∈ ∆1} ∪

{
Fα(ax) − Hα(ax) : ax∈̃H

}
)

= Clτsω ({Fα − Hα : α ∈ ∆1} ∪
{

Fα(ax) − Hα(ax) : ax∈̃H
}
).

It follows that (X, τsω, A) is soft weakly Lindelof.
Sufficiency. It is obvious.

The following example shows in Theorem 45 that the assumption ’strongly soft anti-locally
countable’ can not be dropped:

Example 15. Let (X, τ, A) as in Example 12. Then
(a) (X, τsω, A) is a discrete STS.
(b) (X, τsω, A) is not soft weakly Lindelof.

Proof. (a) We show that SP (X, A) ⊆ τsω . Let by ∈ SP (X, A). If by = ax, then by ∈ τ ⊆ τsω . If by 6= ax,
then we have ax∪̃by ∈ τ, ax ∈ SCSS (X, A) and so

(
ax∪̃by

)
− ax = by ∈ τsω.

(b) By (a), SP (X, A) is a soft open cover of (X, τsω, A). If ρ is a countable subfamily of SP (X, A),
then by (a) Clτsω (

⋃̃{F : F ∈ ρ}) = ⋃̃{F : F ∈ ρ} 6= 1A. It follows that (X, τsω, A) is not soft weakly
Lindelof.
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7. Conclusions

In this paper, ω-open sets as a weaker form of open sets in ordinary topological spaces are
extended to include soft topological spaces, where soft ω-open sets and strongly soft ω-open sets as
two weaker forms of soft open sets are introduced and investigated. The results deal mainly with the
relation between the generated soft topology and the given indexed family of topologies, as well as the
relation between a given soft topological space and their topological space. Also, as two main results,
the soft Lindelofeness and soft weak Lindelofeness are characterized. In future studies, the following
topics could be considered: 1) To define several types of soft ω-continuity; 2) To define separation
axioms via soft ω-open sets.

Author Contributions: Formal analysis, investigation, and writing-original draft preparation S.A.G. and W.H.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Molodtsov, D. Soft set theory—First results. Global optimization, control, and games. III. Comput. Math. Appl.
1999, 37, 19–31. [CrossRef]

2. Maji, P.K.; Biswas, R.; Roy, A.R. Soft set theory. Comput. Math. Appl. 2003, 45, 555–562. [CrossRef]
3. Kharal, A.; Ahmad, B. Mappings of soft classes. New Math. Nat. Comput. 2011, 7, 471–481. [CrossRef]
4. Molodtsov, D.; Leonov, V.Y.; Kovkov, D.V. Soft sets technique and its application. Nechetkie Sistemy i

Myagkie Vychisleniya. 2006, 1, 8–39.
5. Maji, P.K.; Roy, A.R.; Biswas, R. An application of soft sets in a decision making problem. Comput. Math. Appl.

2002, 44, 1077–1083. [CrossRef]
6. Shabir, M.; Naz, M. On soft topological spaces. Comput. Math. Appl. 2011, 61, 1786–1799. [CrossRef]
7. Matejdes, M. Soft topological space and topology on the Cartesian product. Hacet. J. Math. Stat. 2016, 45,

1091–1100.
8. Al-Saadi, H.S.; Min, W.K. On soft generalized closed sets in a soft topological space with a soft weak structure.

Int. J. Fuzzy Logic Intell.Syst. 2017, 17, 323–328. [CrossRef]
9. Demir, İ.; Özbakır, O.B.; Yıldız, İ. A contribution to the study of soft proximity spaces. Filomat 2017, 31,

2023–2034. [CrossRef]
10. Hosseinzadeh, H. Fixed point theorems on soft metric spaces. J. Fixed Point Theory Appl. 2017, 19, 1625–1647.

[CrossRef]
11. Kandil, A.; Tantawy, O.A.E.; El-Sheikh, S.A.; Hazza, S.A. Some types of pairwise soft sets and the associated

soft topologies. J. Intell. Fuzzy Syst. 2017, 32, 1007–1018. [CrossRef]
12. Sayed, O.R.; Hassan, N.; Khalil, A.M. A decomposition of soft continuity in soft topological spaces. Afr. Mat.

2017, 28, 887–898. [CrossRef]
13. Zakari, A.H.; Ghareeb, A.; Omran, S. On soft weak structures. Soft Comput. 2017, 21, 2553–2559. [CrossRef]
14. Thakur, S.S.; Rajput, A.S. Connectedness between Soft Sets. New Math. Natural Comp. 2018, 14, 53–71.

[CrossRef]
15. Tahat, M.K.; Sidky, F.; Abo-Elhamayel, M. Soft topological soft groups and soft rings. Soft Comput. 2018, 22,

7143–7156. [CrossRef]
16. Kandemir, M.B. The concept of σ-algebraic soft set. Soft Comput. 2018, 22, 4353–4360. [CrossRef]
17. Ozturk, T.Y.; Gunduz Aras, C.; Yolcu, A. Soft bigeneralized topological spaces. Filomat 2018, 32, 5679–5690.

[CrossRef]
18. El-Shafei, M.E.; Abo-Elhamayel, M.; Al-shami, T.M. Partial soft separation axioms and soft compact spaces.

Filomat 2018, 32, 4755–4771. [CrossRef]
19. Polat, N.Ç.; Yaylalı, G.; Tanay, B. A new approach for soft semi-topological groups based on soft element.

Filomat 2018, 32, 5743–5751. [CrossRef]
20. Abbas, M.; Murtaza, G.; Romaguera, S. Remarks on fixed point theory in soft metric type spaces. Filomat

2019, 33, 5531–5541. [CrossRef]

http://dx.doi.org/10.1016/S0898-1221(99)00056-5
http://dx.doi.org/10.1016/S0898-1221(03)00016-6
http://dx.doi.org/10.1142/S1793005711002025
http://dx.doi.org/10.1016/S0898-1221(02)00216-X
http://dx.doi.org/10.1016/j.camwa.2011.02.006
http://dx.doi.org/10.5391/IJFIS.2017.17.4.323
http://dx.doi.org/10.2298/FIL1707023D
http://dx.doi.org/10.1007/s11784-016-0390-0
http://dx.doi.org/10.3233/JIFS-16180
http://dx.doi.org/10.1007/s13370-017-0494-8
http://dx.doi.org/10.1007/s00500-016-2136-8
http://dx.doi.org/10.1142/S1793005718500059
http://dx.doi.org/10.1007/s00500-018-3026-z
http://dx.doi.org/10.1007/s00500-017-2901-3
http://dx.doi.org/10.2298/FIL1816679O
http://dx.doi.org/10.2298/FIL1813755E
http://dx.doi.org/10.2298/FIL1816743P
http://dx.doi.org/10.2298/FIL1917531A


Symmetry 2020, 12, 265 21 of 22

21. Al Ghour, S.; Bin-Saadon, A. On some generated soft topological spaces and soft homogeneity. Heliyon 2019,
5, e02061. [CrossRef] [PubMed]

22. Polat, N.Ç.; Yaylalı, G.; Tanay, B. Some results on soft element and soft topological space. Math. Methods
Appl. Sci. 2019, 42, 5607–5614. [CrossRef]

23. Al-shami, T.M.; El-Shafei, M.E.; Abo-Elhamayel, M. On soft topological ordered spaces. J. King Saud Univ.-Sci.
2019, 31, 556–566. [CrossRef]

24. Al-Omari, A. Soft topology in ideal topological spaces. Hacet. J. Math. Stat. 2019, 8, 1277–1285. [CrossRef]
25. Kiruthika, M.; Thangavelu, P. A link between topology and soft topology. Hacet. J. Math. Stat. 2019, 48,

800–804. [CrossRef]
26. Gunduz Aras, C.; Bayramov, S.; Yazar, M.I. Soft d-metric spaces. Bol. Soc. Parana. Mat. 2020, 38, 137–147.

[CrossRef]
27. Hdeib, H.Z. ω-closed mappings. Rev. Colombiana Mat. 1982, 16, 65–78.
28. Hdeib, H.Z. ω-continuous functions. Dirasat J. 1989, 16, 136–142.
29. Al-Omari, A.; Noorani, M.S.M. Contra-ω-continuous and almost Contra-ω-continuous. Int. J. Math. Math. Sci.

2007, 40469. [CrossRef]
30. Al-Omari, A.; Noiri, T.; Noorani, M.S.M. Weak and strong forms of ω-continuous functions. Int. J. Math.

Math. Sci. 2009, 174042. [CrossRef]
31. Al Ghour, S. Some generalizations of paracompactness. Missouri J. Math. Sci. 2006, 18, 64–77. [CrossRef]
32. Al-Zoubi, K.Y. On generalized ω-closed sets. Int. J. Math. Math. Sci. 2005, 13, 2011–2021. [CrossRef]
33. Al-Hawary, T.; Al-Omari, A. Between open and ω-open sets. Questions Answers Gen. Topol. 2006, 24, 67–78.
34. Al-Hawary, T.; Al-Omari, A. Decompositions of continuity. Turkish J. Math. 2006, 30, 187–195.
35. Al-Omari, A.; Noorani, M.S.M. Regular generalized ω-closed sets. Int. J. Math. Math. Sci. 2007, 16292.
36. Sarsak, M. A decomposition of ω-almost Lindelöf spaces. Questions Answers Gen. Topol. 2009, 27, 137–139.
37. Al Ghour, S.; Irshedat, B. The topology of θω-open sets. Filomat 2017, 31, 5369–5377.
38. Al Ghour, S. Theorems on strong paracompactness of product spaces. Math. Notes 2018, 103, 54–58. [CrossRef]
39. Al-Omari, A.; Al-Saadi, H. A topology via ω-local functions in ideal spaces. Mathematica 2018, 60, 103–110.

[CrossRef]
40. Carpintero, C.; Rajesh, N.; Rosas, E. On real valued ω-continuous functions. Acta Univ. Sapientiae Math. 2018,

10, 242–248. [CrossRef]
41. Noble, N. Some thoughts on countable Lindelöf products. Topol. Appl. 2019, 259, 287–310. [CrossRef]
42. Al Ghour, S.; El-Issa, S. θω-Connectedness and ω-R1 properties. Proyecciones 2019, 38, 953–974. [CrossRef]
43. Rosas, E.; Carpintero, C.; Rajesh, N.; Shanti, S. Near ω-continuous multifunctions on bitopological spaces.

Proyecciones 2019, 38, 691–698. [CrossRef]
44. Mahanta, J.; Das, P.K. On soft topological space via semiopen and semiclosed soft sets. Kyungpook Math. J.

2014, 54, 221–236. [CrossRef]
45. Akdag, M.; Ozkan, A. Soft b-open sets and soft b-continuous functions. Math. Sci. (Springer) 2014, 8, 124.

[CrossRef]
46. Akdag, M.; Ozkan, A. Soft α-open sets and soft α-continuous functions. Abstr. Appl. Anal. 2014, 891341.
47. Kandil, A.; Tantawy, O.A.E.; El-Sheikh, S.A.; Abd El-latif, A.M. Soft semi compactness via soft ideals.

Appl. Math. Inf. Sci. 2014, 8, 2297–2306. [CrossRef]
48. Kandil, A.; Tantawy, O.A.E.; El-Sheikh, S.A.; Abd El-latif, A.M. Soft semi separation axioms and some types

of soft functions. Ann. Fuzzy Math. Inform. 2014, 8, 305–318.
49. Al-shami, T.M.; El-Shafei, M.E.; Abo-Elhamayel, M. Almost soft compact and approximately soft Lindelöf

spaces. J. Taibah Univ. Sci. 2018, 12, 620–630. [CrossRef]
50. Al-shami, T.M.; El-Shafei, M.E. Two types of separation axioms on supra soft topological spaces.

Demonstr. Math. 2019, 52, 147–165. [CrossRef]
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53. Çağman, N.; Karataş, S.; Enginoglu, S. Soft topology. Comput. Math. Appl. 2011, 62, 351–358. [CrossRef]
54. Nazmul, S.; Samanta, S.K. Neighbourhood properties of soft topological spaces. Ann. Fuzzy Math. Inform.

2012, 6, 1–15.

http://dx.doi.org/10.1016/j.heliyon.2019.e02061
http://www.ncbi.nlm.nih.gov/pubmed/31338469
http://dx.doi.org/10.1002/mma.5778
http://dx.doi.org/10.1016/j.jksus.2018.06.005
http://dx.doi.org/10.15672/HJMS.2018.557
http://dx.doi.org/10.15672/HJMS.2018.551
http://dx.doi.org/10.5269/bspm.v38i7.44641
http://dx.doi.org/10.1155/2007/40469
http://dx.doi.org/10.1155/2009/174042
http://dx.doi.org/10.35834/2006/1801064
http://dx.doi.org/10.1155/IJMMS.2005.2011
http://dx.doi.org/10.1134/S0001434618010066
http://dx.doi.org/10.24193/mathcluj.2018.2.01
http://dx.doi.org/10.2478/ausm-2018-0019
http://dx.doi.org/10.1016/j.topol.2019.02.037
http://dx.doi.org/10.22199/issn.0717-6279-2019-05-0059
http://dx.doi.org/10.22199/issn.0717-6279-2019-04-0044
http://dx.doi.org/10.5666/KMJ.2014.54.2.221
http://dx.doi.org/10.1007/s40096-014-0124-7
http://dx.doi.org/10.12785/amis/080524
http://dx.doi.org/10.1080/16583655.2018.1513701
http://dx.doi.org/10.1515/dema-2019-0016
http://dx.doi.org/10.1016/j.camwa.2011.05.016


Symmetry 2020, 12, 265 22 of 22

55. Terepeta, M. On separating axioms and similarity of soft topological spaces. Soft Comput. 2019, 23, 1049–1057.
[CrossRef]

56. Hussain, S.; Ahmad, B. Soft separation axioms in soft topological spaces. Hacet. J. Math. Stat. 2015, 44,
559–568. [CrossRef]

57. Hussain, S.; Ahmad, B. Some properties of soft topological spaces. Comput. Math. Appl. 2011, 62, 4058–4067.
[CrossRef]

58. Aygünoglu, A.; Aygün, H. Some notes on soft topological spaces. Neural Comput. Appl. 2012, 21, 113–119.
[CrossRef]

59. Rong W. The countabilities of soft topological spaces, World Accedmy Sci. Eng. Technol. 2012, 6, 784–787.
60. Hart, K.P.; Nagata, J.-I.; Vaughan, J.E. (Eds.) Encyclopedia of General Topology; Elsevier Science Publishers:

Amsterdam, The Netherland, 2004; x+526p.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00500-017-2824-z
http://dx.doi.org/10.15672/HJMS.2015449426
http://dx.doi.org/10.1016/j.camwa.2011.09.051
http://dx.doi.org/10.1007/s00521-011-0722-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Soft Omega Open Sets
	Strongly Soft Omega Open Sets
	Soft Lindelof STS's and Soft S-Open Sets
	Soft Weakly Lindelof STS's
	Conclusions
	References

