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Abstract: T-spherical fuzzy set is a recently developed model that copes with imprecise and uncertain
events of real-life with the help of four functions having no restrictions. This article’s aim is to define
some improved algebraic operations for T-SFSs known as Einstein sum, Einstein product and Einstein
scalar multiplication based on Einstein t-norms and t-conorms. Then some geometric and averaging
aggregation operators have been established based on defined Einstein operations. The validity of the
defined aggregation operators has been investigated thoroughly. The multi-attribute decision-making
method is described in the environment of T-SFSs and is supported by a comprehensive numerical
example using the proposed Einstein aggregation tools. As consequences of the defined aggregation
operators, the same concept of Einstein aggregation operators has been proposed for q-rung orthopair
fuzzy sets, spherical fuzzy sets, Pythagorean fuzzy sets, picture fuzzy sets, and intuitionistic fuzzy sets.
To signify the importance of proposed operators, a comparative analysis of proposed and existing
studies is developed, and the results are analyzed numerically. The advantages of the proposed study
are demonstrated numerically over the existing literature with the help of examples.

Keywords: picture fuzzy set; spherical fuzzy set; T-spherical fuzzy sets; multi-attribute decision
making; Einstein aggregation operators

1. Introduction

To deal with imprecise and uncertain events has always been a challenging task as imprecision
and vagueness lie in almost every field of science. To serve the goal, Zadeh [1] proposed the notion
of a fuzzy set (FS) where he described the uncertainty of an object/event by a membership grade m
that has a value from the interval [0, 1]. Atanassov [2] proposed the notion of the intuitionistic fuzzy
set (IFS) based on two grades m and n representing the membership and non-membership degree
of an object. Yager [3] proposed the idea of Pythagorean fuzzy set (PyFS) based on two grades m
and n with the condition that the sum of squares of m and n must be less than or equal to 1. PyFS
provides a considerably larger range for the values of m and n to be chosen but still, it has limited
space. To obtain a space of membership and non-membership grades with no limitation, Yager [4]
proposed the framework of q-rung orthopair fuzzy set (q-ROPFS) with the condition that the sum of
the qth power of m and n must be less than or equal to 1, for a positive integer q. The constraints of
these mentioned fuzzy frameworks are discussed in Table 1.
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All fuzzy models described in [1–4] either use one or two membership grades to model an
event, but not all real-life events can always be modeled using these types of fuzzy frameworks.
In 2013, Cuong [5] considered the situation of voting in which one may have four types of opinions
including membership, abstinence, non-membership, and refusal degree. Cuong [5] used the four
grades to model such events and developed the concept of the picture fuzzy set (PFS) with a restriction.
The restriction on Cuong’s structure of PFS left no choice for decision makers to choose values of
their consent for three functions m, i and n denoting membership, abstinence, and non-membership
degree respectively. Realizing this problem, Mahmood et al. [6] developed the important concept of the
spherical fuzzy set (SFS) and consequently the T-spherical fuzzy set (T-SFS). A T-SFS allows the decision
makers to choose any value from closed unit interval regardless of any restriction. A description of the
constraints of PFS, SFS and T-SFS is provided in Table 2.

Table 1. Fuzzy frameworks with their limitations).

Fuzzy Structures Functions Limitations on Functions

FS m 0 ≤ m ≤ 1
IFS (m, n) 0 ≤ m + n ≤ 1

PyFS (m, n) 0 ≤ m2 + n2
≤ 1

q-ROPFS (m, n) 0 ≤ mq + nq
≤ 1, q ∈ Z+

Table 2. Comparison of the restrictions of PFS, SFS and TSFS).

Fuzzy Structures Functions Limitations on Functions

PFS (m, i, n) 0 ≤ m + i + n ≤ 1
SFS (m, i, n) 0 ≤ m2 + i2 + n2

≤ 1
T-SFS (m, i, n) 0 ≤ mt + it + nt

≤ 1, t ∈ Z+

A geometrical comparison among the ranges of PFSs, SFSs and T-SFSs is depicted in Figure 1
which is based on the constraints discussed in Table 2. All the numbers within and on the space of
PFSs represent picture fuzzy numbers; all the numbers on and within the space of SFSs represent
spherical fuzzy numbers; and all the numbers on and within space of T-SFSs represent T-spherical
fuzzy numbers for t = 20.

Symmetry 2020, 12, 365 2 of 22 

 

All fuzzy models described in [1–4] either use one or two membership grades to model an event, 
but not all real-life events can always be modeled using these types of fuzzy frameworks. In 2013, 
Cuong [5] considered the situation of voting in which one may have four types of opinions including 
membership, abstinence, non-membership, and refusal degree. Cuong [5] used the four grades to 
model such events and developed the concept of the picture fuzzy set (PFS) with a restriction. The 
restriction on Cuong’s structure of PFS left no choice for decision makers to choose values of their 
consent for three functions 𝑚, 𝑖  and 𝑛  denoting membership, abstinence, and non-membership 
degree respectively. Realizing this problem, Mahmood et al. [6] developed the important concept of 
the spherical fuzzy set (SFS) and consequently the T-spherical fuzzy set (T-SFS). A T-SFS allows the 
decision makers to choose any value from closed unit interval regardless of any restriction. A 
description of the constraints of PFS, SFS and T-SFS is provided in Table 2. 

Table 1. Fuzzy frameworks with their limitations). 

Fuzzy Structures Functions Limitations on Functions 

FS 𝑚 0 ≤ 𝑚 ≤ 1 
IFS (𝑚, 𝑛) 0 ≤ 𝑚 + 𝑛 ≤ 1 

PyFS (𝑚, 𝑛) 0 ≤ 𝑚 + 𝑛 ≤ 1 
q-ROPFS (𝑚, 𝑛) 0 ≤ 𝑚 + 𝑛 ≤ 1, 𝑞 ∈ ℤ  

Table 2. Comparison of the restrictions of PFS, SFS and TSFS). 

Fuzzy Structures Functions Limitations on Functions 

PFS (𝑚, 𝑖, 𝑛) 0 ≤ 𝑚 + 𝑖 + 𝑛 ≤ 1 
SFS (𝑚, 𝑖, 𝑛) 0 ≤ 𝑚 + 𝑖 + 𝑛 ≤ 1 

T-SFS (𝑚, 𝑖, 𝑛) 0 ≤ 𝑚 + 𝑖 + 𝑛 ≤ 1, 𝑡 ∈ ℤ  

A geometrical comparison among the ranges of PFSs, SFSs and T-SFSs is depicted in Figure 1 
which is based on the constraints discussed in Table 2. All the numbers within and on the space of 
PFSs represent picture fuzzy numbers; all the numbers on and within the space of SFSs represent 
spherical fuzzy numbers; and all the numbers on and within space of T-SFSs represent T-spherical 
fuzzy numbers for 𝑡 = 20. 

 
Figure 1. Comparison between PFSs, SFSs and T-SFS. 

From Figure 1, it is easy to observe that T-SFS is much more generalized and diverse than PFS 
and SFS. The space for T-SFS increases with any increment in the value of 𝑡. This enables the experts 
to have much more values to assign to each membership, abstinence and non-membership grades. 

Figure 1. Comparison between PFSs, SFSs and T-SFS.

From Figure 1, it is easy to observe that T-SFS is much more generalized and diverse than PFS and
SFS. The space for T-SFS increases with any increment in the value of t. This enables the experts to
have much more values to assign to each membership, abstinence and non-membership grades.
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Multi-attribute decision making (MADM) is one of the most discussed problems in FS theory due
to its influence in engineering, economics and management sciences. The study of MADM started
in 1970 [7] to use the concept of FS in a decision-making problem. Later, the concept of IFS and
its aggregation tools have been greatly used in decision making problems. Xu [8] developed some
aggregation operators (AOs) for IFSs and studied their applications in MADM. Klement and Mesiar [9]
proposed some triangular norms. PyFSs also have been greatly utilized in MADM problems through
some averaging and geometric aggregation tools developed by [10,11]. Cuong’s Structure of PFS has
been utilized in MADM problems using the weighted geometric and averaging AOs of PFSs which have
been developed by [12,13]. Mahmood at al. [6] developed some T-spherical fuzzy weighted geometric
AOs and investigated their applications in MADM. Ullah et al. [14] solved a financial policy evaluation
problem using interval-valued T-spherical fuzzy AOs. Ullah et al. [15] proposed some averaging AOs
for T-SFSs and applied those operators to MADM problems. Liu et al. [16] introduced T-SF power
Muirhead mean operators and utilized those operators in MADM problems. Garg et al. [17] dealt with
MADM problems by introducing some T-spherical fuzzy interactive geometric AOs. For other notable
work on the AOs of these fuzzy structures and their applications in MADM, one is referred to [18–23].

In the theory of aggregation, weighted geometric and averaging operators are the widely used
operators and these are based on some t-norms and t-conorms. Literature survey witnessed some
other types of t-norms and t-conorms, respectively—among them Einstein t-norm and t-conorms have
got some serious attention. Based on Einstein t-conorms and t-norms, several aggregation tools have
been proposed for various fuzzy algebraic structures. The Einstein weighted averaging (EWA) and
Einstein weighted geometric (EWG) operators of IFSs and interval valued IFSs have been investigated
in [24,25]. For PyFSs, EWA and Einstein interactive aggregation operators are developed by [26,27],
respectively. For further interesting work on Einstein aggregation operators and their applications in
MADM, one is referred to [28–30].

The continuous growth of interest has occurred in order to meet the requirements in needs of
fertile applications of these inequalities. Such inequalities had been studied by many researchers who
in turn used various techniques for the sake of exploring and offering these inequalities [31–42] and
the references cited therein.

By analyzing the literature, no significant work can be found on EWA and EWG operators in
the environment of PFSs, q-ROPFS, SFSs and T-SFSs. Keeping in mind the developments of Einstein
aggregation operators, in this manuscript, some averaging, as well as geometric AOs, are produced
based on Einstein operations for T-SFSs. Using the Einstein operations of T-SFSs, the same concepts
are also defined for q-ROPFSs, PFSs, and SFSs as consequences of new proposed work. Furthermore,
the generalization of new proposed work has also been discussed.

The remaining article is organized as section one provides a brief history of the fuzzy structure
and theory of aggregation operators. Section 2 provides some initial concepts related to T-SFSs, SFSs,
PFSs, q-ROPFSs, PyFSs and IFSs. In Section 3, we proposed the Einstein sum and Einstein product
for T-SFSs. We also defined the Einstein sum and product for SFSs, q-ROPFS, and PFSs in a remark.
Section 4 is based on the weighted averaging, ordered weighted averaging and hybrid averaging
operators for T-SFSs based on Einstein sum; while Section 5 is based on the weighted geometric,
ordered weighted geometric and hybrid geometric operators for T-SFSs based on Einstein product.
In Section 6, the defined aggregation tools have used MADM. Section 7 provides the advantages of
the proposed work. Further, with the help of some useful conditions, EWA and EWG operators are
also defined for q-ROPFSs, SFSs and PFSs. A comparative analysis is also discussed with the help
of examples. In Section 8, we summarized the article by pointing out some future study. The list of
abbreviations adopted hereafter is given in Table 3:
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Table 3. Abbreviation Values.

Definition Abbreviation

Fuzzy set FS
Intuitionistic fuzzy set IFS
Pythagorean fuzzy set PyFS

q-rung orthopair fuzzy set q-ROPFS
Picture fuzzy set PFS

Spherical fuzzy set SFS
T-spherical fuzzy set T-SFS
Aggregation operator AO

Einstein weighted averaging EWA
Einstein weighted geometric EWG

T-spherical fuzzy Einstein weighted averaging T-SFEWA
T-spherical fuzzy Einstein ordered weighted averaging T-SFEOWA

T-spherical fuzzy Einstein hybrid averaging T-SFEHA
T-spherical fuzzy Einstein weighted geometric T-SFEWG

T-spherical fuzzy Einstein ordered weighted geometric T-SFEOWG
T-spherical fuzzy Einstein hybrid geometric T-SFEHG

multi-attribute decision making MADM

2. Preliminaries

Some basic notions of T-SFSs, q-ROPFSs, SFSs, PyFSs, PFSs and IFSs are provided in this
section. Furthermore, the concepts of Einstein t-norm and t-conorm are also studied in the existing
fuzzy environments.

Definition 1. [6] A T-SFS on X , φ is defined as

P =
{
(x, m(x), i(x), n(x))x ∈ X

}
where m, i, n : X→ [0, 1] , a membership, abstinence and non-membership function respectively, with the

condition 0 ≤ mt(x) + it(x) + nt(x) ≤ 1 ∀ x ∈ X & t ∈ Z+. Further, r(x) = t
√

1−
(
mt(x) + it(x) + nt(x)

)
is

called the refusal degree of x in P and the triplet (m, i, n) is known as T-spherical fuzzy number (T-SFN).

Remark 1.

i. The above definition becomes valid to SFS for t = 2
ii. The above definition becomes valid to PFS for t = 1
iii. The above definition becomes valid to q-ROPFS for i = 0
iv. The above definition becomes valid to PyFS for t = 2 and i = 0
v. The above definition becomes valid to IFS for t = 1 and i = 0
vi. The above definition becomes valid to FS for t = 1, i = 0 and n = 0

Definition 2. [6] Let P = (m, i, n) be a T-SFN. Then, the score value is defined as SC(P) = mt(x) − nt(x) and
accuracy is defined as AC(P) = mt(x) + it(x) + nt(x).

For P1 = (m1, i1, n1) and P2 = (m2, i2, n2) be any two T-SFNs then P1 is superior than P2 if SC(P1) >
SC(P2). If SC(P1) = SC(P2) then superiority is checked by accuracy. If AC(P1) > AC(P2) then P1 is superior
than P2. If again AC(P1) = AC(P2) then P1 and P2 are considered as similar.

Definition 3. [9] Einstein operations consist of Einstein product which is example of t-norm and Einstein sum
which is an example of t-conorm. Einstein Product and Einstein sum are defined as:

i. m1 ⊗m2 = m1m2
1+(1−m1)(1−m2)

ii. m1 ⊕m2 = m1+m2
1+m1m2
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3. Einstein Operations for T-SFS

In this section, some Einstein operators for T-SFS are proposed with the help of Einstein sum and
Einstein product. Some special cases of proposed operators are also discussed in the remark.

Definition 4. Let P1 = (m1, i1, n1) and P2 = (m2, i2, n2) be two T-SFNs. Then their Einstein operations
are defined as follows:

i. P1 ≤ P2 ⇒ m1 ≤ m2, i1 ≤ i2, n1 ≥ n2

ii. P1 ⊗ P2 =

(
t

√
mt

1mt
2

1+(1−mt
1)(1−mt

2)
, t

√
it1it2

1+(1−it1)(1−it2)
, t

√
nt

1+nt
2

1+nt
1nt

2

)
iii. P1 ⊕ P2 =

(
t

√
mt

1+mt
2

1+(mt
1+it1)(mt

2+it2)−it1it2
, t

√
it1it2

1+(1−it1)(1−it2)
, t

√
nt

1nt
2

1+(1−nt
1)(1−nt

2)

)
iv. λP1 =

 t

√
(1+mt

1)
λ
−(1−mt

1)
λ

(1+mt
1)
λ
+(1−mt

1)
λ , t

√
(2it1)

λ

(2−it1)
λ
+(it1)

λ , t

√
(2nt

1)
λ

(2−nt
1)
λ
+(nt

1)
λ

, λ > 0

v. Pλ1 =

 t

√
2(mt

1)
λ

(2+mt
1)
λ
+(mt

1)
λ , t

√
(2it1)

λ

(2−it1)
λ
+(it1)

λ , t

√
(1+nt

1)
λ
−(1−nt

1)
λ

(1+nt
1)
λ
+(1−nt

1)
λ

, λ > 0

Remark 2.

i. For t = 2, above operations become valid for SFSs
ii. For t = 1, above operations become valid for PFSs
iii. For i = 0, above operations become valid for q-ROPFSs
iv. For t = 2 and i = 0, above operations become valid for PyFSs
v. For t = 1 and i = 0, above operations become valid for IFSs

4. T-Spherical Fuzzy Einstein Hybrid Averaging Operators

In this section, by using Einstein operations, T-SF Einstein weighted averaging (T-SFEWA)
operators, T-SF Einstein ordered weighted averaging (T-SFEOWA) operators, T-SF Einstein hybrid
averaging (T-SFEHA) operators are defined and some of their properties are also discussed.
Definition 5. For any collection, P j =

(
m j, i j, n j

)
for all j = 1, 2, 3, . . . , k of T-SFS,

T − SFEWAw(P1, P2, . . . , Pk) = ⊕
k
j=1w jP j

=


t

√√√ ∏k
j=1

(
1+mt

j

)wj
−
∏k

j=1

(
1−mt

j

)wj

∏k
j=1

(
1+mt

j

)wj
+

∏k
j=1

(
1−mt

j

)wj , t

√√
2
∏k

j=1 (i
t
j)

wj∏k
j=1

(
2−itj

)wj
+

∏k
j=1

(
itj

)wj ,

t

√√
2
∏k

j=1 (n
t
j)

wj∏k
j=1

(
2−nt

j

)wj
+

∏k
j=1

(
nt

j

)wj


(1)

is called T − SFEWA operator with weighting vector w = (w1, w2, . . . , wk)
T of Pj, where wj ∈ (0, 1] and∑k

j=1 wj = 1.

Theorem 1. (Idempotency) If P j = P0 for all j, then T − SFEWAw(P1, P2, . . . , Pk) = P0.

Proof. Since P j = P0 = (m0, i0, n0) for all j = 1, 2, 3, . . . , k and
∑k

j=1 w j = 1. Then

T − SFEWAw(P1, P2, . . . , Pk) =
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 t

√ ∏k
j=1(1+mt

0)
wj
−
∏k

j=1(1−mt
0)

wj∏k
j=1(1+mt

0)
wj+

∏k
j=1(1−mt

0)
wj , t

√
2
∏k

j=1 (i
t
0)

wj∏k
j=1(2−it0)

wj+
∏k

j=1(it0)
wj , t

√
2
∏k

j=1 (n
t
0)

wj∏k
j=1(2−nt

0)
wj+

∏k
j=1(nt

0)
wj


=

 t

√√√
(1+mt

0)
∑k

j=1 wj
−(1−mt

0)
∑k

j=1 wj

(1+mt
0)

∑k
j=1 wj+(1−mt

0)
∑k

j=1 wj
, t

√√√
2(it0)

∑k
j=1 wj

(2−it0)
∑k

j=1 wj+(it0)
∑k

j=1 wj
, t

√√√
2(nt

0)

∑k
j=1 wj

(2−nt
0)

∑k
j=1 wj+(nt

0)
∑k

j=1 wj


= (m0, i0, n0) = P0.

�

Theorem 2. (Boundedness) For a collection of T-SFNs P j for all j = 1, 2, 3, . . . , k and PL = min
j

P j, and

PU = max
j

P j. Then

PL
≤ T − SFEWAw(P1, P2, . . . , Pk) ≤ PU

Proof. As PL = min
j

P j =
(
min m j, min i j, max n j

)
and PU = max

j
P j =(

max m j, max i j, min n j
)
. Then

min m j ≤ m j ≤ max m j

min mt
j ≤ mt

j ≤ max mt
j

1 + min mt
j ≤ 1 + mt

j ≤ 1 + max mt
j(

1 + min mt
j

)w j
≤

k∏
j=1

(
1 + mt

j

)w j
≤

(
1 + max mt

j

)w j

⇒
t

√√√ (
1+min mt

j

)wj
−

(
1−min mt

j

)wj(
1+min mt

j

)wj
+

(
1−min mt

j

)wj ≤
t

√√√ ∏k
j=1

(
1+mt

j

)wj
−
∏k

j=1

(
1−mt

j

)wj

∏k
j=1

(
1+mt

j

)wj
+

∏k
j=1

(
1−mt

j

)wj ≤
t

√√√ (
1+max mt

j

)wj
−

(
1−max mt

j

)wj(
1+max mt

j

)wj
+

(
1−max mt

j

)wj

Now, min i j ≤ i j ≤ max i j

min itj ≤ itj ≤ max itj

2min
(
itj

)w j
≤ 2

k∏
j=1

(
itj

)w j
≤ 2max

(
itj

)w j

(1)⇒ t

√√√
2min

(
itj

)wj(
2−min itj

)wj
+min

(
itj

)wj ≤
t

√√
2
∏k

j=1 (i
t
j)

wj∏k
j=1

(
2−itj

)wj
+

∏k
j=1

(
itj

)wj ≤
t

√√√
2max

(
itj

)wj(
2−max itj

)wj
+max

(
itj

)wj

Similarly, max n j ≥ n j ≥ min n j

max nt
j ≥ nt

j ≥ min nt
j

2max
(
nt

j

)w j
≥ 2

k∏
j=1

(
nt

j

)w j
≥ 2min

(
nt

j

)w j

⇒
t

√√√
2max

(
nt

j

)wj(
2−max nt

j

)wj
+max

(
nt

j

)wj ≥
t

√√
2
∏k

j=1 (n
t
j)

wj∏k
j=1

(
2−nt

j

)wj
+

∏k
j=1

(
nt

j

)wj ≥
t

√√√
2min

(
nt

j

)wj(
2−min nt

j

)wj
+min

(
nt

j

)wj

⇒ PL
≤ T − SFEWAw(P1, P2, . . . , Pk) ≤ PU

�
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Theorem 3. (Monotonicity) For any two T-SFNs P j =
(
m j, i j, n j

)
and P′j =

(
m′j, i′j, n′j

)
such that P j ≤ P′j

for all j = 1, 2, 3, . . . , k. Then

T − SFEWAw(P1, P2, . . . , Pk) ≤ T − SFEWAw(P1, P2, . . . , Pk)

As, m j ≤ m′j ⇒ mt
j ≤

(
m′j

)t

⇒ 1 + mt
j ≤ 1 +

(
m′j

)t

k∏
j=1

(
1 + mt

j

)w j
≤

k∏
j=1

(
1 +

(
m′j

)t
)w j

t

√√√ ∏k
j=1

(
1+mt

j

)wj
−
∏k

j=1

(
1−mt

j

)wj

∏k
j=1

(
1+mt

j

)wj
+

∏k
j=1

(
1−mt

j

)wj ≤
t

√√√√√√√ ∏k
j=1

(
1+

(
m′j

)t
)wj
−
∏k

j=1

(
1−

(
m′j

)t
)wj

∏k
j=1

(
1+

(
m′j

)t
)wj

+
∏k

j=1

(
1−

(
m′j

)t
)wj

As, i j ≤ i′j ⇒ itj ≤
(
i′j

)t

⇒ 2
k∏

j=1

(
itj
)w j
≤ 2

k∏
j=1

((
i′j
)t
)w j

t

√√√√√√√ 2
∏k

j=1 (i
t
j)

w j

∏k
j=1

(
2− itj

)w j
+

∏k
j=1

(
itj

)w j
≤

t

√√√√√√√√√√√√√√ 2
∏k

j=1

((
i′j

)t
)w j

∏k
j=1

(
2−

(
i′j

)t
)w j

+
∏k

j=1

((
i′j

)t
)w j

Similarly, n j ≥ n′j ⇒ nt
j ≥

(
n′j

)t

⇒ 2
k∏

j=1

(
nt

j

)w j
≥ 2

k∏
j=1

((
n′j

)t
)w j

t

√√
2
∏k

j=1 (n
t
j)

wj∏k
j=1

(
2−nt

j

)wj
+

∏k
j=1

(
nt

j

)wj ≥
t

√√√√√√√ 2
∏k

j=1

((
n′j

)t
)wj

∏k
j=1

(
2−

(
n′j

)t
)wj

+
∏k

j=1

((
n′j

)t
)wj

⇒ T − SFEWAw(P1, P2, . . . , Pk) ≤ T − SFEWAw(P1, P2, . . . , Pk)

Definition 6. For any collection P j =
(
m j, i j, n j

)
for all j = 1, 2, 3, . . . , k of T-SFS. Then

T − SFEOWAω(P1, P2, . . . , Pk) = ⊕
k
j=1ω jPσ( j)

=


t

√√√ ∏k
j=1

(
1+mt

σ( j)

)ω j
−
∏k

j=1

(
1−mt

σ( j)

)ω j

∏k
j=1

(
1+mt

σ( j)

)ω j
+

∏k
j=1

(
1−mt

σ( j)

)ω j , t

√√
2
∏k

j=1 (i
t
σ( j)

)
ω j∏k

j=1

(
2−it

σ( j)

)ω j
+

∏k
j=1

(
it
σ( j)

)ω j ,

t

√√
2
∏k

j=1 (n
t
σ( j)

)
ω j∏k

j=1

(
2−nt

σ( j)

)ω j
+

∏k
j=1

(
nt
σ( j)

)ω j


(2)

then T − SFEOWAω is called T − SFEOWA operator with associated weight vector ω = (ω1, ω2, . . . ,ωk)
T

of P j, where ω j ∈ (0, 1] and
∑k

j=1 ω j = 1. σ( j) is the permutation with respect to score value such that

SC
(
Pσ( j−1)

)
≥ SC

(
Pσ( j)

)
.
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In next theorems, idempotency, boundedness, and monotonicity properties are proved for the
above operator.

Theorem 4. If P j = P0 for all j = 1, 2, 3, . . . , k, then T − SFEOWAω(P1, P2, . . . , Pk) = P0.

Proof. Since P j = P0 = (m0, i0, n0) for all j = 1, 2, 3, . . . , k and
∑k

j=1 ω j = 1. Then

T − SFEOWAω(P1, P2, . . . , Pk) = t

√ ∏k
j=1(1+mt

0)
ω j
−
∏k

j=1(1−mt
0)
ω j∏k

j=1(1+mt
0)
ω j+

∏k
j=1(1−mt

0)
ω j , t

√
2
∏k

j=1 (i
t
0)
ω j∏k

j=1(2−it0)
ω j+

∏k
j=1(it0)

ω j , t

√
2
∏k

j=1 (n
t
0)
ω j∏k

j=1(2−nt
0)
ω j+

∏k
j=1(nt

0)
ω j


=

 t

√√√
(1+mt

0)
∑k

j=1 ω j
−(1−mt

0)
∑k

j=1 ω j

(1+mt
0)

∑k
j=1 ω j+(1−mt

0)
∑k

j=1 ω j
, t

√√√
2(it0)

∑k
j=1 ω j

(2−it0)
∑k

j=1 ω j+(it0)
∑k

j=1 ω j
, t

√√√
2(nt

0)

∑k
j=1 ω j

(2−nt
0)

∑k
j=1 ω j+(nt

0)
∑k

j=1 ω j


= (m0, i0, n0) = P0.

�

Theorem 5. For a collection of T-SFNs P j for all j = 1, 2, 3, . . . , k and PL = min
j

P j, and PU = max
j

P j. Then

PL
≤ T − SFEOWAω(P1, P2, . . . , Pk) ≤ PU

Proof. As PL = min
j

Pσ( j) =
(
min mσ( j), min iσ( j), max nσ( j)

)
and PU = max

j
Pσ( j) =(

max mσ( j), max iσ( j), min nσ( j)

)
. Then

min mσ( j) ≤ mσ( j) ≤ max mσ( j)

min mt
σ( j) ≤ mt

σ( j) ≤ max mt
σ( j)

1 + min mt
σ( j) ≤ 1 + mt

σ( j) ≤ 1 + max mt
σ( j)(

1 + min mt
σ( j)

)ω j
≤

k∏
j=1

(
1 + mt

σ( j)

)ω j
≤

(
1 + max mt

σ( j)

)ω j

⇒
t

√√√ (
1+min mt

σ( j)

)ω j
−

(
1−min mt

σ( j)

)ω j(
1+min mt

σ( j)

)ω j
+

(
1−min mt

σ( j)

)ω j ≤
t

√√√ ∏k
j=1

(
1+mt

σ( j)

)ω j
−
∏k

j=1

(
1−mt

σ( j)

)ω j

∏k
j=1

(
1+mt

σ( j)

)ω j
+

∏k
j=1

(
1−mt

σ( j)

)ω j ≤
t

√√√ (
1+max mt

σ( j)

)ω j
−

(
1−max mt

σ( j)

)ω j(
1+max mt

σ( j)

)ω j
+

(
1−max mt

σ( j)

)ω j

Now, min iσ( j) ≤ iσ( j) ≤ max iσ( j)

min it
σ( j) ≤ it

σ( j) ≤ max it
σ( j)

2min
(
it
σ( j)

)ω j
≤ 2

k∏
j=1

(
it
σ( j)

)ω j
≤ 2max

(
it
σ( j)

)ω j

⇒
t

√√√
2min

(
it
σ( j)

)ω j(
2−min it

σ( j)

)ω j
+min

(
it
σ( j)

)ω j ≤
t

√√
2
∏k

j=1 (i
t
σ( j)

)
ω j∏k

j=1

(
2−it

σ( j)

)ω j
+

∏k
j=1

(
it
σ( j)

)ω j ≤
t

√√√
2max

(
it
σ( j)

)ω j(
2−max it

σ( j)

)ω j
+max

(
it
σ( j)

)ω j
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Similarly, max nσ( j) ≥ nσ( j) ≥ min nσ( j)

max nt
σ( j) ≥ nt

σ( j) ≥ min nt
σ( j)

2max
(
nt
σ( j)

)ω j
≥ 2

k∏
j=1

(
nt
σ( j)

)ω j
≥ 2min

(
nt
σ( j)

)ω j

⇒
t

√√√
2max

(
nt
σ( j)

)ω j(
2−max nt

σ( j)

)ω j
+max

(
nt
σ( j)

)ω j ≥
t

√√
2
∏k

j=1 (n
t
σ( j)

)
ω j∏k

j=1

(
2−nt

σ( j)

)ω j
+

∏k
j=1

(
nt
σ( j)

)ω j ≥
t

√√√
2min

(
nt
σ( j)

)ω j(
2−min nt

σ( j)

)ω j
+min

(
nt
σ( j)

)ω j

⇒ PL
≤ T − SFEOWAω(P1, P2, . . . , Pk) ≤ PU

�

Theorem 6. For any two T-SFNs P j =
(
m j, i j, n j

)
and P′j =

(
m′j, i′j, n′j

)
such that P j ≤ P′j for all

j = 1, 2, 3, . . . , k. Then

T − SFEOWAω(P1, P2, . . . , Pk) ≤ T − SFEOWAω(P1, P2, . . . , Pk)

Proof. As Pσ( j) ≤ P′
σ( j), which means mσ( j) ≤ m′

σ( j), iσ( j) ≤ i′
σ( j) and nσ( j) ≥ n′

σ( j).

As, mσ( j) ≤ m′
σ( j) ⇒ mt

σ( j) ≤

(
m′
σ( j)

)t

⇒ 1 + mt
σ( j) ≤ 1 +

(
m′
σ( j)

)t

k∏
j=1

(
1 + mt

σ( j)

)ω j
≤

k∏
j=1

(
1 +

(
m′
σ( j)

)t
)ω j

t

√√√ ∏k
j=1

(
1+mt

σ( j)

)ω j
−
∏k

j=1

(
1−mt

σ( j)

)ω j

∏k
j=1

(
1+mt

σ( j)

)ω j
+

∏k
j=1

(
1−mt

σ( j)

)ω j

≤
t

√√√√√√√ ∏k
j=1

(
1+

(
m′
σ( j)

)t
)ω j
−
∏k

j=1

(
1−

(
m′
σ( j)

)t
)ω j

∏k
j=1

(
1+

(
m′
σ( j)

)t
)ω j

+
∏k

j=1

(
1−

(
m′
σ( j)

)t
)ω j

As, iσ( j) ≤ i′
σ( j) ⇒ it

σ( j) ≤

(
i′
σ( j)

)t

⇒ 2
k∏

j=1

(
it
σ( j)

)ω j
≤ 2

k∏
j=1

((
i′
σ( j)

)t
)ω j

t

√√
2
∏k

j=1 (i
t
σ( j)

)
ω j∏k

j=1

(
2−it

σ( j)

)ω j
+

∏k
j=1

(
it
σ( j)

)ω j ≤
t

√√√√√√√ 2
∏k

j=1

((
i′
σ( j)

)t
)ω j

∏k
j=1

(
2−

(
i′
σ( j)

)t
)ω j

+
∏k

j=1

((
i′
σ( j)

)t
)ω j

Similarly, nσ( j) ≥ n′
σ( j) ⇒ nt

σ( j) ≥

(
n′
σ( j)

)t

⇒ 2
k∏

j=1

(
nt
σ( j)

)ω j
≥ 2

k∏
j=1

((
n′
σ( j)

)t
)ω j

t

√√
2
∏k

j=1 (n
t
σ( j)

)
ω j∏k

j=1

(
2−nt

σ( j)

)ω j
+

∏k
j=1

(
nt
σ( j)

)ω j ≥
t

√√√√√√√ 2
∏k

j=1

((
n′
σ( j)

)t
)ω j

∏k
j=1

(
2−

(
n′
σ( j)

)t
)ω j

+
∏k

j=1

((
n′
σ( j)

)t
)ω j

⇒ T − SFEOWAω(P1, P2, . . . , Pk) ≤ T − SFEOWAω(P1, P2, . . . , Pk)
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Definition 7. For any collection P j =
(
m j, i j, n j

)
for all j = 1, 2, 3, . . . , k of T-SFNs. The mapping

T − SFEHAw, ω
(
P̃1, P̃2, . . . , P̃k

)
= ⊕k

j=1ω jP̃σ( j)

=


t

√√√ ∏k
j=1

(
1+m̃t

σ( j)

)ω j
−
∏k

j=1

(
1−m̃t

σ( j)

)ω j

∏k
j=1

(
1+m̃t

σ( j)

)ω j
+

∏k
j=1

(
1−m̃t

σ( j)

)ω j , t

√√
2
∏k

j=1 (̃i
t
σ( j)

)
ω j

∏k
j=1

(
2−̃it

σ( j)

)ω j
+

∏k
j=1

(̃
it
σ( j)

)ω j ,

t

√√
2
∏k

j=1 (̃n
t
σ( j)

)
ω j∏k

j=1

(
2−ñt

σ( j)

)ω j
+

∏k
j=1

(̃
nt
σ( j)

)ω j


(3)

is called T-SFEHA operator, where P̃ j = kw jP j. Let w = (w1, w2, . . . , wk)
T is the weight vector and

ω = (ω1,ω2, . . . ,ωk)
T is the associated weight vector of P̃ j with w j, ω j ∈ (0, 1] and

∑k
j=1 ω j = 1,

∑k
j=1 w j = 1.

The T-SFEHA operator first weights the T-spherical fuzzy values, then rearranges them and
measures the ordered T-spherical fuzzy values, so the T-SFEHA operator is a generalization of the
T-SFEWA and T-SFEOWA operators. For this reason, the T-SFEHA operator will also be idempotent,
monotone, and bounded.

5. T-Spherical Fuzzy Einstein Hybrid Geometric Operators

In this section, using Einstein operations, T-SF Einstein weighted geometric (T-SFEWG) operators,
T-SF Einstein ordered weighted geometric (T-SFEOWG) operators, and T-SF Einstein hybrid geometric
(T-SFEHG) operators are defined and some of their properties are also discussed.

Definition 8. For any collection P j =
(
m j, i j, n j

)
for all j = 1, 2, 3, . . . , k of T-SFNs. The mapping

T − SFEWGw(P1, P2, . . . , Pk) = ⊗
k
j=1P

w j

j

=


t

√√
2
∏k

j=1

(
mt

j

)wj

∏k
j=1 (2−mt

j)
wj+

∏k
j=1 (m

t
j)

wj , t

√√
2
∏k

j=1 (i
t
j)

wj∏k
j=1

(
2−itj

)wj
+

∏k
j=1

(
itj

)wj ,

t

√ ∏k
j=1 (1+nt

j)
wj−

∏k
j=1 (1−nt

j)
wj∏k

j=1 (1+nt
j)

wj+
∏k

j=1 (1−nt
j)

wj


(4)

where w = (w1, w2, . . . , wk)
T is the weight vector of P j for all j = 1, 2, 3, . . . , k such that w j ∈ (0, 1] and∑k

j=1 w j = 1.

In next theorems, idempotency, boundedness, and monotonicity properties are proved for the
above operator.

Theorem 7. If P j = P0 for all j = 1, 2, 3, . . . , k, then T − SFEWGw(P1, P2, . . . , Pk) = P0.
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Proof. Since P j = P0 = (m0, i0, n0) for all j = 1, 2, 3, . . . , k and
k∑

j=1
w j = 1. Then

T − SFEWGw(P1, P2, . . . , Pk) = t

√
2
∏k

j=1 (m
t
0)

wj∏k
j=1(2−mt

0)
wj+

∏k
j=1(mt

0)
wj , t

√
2
∏k

j=1 (i
t
0)

wj∏k
j=1(2−it0)

wj+
∏k

j=1(it0)
wj , t

√ ∏k
j=1(1+nt

0)
wj
−
∏k

j=1(1−nt
0)

wj∏k
j=1(1+nt

0)
wj+

∏k
j=1(1−nt

0)
wj


=

 t

√√√
2(mt

0)

∑k
j=1 wj

(2−mt
0)

∑k
j=1 wj+(mt

0)
∑k

j=1 wj
, t

√√√
2(it0)

∑k
j=1 wj

(2−it0)
∑k

j=1 wj+(it0)
∑k

j=1 wj
, t

√√√
(1+nt

0)
∑k

j=1 wj
−(1−nt

0)
∑k

j=1 wj

(1+nt
0)

∑k
j=1 wj+(1−nt

0)
∑k

j=1 wj


= (m0, i0, n0) = P0.

�

Theorem 8. For a collection of T-SFNs P j for all j = 1, 2, 3, . . . , k and PL = min
j

P j, and PU = max
j

P j. Then

PL
≤ T − SFEWGw(P1, P2, . . . , Pk) ≤ PU

Proof. As PL = min
j

P j =
(
min m j, min i j, max n j

)
and PU = max

j
P j =(

max m j, max i j, min n j
)
. Then

min m j ≤ m j ≤ max m j

min mt
j ≤ mt

j ≤ max mt
j

2min
(
mt

j

)w j
≤ 2

k∏
j=1

(
mt

j

)w j
≤ 2max

(
mt

j

)w j

⇒
t

√√√
2min

(
mt

j

)wj(
2−min mt

j

)wj
+min

(
mt

j

)wj ≤
t

√√
2
∏k

j=1 (m
t
j)

wj∏k
j=1

(
2−mt

j

)wj
+

∏k
j=1

(
mt

j

)wj ≤
t

√√√
2max

(
mt

j

)wj(
2−max mt

j

)wj
+max

(
mt

j

)wj

Now, min i j ≤ i j ≤ max i j

min itj ≤ itj ≤ max itj

2min
(
itj

)w j
≤ 2

k∏
j=1

(
itj

)w j
≤ 2max

(
itj

)w j

⇒
t

√√√
2min

(
itj

)wj(
2−min itj

)wj
+min

(
itj

)wj ≤
t

√√
2
∏k

j=1 (i
t
j)

wj∏k
j=1

(
2−itj

)wj
+

∏k
j=1

(
itj

)wj ≤
t

√√√
2max

(
itj

)wj(
2−max itj

)wj
+max

(
itj

)wj
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Similarly, max n j ≥ n j ≥ max n j

max nt
j ≥ nt

j ≥ min nt
j

1 + max nt
j ≥ 1 + nt

j ≥ 1 + min nt
j(

1 + max nt
j

)w j
≥

k∏
j=1

(
1 + nt

j

)w j
≥

(
1 + min nt

j

)w j

⇒
t

√√√ (
1+max nt

j

)wj
−

(
1−max nt

j

)wj(
1+max nt

j

)wj
+

(
1−max nt

j

)wj ≥
t

√√√ ∏k
j=1

(
1+nt

j

)wj
−
∏k

j=1

(
1−nt

j

)wj

∏k
j=1

(
1+nt

j

)wj
+

∏k
j=1

(
1−nt

j

)wj ≥
t

√√√ (
1+min nt

j

)wj
−

(
1−min nt

j

)wj(
1+min nt

j

)wj
+

(
1−min nt

j

)wj

⇒ PL
≤ T − SFEWGw(P1, P2, . . . , Pk) ≤ PU

�

Theorem 9. For any two T-SFNs P j =
(
m j, i j, n j

)
and P′j =

(
m′j, i′j, n′j

)
such that P j ≤ P′j for all

j = 1, 2, 3, . . . , k. Then

T − SFEWGw(P1, P2, . . . , Pk) ≤ T − SFEWGw(P1, P2, . . . , Pk)

Proof. As P j ≤ P′j, which means m j ≤ m′j, i j ≤ i′j and n j ≥ n′j.

As, m j ≤ m′j ⇒ mt
j ≤

(
m′j

)t

⇒ 2
k∏

j=1

(
mt

j

)w j
≤ 2

k∏
j=1

((
m′j

)t
)w j

t

√√
2
∏k

j=1 (m
t
j)

wj∏k
j=1

(
2−mt

j

)wj
+

∏k
j=1

(
mt

j

)wj ≤
t

√√√√√√√ 2
∏k

j=1

((
m′j

)t
)wj

∏k
j=1

(
2−

(
m′j

)t
)wj

+
∏k

j=1

((
m′j

)t
)wj

As, i j ≤ i′j ⇒ itj ≤
(
i′j

)t

⇒ 2
k∏

j=1

(
itj

)w j
≤ 2

k∏
j=1

((
i′j

)t
)w j

t

√√
2
∏k

j=1 (i
t
j)

wj∏k
j=1

(
2−itj

)wj
+

∏k
j=1

(
itj

)wj ≤
t

√√√√√√√ 2
∏k

j=1

((
i′j

)t
)wj

∏k
j=1

(
2−

(
i′j

)t
)wj

+
∏k

j=1

((
i′j

)t
)wj

Similarly, n j ≥ n′j ⇒ nt
j ≥

(
n′j

)t

⇒ 1 + nt
j ≥ 1 +

(
n′j

)t

k∏
j=1

(
1 + nt

j

)w j
≥

k∏
j=1

(
1 +

(
n′j

)t
)w j

t

√√√ ∏k
j=1

(
1+nt

j

)wj
−
∏k

j=1

(
1−nt

j

)wj

∏k
j=1

(
1+nt

j

)wj
+

∏k
j=1

(
1−nt

j

)wj ≥
t

√√√√√√√ ∏k
j=1

(
1+

(
n′j

)t
)wj
−
∏k

j=1

(
1−

(
n′j

)t
)wj

∏k
j=1

(
1+

(
n′j

)t
)wj

+
∏k

j=1

(
1−

(
n′j

)t
)wj

⇒ T − SFEWGw(P1, P2, . . . , Pk) ≤ T − SFEWGw(P1, P2, . . . , Pk)

�
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Definition 9. For any collection P j =
(
m j, i j, n j

)
for all j = 1, 2, 3, . . . , k of T-SFNs. The mapping

T − SFEOWGω(P1, P2, . . . , Pk) = ⊗
k
j=1P

ω j

σ( j)

=


t

√√√
2
∏k

j=1

(
mt
σ(j)

)ωj

∏k
j=1 (2−mt

σ(j)
)
ωj+

∏k
j=1

(
mt
σ(j)

)ωj , t

√√
2
∏k

j=1 (i
t
σ(j))

ωj∏k
j=1

(
2−it

σ(j)

)ωj
+

∏k
j=1

(
it
σ(j)

)ωj ,

t

√ ∏k
j=1 (1+nt

σ(j)
)
ωj−

∏k
j=1 (1−nt

σ(j)
)
ωj∏k

j=1 (1+nt
σ(j)

)
ωj+

∏k
j=1 (1−nt

σ(j)
)
ωj


(5)

where ω = (ω1,ω2, . . . ,ωk)
T is the associated weight vector of P j for all j = 1, 2, 3, . . . , k such that ω j ∈ (0, 1]

and
∑k

j=1 ω j = 1 and σ( j) is permutation with respect to score value such that SC
(
Pσ( j−1)

)
≥ SC

(
Pσ( j)

)
.

In next theorems, idempotency, boundedness, and monotonicity properties are proved for the
above operator.

Theorem 10. If P j = P0 for all j = 1, 2, 3, . . . , k, then T − SFEOWGω(P1, P2, . . . , Pk) = P0.

Proof. Can be follow using Theorems 4 and 7. �

Theorem 11. For a collection of T-SFNs P j for all j = 1, 2, 3, . . . , k and PL = min
j

P j, and PU = max
j

P j. Then

PL
≤ T − SFEOWGω(P1, P2, . . . , Pk) ≤ PU

Proof. Can be follow using Theorems 5 and 8. �

Theorem 12. For any two T-SFNs P j =
(
m j, i j, n j

)
and P′j =

(
m′j, i′j, n′j

)
such that P j ≤ P′j for all

j = 1, 2, 3, . . . , k. Then

T − SFEOWGω(P1, P2, . . . , Pk) ≤ T − SFEOWGω(P1, P2, . . . , Pk)

Definition 10. For any collection P j =
(
m j, i j, n j

)
for all j = 1, 2, 3, . . . , k of T-SFNs. The mapping

T − SFEHGw,ω
(
P̃1, P̃2, . . . , P̃k

)
= ⊗k

j=1P̃
ω j

σ( j)

=


t

√√√
2
∏k

j=1

(
m̃t
σ( j)

)ω j

∏k
j=1 (2−m̃t

σ( j)
)
ω j+

∏k
j=1

(
m̃t
σ( j)

)ω j , t

√√
2
∏k

j=1 (̃i
t
σ( j)

)
ω j

∏k
j=1

(
2−̃it

σ( j)

)ω j
+

∏k
j=1

(̃
it
σ( j)

)ω j ,

t

√ ∏k
j=1 (1+ñt

σ( j)
)
ω j−

∏k
j=1 (1−ñt

σ( j)
)
ω j∏k

j=1 (1+ñt
σ( j)

)
ω j+

∏k
j=1 (1−ñt

σ( j)
)
ω j


(6)

is called T-SFEHG operator, where P̃ j = P
kw j

j . Let w = (w1, w2, . . . , wk)
T is the weight vector and ω =

(ω1,ω2, . . . ,ωk)
T is the associated weight vector of P̃ j with w j,ω j ∈ (0, 1] and

∑k
j=1 ω j = 1,

∑k
j=1 w j = 1.

The T-SFEHG operator first weighs the T-spherical fuzzy values, then rearranges them and
measures the ordered T-spherical fuzzy values, so the T-SFEHG operator is a generalization of the
T-SFEWG and T-SFEOWG operators. For this reason, T-SFEHG operator will also be idempotent,
monotone, and bounded.
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6. An Approach to Multi-Attribute Decision Making with T-Spherical Fuzzy Information

Let D = {d1, d2, d3, . . . dl} be a set of alternatives and E = {e1, e2, e3, . . . ek} be a set of attributes.
The selection of best alternative is carried out using the aggregation tools proposed under the weight
vector w = {w1, w2, w3, . . .wl}, such that w j ∈ (0, 1] and

∑l
j=1 w j = 1. The weight vector is chosen

to weigh the arguments of decision makers. The detailed steps of the decision-making process are
illustrated as follows.

Step 1. Find a value of t for which the values lie in T-SF information means that find the exponent t
(which is finite natural number), such that the sum of the tth power of all membership, abstinence and
non-membership values belong to [0, 1].

Step 2. Find P̃ j = kw jP j (or P̃ j = P
kw j

j ).

Step 3. Find scores values and by using these score values we reorder them in a descending order.
Step 4. Aggregate these ordered values using T-SFEHA (or T-SFEHG) operators.
Step 5. By finding scores we choose the best option.

These steps of MADM method are demonstrated in the following flow chart.
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Example 1. A company wants to extend his business and board of governors decided to invest their
money in one of the best options from three business options:

i. b1 : Food company
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ii. b2 : Mobile phone company
iii. b3 : Construction company

They assess the given companies on the basis of the following attributes.

i. G1 : Growth analysis
ii. G2 : Risk analysis
iii. G3 : Environmental impact analysis
iv. G4 : Development of society
v. G5 : Social-political impact

The experts evaluate the given attributes under the consideration of given attributes as given in
Table 4:

Table 4. Decision Matrix.

G1 G2 G3 G4 G5

b1 (0.5, 0.3, 0.4) (0.9, 0.4, 0.5) (0.7, 0.5, 0.2) (0.8, 0.5, 0.5) (0.2, 0.2, 0.8)
b2 (0.2, 0.4, 0.7) (0.4, 0.1, 0.2) (0.9, 0.2, 0.5) (0.3, 0.2, 0.6) (0.5, 0.3, 0.7)
b3 (0.6, 0.2, 0.4) (0.3, 0.5, 0.7) (0.7, 0.2, 0.4) (0.5, 0.1, 0.2) (0.4, 0.3, 0.5)

Step 1: As, 0.9 + 0.4 + 0.5 = 1.8 < [0, 1], 0.92 + 0.42 + 0.52 = 1.22 < [0, 1] but 0.93 + 0.43 + 0.53 =

0.918 ∈ [0, 1]. Similarly, the sum of the cube of all other values lies in [0, 1]. Therefore, for t = 3, all
values in Table 1 are T-SFNs. This clearly indicates that the given information cannot be handled by
the existing AOs of IFSs, PyFSs, PFSs as well as SFSs.

Step 2: By taking the weight vector w = (0.25, 0.20, 0.15, 0.18, 0.22)T and using Equation (1),
we find 

3

√
(1+0.53)5×0.25

−(1−0.53)5×0.25

(1+0.53)5×0.25
+(1−0.53)5×0.25 = 0.5381, 3

√
2×(0.33)5×0.25

(2−0.33)5×0.25
+(0.33)5×0.25 = 0.2104,

3

√
2×(0.43)5×0.25

(2−0.43)5×0.25
+(0.43)5×0.25 = 0.3029


Similarly, we can find all other values as given in Table 5.

Table 5. T-SFEWA values.

G1 G2 G3 G4 G5

b1

 0.5381,
0.2104,
0.3029


 0.9,

0.4,
0.5


 0.6398,

0.6144,
0.3155


 0.7770,

0.5437,
0.5437


 0.2064,

0.1665,
0.7788


b2

 0.2154,
0.3029,
0.6258


 0.4,

0.1,
0.2


 0.8440,

0.3155,
0.6144


 0.2896,

0.2401,
0.6384


 0.5160,

0.2604,
0.6698


b3

 0.6444,
0.1264,
0.3029


 0.3,

0.5,
0.7


 0.6398,

0.3155,
0.5240


 0.4829,

0.1288,
0.2401


 0.4129,

0.2604,
0.4591


Step 3. Scores of each attribute of all alternatives using SC(P) = m3(x)− n3(x) are given in Table 6:

Table 6. Score values of Table 5.

G1 G2 G3 G4 G5

b1 0.1280 0.6040 0.2305 0.3083 −0.4636
b2 −0.2350 0.0560 0.3692 −0.2359 −0.1632
b3 0.2398 −0.3160 0.1180 0.0988 −0.0264
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Based on above score analysis, we order the values of Table 5 as given in Table 7:

Table 7. Ordered T-SFEWA values.

G1 G2 G3 G4 G5

bσ(1)

 0.9,
0.4,
0.5


 0.7770,

0.5437,
0.5437


 0.6398,

0.6144,
0.3155


 0.5381,

0.2104,
0.3029


 0.2064,

0.1665,
0.7788


bσ(2)

 0.8440,
0.3155,
0.6144


 0.4,

0.1,
0.2


 0.5160,

0.2604,
0.6698


 0.2154,

0.3029,
0.6258


 0.2896,

0.2401,
0.6384


bσ(3)

 0.6444,
0.1264,
0.3029


 0.6398,

0.3155,
0.5240


 0.4829,

0.1288,
0.2401


 0.4129,

0.2604,
0.4591


 0.3,

0.5,
0.7


Step 4. With the help of normal distribution-based method, we get =

(0.112, 0.236, 0.304, 0.236, 0.112)T and by using Equation (3), we have
3

√√√√√√√√√√√√√√√√√√√√√√√√√√

((
1 + 0.93

)0.112
×

(
1 + 0.77703

)0.236
×

(
1 + 0.63983

)0.304
×

(
1 + 0.53813

)0.236
×

(
1 + 0.20643

)0.112
)
−((

1− 0.93
)0.112

×

(
1− 0.77703

)0.236
×

(
1− 0.63983

)0.304
×

(
1− 0.53813

)0.236
×

(
1− 0.20643

)0.112
)

((
1 + 0.93

)0.112
×

(
1 + 0.77703

)0.236
×

(
1 + 0.63983

)0.304
×

(
1 + 0.53813

)0.236
×

(
1 + 0.20643

)0.112
)
+((

1− 0.93
)0.112

×

(
1− 0.77703

)0.236
×

(
1− 0.63983

)0.304
×

(
1− 0.53813

)0.236
×

(
1− 0.20643

)0.112
)


= 0.6914

Similarly, all other values can also be found as follows:

b̃σ(1) = (0.6914, 0.3859, 0.4178)
b̃σ(1) = (0.6914, 0.3859, 0.4178)
b̃σ(2) = (0.5182, 0.2182, 0.4960)
b̃σ(3) = (0.5277, 0.2188, 0.3922)

Step 5. Now we have to find the score values
SC

(̃
bσ(1)

)
= 0.2576, SC

(̃
bσ(2)

)
= 0.0172, SC

(̃
bσ(3)

)
= 0.0866

SC
(̃
bσ(1)

)
> SC

(̃
bσ(3)

)
> SC

(̃
bσ(2)

)
Since the score value of b1 is highest, Food Company is the best option for investment.
Now, we check their validity by using Einstein hybrid geometric operators.
By taking weight vector w = (0.25, 0.20, 0.15, 0.18, 0.22)T, and using Equation (4), we find

T-SFEWG values as given in Table 8:

Table 8. T-SFEWG values.

G1 G2 G3 G4 G5

b1

 0.4032,
0.2104,
0.4308


 0.9,

0.4,
0.5


 0.7773,

0.6144,
0.1817


 0.8211,

0.5437,
0.4829


 0.1665,

0.1665,
0.8206


b2

 0.1264,
0.3029,
0.7485


 0.4,

0.1,
0.2


 0.9262,

0.3155,
0.4546


 0.3453,

0.2401,
0.5799


 0.4591,

0.2604,
0.7206


b3

 0.5108,
0.1264,
0.4308


 0.3,

0.5,
0.7


 0.7773,

0.3155,
0.3635


 0.5437,

0.1288,
0.1931


 0.3581,

0.2604,
0.5160
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Scores of each attribute of all alternatives is listed in Table 9

Table 9. Score Values.

G1 G2 G3 G4 G5

b1 −0.0144 0.6040 0.4636 0.4411 −0.5479
b2 −0.4173 0.0560 0.7005 −0.1538 −0.2774
b3 0.0534 −0.3160 0.4216 0.1536 −0.0914

Based on above score analysis, we find the ordered values of Table 8 as in Table 10:

Table 10. Ordered T-SFEWG values.

G1 G2 G3 G4 G5

bσ(1)

 0.9,
0.4,
0.5


 0.7773,

0.6144,
0.1817


 0.8211,

0.5437,
0.4829


 0.4032,

0.2104,
0.4308


 0.1665,

0.1665,
0.8206


bσ(2)

 0.9262,
0.3155,
0.4546


 0.4,

0.1,
0.2


 0.3453,

0.2401,
0.5799


 0.4591,

0.2604,
0.7206


 0.1264,

0.3029,
0.7485


bσ(3)

 0.7773,
0.3155,
0.3635


 0.5437,

0.1288,
0.1931


 0.5108,

0.1264,
0.4308


 0.3581,

0.2604,
0.5160


 0.3,

0.5,
0.7


With the help of normal distribution-based method, we get ω = (0.112, 0.236, 0.304, 0.236, 0.112)T.

and by using Equation (6), we have

b̃σ(1) = (0.6121, 0.8737, 0.8837)

b̃σ(2) = (0.4325, 0.8056, 0.9297)

b̃σ(3) = (0.5078, 0.8111, 0.8663)

Step 5. Now we have to find the score values
SC

(̃
bσ(1)

)
= −0.4608, SC

(̃
bσ(2)

)
= −0.7227, SC

(̃
bσ(3)

)
= −0.5192

SC
(̃
bσ(1)

)
> SC

(̃
bσ(3)

)
> SC

(̃
bσ(2)

)
Here again, the score value of alternative b1 is high. Therefore, Food Company is the best

option for investment. Here it is important to discuss that the information given in Table 3 is purely
T-SFNs; therefore, it cannot be aggregated using the existing approaches of IFSs [24,25], PyFSs [26,27],
q-ROPFSs [23] as well as PFSs [12,13]. On the other hand, the work proposed in this manuscript can
deal with all the existing problems that lie in the environment of IFSs, PyFSs, q-ROPFSs and PFSs,
which is clearly demonstrated in Section 7.

7. Comparative Analysis

In this section, a comparative study is conducted in which it is shown that the proposed operators
can be reduced to existing operators under some condition which proves the superiority of the proposed
operators. An example is taken from [28] and it is proven that the proposed operators provide the
same result.
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Consider the T-SFEHA defined as

T − SFEHAω,w
(
P̃1, P̃2, . . . , P̃k

)

=


t

√√√ ∏k
j=1

(
1+m̃t

σ( j)

)ω j
−
∏k

j=1

(
1−m̃t

σ( j)

)ω j

∏k
j=1

(
1+m̃t

σ( j)

)ω j
+

∏k
j=1

(
1−m̃t

σ( j)

)ω j , t

√√
2
∏k

j=1 (̃i
t
σ( j)

)
ω j

∏k
j=1

(
2−̃it

σ( j)

)ω j
+

∏k
j=1

(̃
it
σ( j)

)ω j ,

t

√√
2
∏k

j=1 (̃n
t
σ( j)

)
ω j∏k

j=1

(
2−ñt

σ( j)

)ω j
+

∏k
j=1

(̃
nt
σ( j)

)ω j


1. For t = 2 the above equation reduces to spherical fuzzy Einstein hybrid averaging operators

(SFEHA operator), i.e.,

SFEHAω,w
(
P̃1, P̃2, . . . , P̃k

)
=

√√√ ∏k
j=1

(
1+m̃2

σ( j)

)ω j
−
∏k

j=1

(
1−m̃2

σ( j)

)ω j

∏k
j=1

(
1+m̃2

σ( j)

)ω j
+

∏k
j=1

(
1−m̃2

σ( j)

)ω j ,

√√
2
∏k

j=1 (̃i
2
σ( j)

)
ω j

∏k
j=1

(
2−̃i2

σ( j)

)ω j
+

∏k
j=1

(̃
i2
σ( j)

)ω j ,√√
2
∏k

j=1 (̃n
2
σ( j)

)
ω j∏k

j=1

(
2−ñ2

σ( j)

)ω j
+

∏k
j=1

(̃
n2
σ( j)

)ω j


2. For t = 1 the above equation reduces to picture fuzzy Einstein hybrid averaging operators

(PFEHA operator), i.e.,

PFEHAω,w
(
P̃1, P̃2, . . . , P̃k

)
=


∏k

j=1(1+m̃σ( j))
ω j
−
∏k

j=1(1−m̃σ( j))
ω j∏k

j=1(1+m̃σ( j))
ω j+

∏k
j=1(1−m̃σ( j))

ω j ,
2
∏k

j=1 (̃iσ( j))
ω j∏k

j=1(2−̃iσ( j))
ω j+

∏k
j=1 (̃iσ( j))

ω j ,

2
∏k

j=1 (̃nσ( j))
ω j∏k

j=1(2−ñσ( j))
ω j+

∏k
j=1(ñσ( j))

ω j


3. For i = 0 the above equation reduces to q-ROPF Einstein hybrid averaging operators (q-ROPFEHA

operator), i.e.,

q−ROPFEHAω,w
(
P̃1, P̃2, . . . , P̃k

)
=

 t

√√√ ∏k
j=1

(
1+m̃t

σ( j)

)ω j
−
∏k

j=1

(
1−m̃t

σ( j)

)ω j

∏k
j=1

(
1+m̃t

σ( j)

)ω j
+

∏k
j=1

(
1−m̃t

σ( j)

)ω j , t

√√
2
∏k

j=1 (̃n
t
σ( j)

)
ω j∏k

j=1

(
2−ñt

σ( j)

)ω j
+

∏k
j=1

(̃
nt
σ( j)

)ω j


4. For t = 2 and i = 0 the above equation reduces to PyF Einstein hybrid averaging operators

(PyFEHA operator), i.e.,

PyFEHAω,w
(
P̃1, P̃2, . . . , P̃k

)
=


√√√ ∏k

j=1

(
1+m̃2

σ( j)

)ω j
−
∏k

j=1

(
1−m̃2

σ( j)

)ω j

∏k
j=1

(
1+m̃2

σ( j)

)ω j
+

∏k
j=1

(
1−m̃2

σ( j)

)ω j ,

√√
2
∏k

j=1 (̃n
2
σ( j)

)
ω j∏k

j=1

(
2−ñ2

σ( j)

)ω j
+

∏k
j=1

(̃
n2
σ( j)

)ω j


5. For t = 1 and i = 0 the above equation reduces to IF Einstein hybrid averaging operators (IFEHA

operator), i.e.,

IFEHAω,w
(
P̃1, P̃2, . . . , P̃k

)
=

( ∏k
j=1(1+m̃σ( j))

ω j
−
∏k

j=1(1−m̃σ( j))
ω j∏k

j=1(1+m̃σ( j))
ω j+

∏k
j=1(1−m̃σ( j))

ω j ,
2
∏k

j=1 (̃nσ( j))
ω j∏k

j=1(2−ñσ( j))
ω j+

∏k
j=1(ñσ( j))

ω j

)
(7)
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Similarly, we can reduce the T-SFEWA, T-SFEOWA, T-SFEWG, T-SFEOWG and T-SFEHG operators.

Example 2. Consider a decision matrix having five alternatives {A1, A2,A3,A4,A5} and evaluate
under four attributes {G1, G2, G3, G4}

The experts evaluate the alternatives on the basis of given attributes as in Table 11.

Table 11. Decision Matrix.

G1 G2 G3 G4

A1 (0.4, 0.5) (0.5, 0.4) (0.2, 0.7) (0.2, 0.5)
A2 (0.6, 0.4) (0.6, 0.3) (0.6, 0.3) (0.3, 0.6)
A3 (0.5, 0.5) (0.4, 0.5) (0.4, 0.4) (0.5, 0.4)
A4 (0.7, 0.2) (0.5, 0.4) (0.2, 0.5) (0.3, 0.7)
A5 (0.5, 0.3) (0.3, 0.4) (0.6, 0.2) (0.4, 0.4)

The above decision matrix can be written in the T-SFSs environment as in Table 12

Table 12. Decision Matrix in the form of T-SFNs.

G1 G2 G3 G4

A1 (0.4, 0, 0.5) (0.5, 0, 0.4) (0.2, 0, 0.7) (0.2, 0, 0.5)
A2 (0.6, 0, 0.4) (0.6, 0, 0.3) (0.6, 0, 0.3) (0.3, 0, 0.6)
A3 (0.5, 0, 0.5) (0.4, 0, 0.5) (0.4, 0, 0.4) (0.5, 0, 0.4)
A4 (0.7, 0, 0.2) (0.5, 0, 0.4) (0.2, 0, 0.5) (0.3, 0, 0.7)
A5 (0.5, 0, 0.3) (0.3, 0, 0.4) (0.6, 0, 0.2) (0.4, 0, 0.4)

with a weighting vector ω = (0.2, 0.1, 0.3, 0.4)T. Then, by using Equation (1) we get T-SFEWA
values as in Table 13.

Table 13. T-SFEWA values.

G1 G2 G3 G4

A1 (0.3265, 0, 0.5109) (0.2163, 0, 0.4814) (0.2386, 0, 0.7406) (0.3135, 0, 0.4458)
A2 (0.5039, 0, 0.4319) (0.2704, 0, 0.4396) (0.6814, 0, 0.2548) (0.4584, 0, 0.6213)
A3 (0.4132, 0, 0.5109) (0.1679, 0, 0.5171) (0.4687, 0, 0.3659) (0.7059, 0, 0.2975)
A4 (0.6004, 0, 0.2561) (0.2163, 0, 0.4814) (0.2386, 0, 0.4850) (0.4584, 0, 0.8210)
A5 (0.4132, 0, 0.3478) (0.1232, 0, 0.4814) (0.6814, 0, 0.1535) (0.5901, 0, 0.2975)

Then, by using score function we order them as listed in Table 14:

Table 14. Ordered T-SFEWA values.

G1 G2 G3 G4

Aσ(1) (0.3135, 0, 0.4458) (0.3265, 0, 0.5109) (0.2163, 0, 0.4814) (0.2386, 0, 0.7406)
Aσ(2) (0.6814, 0, 0.2548) (0.5039, 0, 0.4319) (0.4584, 0, 0.6213) (0.2704, 0, 0.4396)
Aσ(3) (0.7059, 0, 0.2975) (0.4687, 0, 0.3659) (0.4132, 0, 0.5109) (0.1679, 0, 0.5171)
Aσ(4) (0.6004, 0, 0.2561) (0.2386, 0, 0.4850) (0.2163, 0, 0.4814) (0.4584, 0, 0.8210)
Aσ(5) (0.6814, 0, 0.1535) (0.5901, 0, 0.2975) (0.4132, 0, 0.3478) (0.1232, 0, 0.4814)
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By using Equation (3), we get

Ãσ(1) = (0.2434, 0, 0.5477)
Ãσ(2) = (0.4534, 0, 0.4360)
Ãσ(3) = (0.4273, 0, 0.4119)
Ãσ(4) = (0.3109, 0, 0.5072)

The score values of aggregated values will be SC
(
Ãσ(1)

)
= −0.3043, SC

(
Ãσ(2)

)
= −0.0174,

SC
(
Ãσ(3)

)
= −0.0154, SC

(
Ãσ(4)

)
= −0.1964, SC

(
Ãσ(5)

)
= −0.1499.

This shows that is most desirable alternative. Similarly, the above example can be aggregated by
using T-SFEHG operator.

Example 3. Consider the information is given in T-spherical fuzzy environment for t = 3 as given in Table 15:

Table 15. Decision Matrix.

G1 G2 G3 G4 G5

A1 (0.5, 0.3, 0.4) (0.9, 0.4, 0.5) (0.7, 0.5, 0.2) (0.8, 0.5, 0.5) (0.2, 0.2, 0.8)
A2 (0.2, 0.4, 0.7) (0.4, 0.1, 0.2) (0.9, 0.2, 0.5) (0.3, 0.2, 0.6) (0.5, 0.3, 0.7)
A3 (0.6, 0.2, 0.4) (0.3, 0.5, 0.7) (0.7, 0.2, 0.4) (0.5, 0.1, 0.2) (0.4, 0.3, 0.5)

Then some aggregation operators, e.g., T-spherical fuzzy weighted averaging (T-SFWA) operators,
T-spherical fuzzy hybrid geometric (T-SFHG) operators, T-spherical fuzzy weighted interactive
averaging (T-SFWIA), T-spherical fuzzy hybrid interactive geometric (T-SFHIG) operators, T-SFEWA
operators, and T-SFEWG operators are used to solve given data. The aggregated values for these
operators are given in Table 16:

Table 16. Aggregated values of Table 15.

T-SFWA
Operators

[28]

T-SFHG
Operators

[24]

T-SFWIA
Operators

[28]

T-SFHIG
Operators

[24]

T-SFEWA
Operators

T-SFEWG
Operators

A1

 0.7284,
0.3440,
0.4570


 0.5855,

0.3824,
0.5216


 0.7284,

0.3995,
0.6010


 0.9132,

0.7872,
0.5216


 0.6914,

0.3859,
0.4178


 0.6121,

0.8737,
0.8837


A2

 0.6015,
0.2264,
0.5039


 0.4723,

0.2102,
0.6030


 0.6015,

0.2927,
0.6121


 0.9111,

0.8905,
0.6030


 0.5182,

0.2182,
0.4960


 0.4325,

0.8056,
0.9297


A3

 0.5367,
0.2318,
0.4148


 0.6164,

0.1959,
0.5770


 0.5367,

0.3286,
0.5440


 0.9579,

0.8506,
0.5770


 0.5277,

0.2188,
0.3922


 0.5078,

0.8111,
0.8663


The scores of the aggregated data obtained in Table 16 are given in Table 17 as follows:

Table 17. Score Values.

T-SFWA
Operators

[28]

T-SFHG
Operators

[24]

T-SFWIA
Operators

[28]

T-SFHIG
Operators

[24]

T-SFEWA
Operators

T-SFEWG
Operators

A1 0.2909 0.0588 0.1693 0.6196 0.2576 −0.4608
A2 0.0897 −0.1140 −0.0118 0.5371 0.0172 −0.7227
A3 0.0832 −0.0544 −0.0064 0.6868 0.0866 −0.5192
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The geometrical comparison of the score values obtained using different aggregation techniques
is depicted in Figure 2 where the blue stars denote the score values of the A1 using different AOs while
the orange and grey stars denote the score values of the alternatives A2 and A3, respectively.
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The demonstration of the ranking results observed in Figure 2 are described in Table 18.

Table 18. Rankings.

Aggregation Operators Reference Rankings

T-SFWA operators Zeng et al. [28] A1 > A2 > A3
T-SFHG operators Garg et al. [24] A1 > A3 > A2

T-SFWIA operators Zeng et al. [28] A1 > A3 > A2
T-SFHIG operators Garg et al. [24] A3 > A1 > A2
T-SFEWA operators This Paper A1 > A3 > A2
T-SFEWG operators This Paper A1 > A3 > A2

Advantages

The advantages of proposed work over existing work are discussed in this section. The advantages
of our work are as follows:

• T-SFS is superior to IFS, PyFS, q-ROPFS, PFS and SFS which is claimed and proved Example 1
and 2.

• T-spherical fuzzy Einstein AOs are more flexible than Einstein aggregation operators of IFSs,
PyFSs and, PFS. This flexibility is shown in Section 7 where few restrictions on the proposed
operator reduce them to Einstein operators of IFSs, PyFSs, q-ROPFSs, PFSs, and SFSs.

• Proposed operators can solve all the problems that are discussed in [15,17,18,24–26,29,40] but the
existing operators cannot solve the problems when the information is given in T-SFNs.
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8. Conclusions

In this paper, some new Einstein AOs are proposed by pointing out the shortcomings of the
existing operators. T-SF Einstein AOs can deal with problems where human opinion is more than two
types, i.e., it involves some abstinence and refusal degree as well. Some operations are defined for
T-SFSs and based on these operations some improved Einstein averaging aggregation operators and
Einstein geometric aggregation operators are defined. Some properties of these aggregation operators
are also discussed. The validity of proposed operators is checked with the help of the MADM problem.
The comparative analysis between existing and proposed work is also discussed, in which some
conditions are studied under which the proposed operators can be reduced to other tools of uncertainty,
such as IFSs, PyFSs, q-ROPFSs, PFSs, SFSs. Some examples are also discussed in which the superiority
of proposed operators is proved. The advantages of proposed operators are also discussed. In the
future, we aim to develop some power AOs, McLaurin symmetric mean operators, Heronian mean
AOs and Dombi AOs in the environment of T-SFSs. We also aim to generalize these operators in the
field of T-spherical fuzzy soft sets.
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