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Abstract: The main purpose of this paper is to use the Hardy–Littlewood method to study the
solvability of mixed powers of primes. To be specific, we consider the even integers represented as
the sum of one prime, one square of prime, one cube of prime, and one biquadrate of prime. However,
this representation can not be realized for all even integers. In this paper, we establish the exceptional
set of this kind of representation and give an upper bound estimate.
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1. Introduction and Main Result

Let N, k1, k2, . . . , ks be natural numbers which satisfy 2 6 k1 6 k2 6 · · · 6 ks, N > s. Waring’s
problem of unlike powers concerns the possibility of representation of N in the form

N = xk1
1 + xk2

2 + · · ·+ xks
s . (1)

For previous literature, the reader could refer to section P12 of LeVeque’s Reviews in number theory
and the bibliography of Vaughan [1]. For the special case, k1 = k2 = · · · = ks, an interesting problem
is to determine the value for k > 2, called Waring’s problem, of the function G(k), the least positive
number s such that every sufficiently large number can be represented the sum of at most s k-th powers
of natural numbers. For this problem, there are only two values of the function G(k) determined
exactly. To be specific, G(2) = 4, by Lagrange in 1770, and G(4) = 16, by Davenport [2]. The majority
of information for G(k) has been derived from the Hardy–Littlewood method. This method has arised
from a celebrated paper of Hardy and Ramanujan [3], which focused on the partition function.

There are many authors who devoted to establish many kinds of generalisations of this classical
version of Waring’s problem. Among these results, it is necessary to illustrate some of the majority
variants. We begin with the most famous Waring–Goldbach problem, for which one devotes to
investigate the possibility of the representation of integers as sums of k-th powers of prime numbers.
In order to explain the associated congruence conditions, we denote by k a natural number and p a
prime number. We write θ = θ(k; p) as the integer with the properties pθ |k and pθ - k, and then define
γ = γ(k, p) by

γ(k, p) =

{
θ + 2, when p = 2 and θ > 0,

θ + 1, otherwise.
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Also, we set
K(k) = ∏

(p−1)|k
pγ.

Denote by H(k) the smallest integer s, which satisfies every sufficiently large integer congruent
to s modulo K(k) can be represented as the sum of s k-th powers of primes . By noting the fact that
for (p− 1)|k, we have pθ(p− 1)|k, provided that ak ≡ 1 (mod pγ) and (p, a) = 1. This states the
seemingly awkward definition of H(k), because if n is the sum of s k-th powers of primes exceeding
k + 1, then it must satisfy n ≡ s (mod K(k)). Trivially, further congruence conditions could arise from
the primes p which satisfy (p− 1) - k. Following the previous investigations of Vinogradov [4,5],
Hua systematically considered and investigated the additive problems involving prime variables in
his famous book (see Hua [6,7]).

For the nonhomogeneous case, the most optimistic conjecture suggests that, for each prime p,
if the Equation (1) has p-adic solutions and satisfies

k−1
1 + k−1

2 + · · ·+ k−1
s > 1, (2)

then n can be written as the sum of unlike powers of positive integers (1) provided that n is sufficiently
large in terms of k. For s = 3, such an claim maybe not true in certain situations (see Jagy and
Kaplansky [8], or Exercise 5 of Chapter 8 of Vaughan [1]). However, a guide of application for the
Hardy–Littlewood method suggests that the condition (2) should ensure at least that almost all integers
satisfying the expected congruence conditions can be represented. Moreover, once subject to the
following condition

k−1
1 + k−1

2 + · · ·+ k−1
s > 2, (3)

a standard application of the Hardy–Littlewood method suggests that all the integers, which satisfy
necessary congruence conditions, could be written in the form (1). Meanwhile, a conventional argument
of the circle method shows that in situations in which the condition (2) does not hold, then every
sufficiently large integer can not be represented in the expected form.

Since the Hardy–Littlewood method, the investigation of Waring’s problem for unlike powers has
produced splendid progress in circle method, especially for the classical version of Waring’s problem.
Additive Waring’s problems of unlike powers involving squares, cubes or biquadrates offen attract
greater interest of many mathematicians than those cases with higher mixed powers, and the current
circumstance is quite satisfactory. For example, the reader can refer to references [9–19].

The Waring–Goldbach problem of mixed powers concerns the representation of N which
satisfying some necessary congruence conditions as the form

N = pk1
1 + pk2

2 + · · ·+ pks
s ,

where p1, p2, . . . , ps are prime variables.
In 2002, Brüdern and Kawada [20] proved that for every sufficiently large even integer N,

the equation
N = x + p2

2 + p3
3 + p4

4

is solvable with x being an almost–prime P2 and the pj (j = 2, 3, 4) primes. As usual, Pr denotes an
almost–prime with at most r prime factors, counted according to multiplicity. On the other hand,
in 2015, Zhao [21] established that, for k = 3 or 4, every sufficiently large even integer N can be
represented as the form

N = p1 + p2
2 + p3

3 + pk
4 + 2ν1 + 2ν2 + · · ·+ 2νt(k) ,

where p1, . . . , p4 are primes, ν1, ν2, . . . , νt(k) are natural numbers, and t(3) = 16, t(4) = 18, which
is an improvement result of Liu and Lü [22]. Afterwards, Lü [23] improved the result of Zhao [21]
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and showed that every sufficiently large even integer N can be represented as a sum of one prime,
one square of prime, one cube of prime, one biquadrate of prime and 16 powers of 2.

In view of the results of Brüdern and Kawada [20], Zhao [21], Liu and Lü [22] and Lü [23], it is
reasonable to conjecture that, for sufficiently large integer N satisfying N ≡ 0 (mod2), the following
Diophantine equation

N = p1 + p2
2 + p3

3 + p4
4

is solvable, here and below the letter p, with or without subscript, always denotes a prime number.
However, this conjecture may be out of reach at present with the known methods and techniques.

In this paper, we shall consider the exceptional set of the problem (4) and establish the
following result.

Theorem 1. Let E(N) denote the number of positive integers n, which satisfy n ≡ 0 (mod2), up to N,
which can not be represented as

n = p1 + p2
2 + p3

3 + p4
4. (4)

Then, for any ε > 0, we have
E(N)� N

61
144+ε.

We will establish Theorem 1 by using a pruning process into the Hardy–Littlewood circle method.
For the treatment on minor arcs, we will employ the argument developed by Wooley in [24] combined
with the new estimates for exponential sum over primes developed by Zhao [25]. For the treatment on
major arcs, we shall prune the major arcs further and deal with them respectively. The explicit details
will be given in the related sections.

Notation. In this paper, let p, with or without subscripts, always denote a prime number; ε always
denotes a sufficiently small positive constant, which may not be the same at different occurrences.
The letter c always denotes a positive constant. As usual, we use χ mod q to denote a Dirichlet
character modulo q, and χ0 mod q the principal character. Moreover, we use ϕ(n) and d(n) to denote
the Euler’s function and Dirichlet’s divisor function, respectively. e(x) = e2πix; f (x) � g(x) means
that f (x) = O(g(x)); f (x) � g(x) means that f (x) � g(x) � f (x). N is a sufficiently large integer
and n ∈ (N/2, N], and hence log N � log n.

2. Outline of the Proof of Theorem 1

Let N be a sufficiently large positive integer. By a splitting argument, it is sufficient to consider
the even integers n ∈ (N/2, N]. For the application of the Hardy–Littlewood method, it is necessary to
define the Farey dissection. For this purpose, we set the parameters as follows

A = 100100, Q0 = logA N, Q1 = N
1
6 , Q2 = N

5
6 , I0 =

[
− 1

Q2
, 1− 1

Q2

]
.

By Dirichlet’s rational approximation lemma (for instance, see Lemma 12 on p.104 of [26],
or Lemma 2.1 of [1]), each α ∈ (−1/Q2, 1− 1/Q2] can be represented in the form

α =
a
q
+ λ, |λ| 6 1

qQ2
,
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for some integers a, q with 1 6 a 6 q 6 Q2 and (a, q) = 1. Define

M(q, a) =
[

a
q
− 1

qQ2
,

a
q
+

1
qQ2

]
, M =

⋃
16q6Q1

⋃
16a6 q
(a,q)=1

M(q, a),

M0(q, a) =
[

a
q
−

Q100
0

qN
,

a
q
+

Q100
0

qN

]
, M0 =

⋃
16q6Q100

0

⋃
16a6 q
(a,q)=1

M0(q, a),

m1 = I0 \M, m2 = M \M0.

Then we obtain the Farey dissection

I0 = M0 ∪m1 ∪m2. (5)

For k = 1, 2, 3, 4, we define
fk(α) = ∑

Xk<p62Xk

e(pkα),

where Xk = (N/16)
1
k . Let

R(n) = ∑
n=p1+p2

2+p3
3+p4

4
Xi<pi62Xi

i=1,2,3,4

1.

From (5), one has

R(n) =
∫ 1

0

( 4

∏
k=1

fk(α)

)
e(−nα)dα =

∫ 1− 1
Q2

− 1
Q2

( 4

∏
k=1

fk(α)

)
e(−nα)dα

=

{ ∫
M0

+
∫
m1

+
∫
m2

}( 4

∏
k=1

fk(α)

)
e(−nα)dα.

In order to prove Theroem 1, we need the two following propositions:

Proposition 1. For n ∈ (N/2, N], there holds

∫
M0

( 4

∏
k=1

fk(α)

)
e(−nα)dα =

Γ(2)Γ( 3
2 )Γ(

4
3 )Γ(

5
4 )

Γ( 25
12 )

S(n)
n

13
12

log4 n
+ O

(
n

13
12

log5 n

)
, (6)

where S(n) is the singular series defined in (10), which is absolutely convergent and satisfies

(log log n)−c∗ � S(n)� d(n) (7)

for any integer n satisfying n ≡ 0 (mod2) and some fixed constant c∗ > 0.

The proof of (6) in Proposition 1 follows from the well–know standard technique in the
Hardy–Littlewood method. For more information, one can see pp. 90–99 of Hua [7], so we omit
the details herein. For the properties (7) of singular series, we shall give the proof in Section 4.

Proposition 2. Let Z(N) denote the number of integers n ∈ (N/2, N] satisfying n ≡ 0 (mod2) such that

2

∑
j=1

∣∣∣∣∣
∫
mj

(
4

∏
k=1

fk(α)

)
e(−nα)dα

∣∣∣∣∣� n
13
12

log5 n
.
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Then we have
Z(N)� N

61
144+ε.

The proof of Proposition 2 will be given in Section 5. The remaining part of this section is devoted
to establishing Theorem 1 by using Proposition 1 and Proposition 2.

Proof of Theorem 1. From Proposition 2, we deduce that, with at most O
(

N
61

144+ε
)

exceptions,
all even integers n ∈ (N/2, N] satisfy

2

∑
j=1

∣∣∣∣∣
∫
mj

(
4

∏
k=1

fk(α)

)
e(−nα)dα

∣∣∣∣∣� n
13
12

log5 n
,

from which and Proposition 1, we conclude that, with at most O
(

N
61

144+ε
)

exceptions, for all even
integers n ∈ (N/2, N], R(n) holds the asymptotic formula

R(n) =
Γ(2)Γ( 3

2 )Γ(
4
3 )Γ(

5
4 )

Γ( 25
12 )

S(n)
n

13
12

log4 n
+ O

(
n

13
12

log5 n

)
.

In other words, all even integers n ∈ (N/2, N] can be represented in the form p1 + p2
2 + p3

3 + p4
4

with at most O
(

N
61
144+ε

)
exceptions, where p1, p2, p3, p4 are prime numbers. By a splitting argument,

we get

E(N)� ∑
06`�log N

Z
(

N
2`

)
� ∑

06`�log N

(
N
2`

) 61
144+ε

� N
61
144+ε.

This completes the proof of Theorem 1.

3. Some Auxiliary Lemmas

In this section, we shall list some necessary lemmas which will be used in proving Proposition 2.

Lemma 1. Suppose that α is a real number, and that |α− a/q| 6 q−2 with (a, q) = 1. Let β = α− a/q.
Then we have

fk(α)� dδk (q)(log x)c
(

X1/2
k

√
q(1 + N|β|) + X4/5

k +
Xk√

q(1 + N|β|)

)
,

where δk =
1
2 +

log k
log 2 and c is a constant.

Proof. See Theorem 1.1 of Ren [27].

Lemma 2. Suppose that α is a real number, and that there exist a ∈ Z and q ∈ N with

(a, q) = 1, 1 6 q 6 X and |qα− a| 6 X−1.

If P2δ21−k
6 X 6 Pk−2δ21−k

, then one has

∑
P<p62P

e
(

pkα
)
� P1−δ21−k+ε +

P1+ε

q1/2
(
1 + Pk|α− a/q|

)1/2 ,

where δ = 1/3 for k > 4.

Proof. See Lemma 2.4 of Zhao [25].
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Lemma 3. Suppose that α is a real number, and that there are a ∈ Z and q ∈ N with

(a, q) = 1, 1 6 q 6 Q and |qα− a| 6 Q−1.

If P
1
2 6 Q 6 P

5
2 , then one has

∑
P<p62P

e
(

p3α
)
� P1− 1

12+ε +
q−

1
6 P1+ε(

1 + P3|α− a/q|
)1/2 .

Proof. See Lemma 8.5 of Zhao [25].

Lemma 4. For α ∈ m1, we have

f3(α)� N
11
36+ε and f4(α)� N

23
96+ε.

Proof. For α ∈ m1, we have Q1 6 q 6 Q2. By Lemma 3, we get

f3(α)� X
11
12+ε
3 + X1+ε

3 Q−
1
6

1 � N
11
36+ε.

From Lemma 2, we obtain

f4(α)� X
23
24+ε

4 + X1+ε
4 Q−

1
2

1 � N
23
96+ε.

This completes the proof of Lemma 4.

For 1 6 a 6 q with (a, q) = 1, set

I(q, a) =
[

a
q
− 1

qQ0
,

a
q
+

1
qQ0

]
, I =

⋃
16q6Q0

2q⋃
a=−q
(a,q)=1

I(q, a). (8)

For α ∈ m2, by Lemma 1, we have

f3(α)�
N

1
3 logc N

q
1
2−ε
(
1 + N|λ|

)1/2 + N
4
15+ε = V3(α) + N

4
15+ε, (9)

say. Then we obtain the following Lemma.

Lemma 5. We have

∫
I
|V3(α)|4dα = ∑

16q6Q0

2q

∑
a=−q
(a,q)=1

∫
I(q,a)

|V3(α)|4dα� N
1
3 logc N.



Symmetry 2020, 12, 367 7 of 14

Proof. We have

∑
16q6Q0

2q

∑
a=−q
(a,q)=1

∫
I(q,a)

|V3(α)|4dα

� ∑
16q6Q0

q−2+ε
2q

∑
a=−q
(a,q)=1

∫
|λ|6 1

Q0

N
4
3 logc N

(1 + N|λ|)2 dλ

� ∑
16q6Q0

q−2+ε
2q

∑
a=−q
(a,q)=1

( ∫
|λ|6 1

N

N
4
3 logc Ndλ +

∫
1
N 6|λ|6 1

Q0

N
4
3 logc N
N2λ2 dλ

)

� N
1
3 logc N ∑

16q6Q0

q−2+ε ϕ(q)� N
1
3 Qε

0 logc N � N
1
3 logc N.

This completes the proof of Lemma 5.

4. The Singular Series

In this section, we shall concentrate on investigating the properties of the singular series which
appear in Proposition 1. First, we illustrate some notations. For k ∈ {1, 2, 3, 4} and a Dirichlet character
χ mod q, we define

Ck(χ, a) =
q

∑
h=1

χ(h)e
(

ahk

q

)
, Ck(q, a) = Ck(χ

0, a),

where χ0 is the principal character modulo q. Let χ1, χ2, χ3, χ4 be Dirichlet characters modulo q. Set

B(n, q, χ1, χ2, χ3, χ4) =
q

∑
a=1

(a,q)=1

C1(χ1, a)C2(χ2, a)C3(χ3, a)C4(χ4, a)e
(
− an

q

)
,

B(n, q) = B
(
n, q, χ0, χ0, χ0, χ0),

and write

A(n, q) =
B(n, q)
ϕ4(q)

, S(n) =
∞

∑
q=1

A(n, q). (10)

Lemma 6. For (a, q) = 1 and any Dirichlet character χ mod q, there holds

|Ck(χ, a)| 6 2q1/2dβk (q)

with βk = (log k)/ log 2.

Proof. See the Problem 14 of Chapter VI of Vinogradov [28].

Lemma 7. Let p be a prime and pα‖k. For (a, p) = 1, if ` > γ(p), we have Ck(p`, a) = 0, where

γ(p) =

{
α + 2, if p 6= 2 or p = 2, α = 0;

α + 3, if p = 2, α > 0.

Proof. See Lemma 8.3 of Hua [7].

For k > 1, we define

Sk(q, a) =
q

∑
m=1

e
(

amk

q

)
.
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Lemma 8. Suppose that (p, a) = 1. Then

Sk(p, a) = ∑
χ∈Ak

χ(a)τ(χ),

where Ak denotes the set of non–principal characters χ modulo p for which χk is principal, and τ(χ) denotes the
Gauss sum

p

∑
m=1

χ(m)e
(m

p

)
.

Also, there hold |τ(χ)| = p1/2 and |Ak| = (k, p− 1)− 1.

Proof. See Lemma 4.3 of Vaughan [1].

Lemma 9. For (p, n) = 1, we have∣∣∣∣∣ p−1

∑
a=1

( 4

∏
k=1

Sk(p, a)
p

)
e
(
− an

p

)∣∣∣∣∣ 6 24p−
3
2 . (11)

Proof. We denote by S the left-hand side of (11). It follows from Lemma 8 that

S =
1
p4

p−1

∑
a=1

(
4

∏
k=1

(
∑

χk∈Ak

χk(a)τ(χk)

))
e
(
− an

p

)
.

If |Ak| = 0 for some k ∈ {1, 2, 3, 4}, then S = 0. If this is not the case, then

S =
1
p4 ∑

χ1∈A1

∑
χ2∈A2

∑
χ3∈A3

∑
χ4∈A4

τ(χ1)τ(χ2)τ(χ3)τ(χ4)

×
p−1

∑
a=1

χ1(a)χ2(a)χ3(a)χ4(a)e
(
− an

p

)
.

From Lemma 8, the quadruple outer sums have no more than 4! = 24 terms. For each of these
terms, there holds ∣∣τ(χ1)τ(χ2)τ(χ3)τ(χ4)

∣∣ = p2.

Since in any one of these terms χ1(a)χ2(a)χ3(a)χ4(a) is a Dirichlet character χ (mod p), the inner
sum is

p−1

∑
a=1

χ(a)e
(
− an

p

)
= χ(−n)

p−1

∑
a=1

χ(−an)e
(
− an

p

)
= χ(−n)τ(χ).

By noting the fact that τ(χ0) = −1 for principal character χ0 mod p, we derive that∣∣χ(−n)τ(χ)
∣∣ 6 p

1
2 .

From the above arguments, we deduce that

|S| 6 1
p4 · 24 · p2 · p

1
2 = 24p−

3
2 ,

which completes the proof of Lemma 9.

Lemma 10. Let L(p, n) denote the number of solutions of the congruence

x1 + x2
2 + x3

3 + x4
4 ≡ n (mod p), 1 6 x1, x2, x3, x4 6 p− 1.
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Then, for n ≡ 0 (mod2), we have L(p, n) > 0.

Proof. We have

p · L(p, n) =
p

∑
a=1

C1(p, a)C2(p, a)C3(p, a)C4(p, a)e
(
− an

p

)
= (p− 1)4 + Ep,

where

Ep =
p−1

∑
a=1

C1(p, a)C2(p, a)C3(p, a)C4(p, a)e
(
− an

p

)
.

By Lemma 8, we obtain

|Ep| 6 (p− 1)(
√

p + 1)(2
√

p + 1)(3
√

p + 1).

It is easy to check that |Ep| < (p− 1)4 for p > 7. Therefore, we obtain L(p, n) > 0 for p > 7.
For p = 2, 3, 5, we can check L(p, n) > 0 one by one. This completes the proof of Lemma 10.

Lemma 11. A(n, q) is multiplicative in q.

Proof. From the definition of A(n, q) in (10), it is sufficient to show that B(n, q) is multiplicative in q.
Suppose q = q1q2 with (q1, q2) = 1. Then we obtain

B(n, q1q2) =
q1q2

∑
a=1

(a,q1q2)=1

( 4

∏
k=1

Ck(q1q2, a)
)

e
(
− an

q1q2

)

=
q1

∑
a1=1

(a1,q1)=1

q2

∑
a2=1

(a2,q2)=1

( 4

∏
k=1

Ck(q1q2, a1q2 + a2q1)

)
e
(
− a1n

q1

)
e
(
− a2n

q2

)
. (12)

For (q1, q2) = 1, there holds

Ck(q1q2, a1q2 + a2q1) =
q1q2

∑
m=1

(m,q1q2)=1

e
(
(a1q2 + a2q1)mk

q1q2

)

=
q1

∑
m1=1

(m1,q1)=1

q2

∑
m2=1

(m2,q2)=1

e
(
(a1q2 + a2q1)(m1q2 + m2q1)

k

q1q2

)

=
q1

∑
m1=1

(m1,q1)=1

e
(

a1(m1q2)
k

q1

) q2

∑
m2=1

(m2,q2)=1

e
(

a2(m2q1)
k

q2

)

= Ck(q1, a1)Ck(q2, a2). (13)

Putting (13) into (12), we deduce that

B(n, q1q2) =
q1

∑
a1=1

(a1,q1)=1

( 4

∏
k=1

Ck(q1, a1)

)
e
(
− a1n

q1

) q2

∑
a2=1

(a2,q2)=1

( 4

∏
k=1

Ck(q2, a2)

)
e
(
− a2n

q2

)

= B(n, q1)B(n, q2).

This completes the proof of Lemma 11.

Lemma 12. Let A(n, q) be as defined in (10). Then
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(i) we have

∑
q>Z
|A(n, q)| � Z−

1
2+εd(n),

and thus the singular series S(n) is absolutely convergent and satisfies S(n)� d(n).

(ii) there exists an absolute positive constant c∗ > 0, such that, for n ≡ 0 (mod 2),

S(n)� (log log n)−c∗ .

Proof. From Lemma 11, we know that B(n, q) is multiplicative in q. Therefore, there holds

B(n, q) = ∏
pt‖q

B(n, pt) = ∏
pt‖q

pt

∑
a=1

(a,p)=1

( 4

∏
k=1

Ck(pt, a)
)

e
(
− an

pt

)
. (14)

From (14) and Lemma 7, we deduce that B(n, q) = ∏
p‖q

B(n, p) or 0 according to q is square–free or

not. Thus, one has
∞

∑
q=1

A(n, q) =
∞

∑
q=1

q square–free

A(n, q). (15)

Write

R(p, a) :=
4

∏
k=1

Ck(p, a)−
4

∏
k=1

Sk(p, a).

Then

A(n, p) =
1

(p− 1)4

p−1

∑
a=1

( 4

∏
k=1

Sk(p, a)
)

e
(
− an

p

)
+

1
(p− 1)4

p−1

∑
a=1
R(p, a)e

(
− an

p

)
. (16)

Applying Lemma 6 and noticing that Sk(p, a) = Ck(p, a) + 1, we get Sk(p, a) � p
1
2 , and thus

R(p, a) � p
3
2 . Therefore, the second term in (16) is 6 c1 p−

3
2 . On the other hand, from Lemma 9,

we can see that the first term in (16) is 6 24 · 24p−
3
2 = 384p−

3
2 . Let c2 = max(c1, 384). Then we have

proved that, for p - n, there holds
|A(n, p)| 6 c2 p−

3
2 . (17)

Moreover, if we use Lemma 6 directly, it follows that

∣∣B(n, p)
∣∣ = ∣∣∣∣∣ p−1

∑
a=1

(
4

∏
k=1

Ck(p, a)

)
e
(
− an

p

)∣∣∣∣∣ 6 p−1

∑
a=1

4

∏
k=1

∣∣Ck(p, a)
∣∣

6 (p− 1) · 24 · p2 · 24 = 384p2(p− 1),

and therefore ∣∣A(n, p)
∣∣ = |B(n, p)|

ϕ4(p)
6

384p2

(p− 1)3 6
23 · 384p2

p3 =
3072

p
. (18)

Let c3 = max(c2, 3072). Then, for square–free q, we have

∣∣A(n, q)
∣∣ =(∏

p|q
p-n

∣∣A(n, p)
∣∣)(∏

p|q
p|n

∣∣A(n, p)
∣∣) 6

(
∏
p|q
p-n

(
c3 p−

3
2
))(

∏
p|q
p|n

(
c3 p−1))

= cω(q)
3

(
∏
p|q

p−
3
2

)(
∏

p|(n,q)
p

1
2

)
� q−

3
2+ε(n, q)

1
2 .
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Hence, by (15), we obtain

∑
q>Z
|A(n, q)| � ∑

q>Z
q−

3
2+ε(n, q)

1
2 = ∑

d|n
∑

q> Z
d

(dq)−
3
2+εd

1
2 = ∑

d|n
d−1+ε ∑

q> Z
d

q−
3
2+ε

� ∑
d|n

d−1+ε
(Z

d

)− 1
2+ε

= Z−
1
2+ε ∑

d|n
d−

1
2+ε � Z−

1
2+εd(n).

This proves (i) of Lemma 12.
To prove (ii) of Lemma 12, by Lemma 11, we first note that

S(n) = ∏
p

(
1 +

∞

∑
t=1

A
(
n, pt)) = ∏

p

(
1 + A(n, p)

)
=

(
∏

p6c3

(
1 + A(n, p)

))(
∏

p>c3
p-n

(
1 + A(n, p)

))(
∏

p>c3
p|n

(
1 + A(n, p)

))
. (19)

From (17), we have

∏
p>c3
p-n

(
1 + A(n, p)

)
> ∏

p>c3

(
1− c3

p3/2

)
> c4 > 0. (20)

By (18), we know that there are c5 > 0 such that

∏
p>c3
p|n

(
1 + A(n, p)

)
> ∏

p>c3
p|n

(
1− c3

p

)
> ∏

p|n

(
1− c3

p

)
� (log log n)−c5 . (21)

On the other hand, it is easy to see that

1 + A(n, p) =
p · L(p, n)

ϕ4(p)
.

By Lemma 10, we know that L(p, n) > 0 for all p with n ≡ 0 (mod 2), and thus 1 + A(n, p) > 0.
Therefore, there holds

∏
p6c3

(
1 + A(n, p)

)
> c6 > 0. (22)

Combining the estimates (19)–(22), and taking c∗ = c5 > 0, we derive that

S(n)� (log log n)−c∗ .

This completes the proof Lemma 12.

5. Proof of Proposition 2

In this section, we shall give the proof of Proposition 2. We denote by Zj(N) the set of integers n
satisfying n ∈ [N/2, N] and n ≡ 0 (mod 2) for which the following estimate∣∣∣∣∣

∫
mj

(
4

∏
k=1

fk(α)

)
e(−nα)dα

∣∣∣∣∣� n
13
12

log5 n
(23)
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holds. For convenience, we use Zj to denote the cardinality of Zj(N) for abbreviation. Also, we define
the complex number ξ j(n) by taking ξ j(n) = 0 for n 6∈ Zj(N), and when n ∈ Zj(N) by means of
the equation ∣∣∣∣∣

∫
mj

(
4

∏
k=1

fk(α)

)
e(−nα)dα

∣∣∣∣∣ = ξ j(n)
∫
mj

(
4

∏
k=1

fk(α)

)
e(−nα)dα. (24)

Plainly, one has |ξ j(n)| = 1 whenever ξ j(n) is nonzero. Therefore, we obtain

∑
n∈Zj(N)

ξ j(n)
∫
mj

(
4

∏
k=1

fk(α)

)
e(−nα)dα =

∫
mj

(
4

∏
k=1

fk(α)

)
Kj(α)dα, (25)

where the exponential sum Kj(α) is defined by

Kj(α) = ∑
n∈Zj(N)

ξ j(n)e(−nα).

For j = 1, 2, set

Ij =
∫
mj

(
4

∏
k=1

fk(α)

)
Kj(α)dα.

By (23)–(25), we derive that

Ij � ∑
n∈Zj(N)

n
13
12

log5 n
�
ZjN

13
12

log5 N
, j = 1, 2. (26)

By Lemma 2.1 of Wooley [24] with k = 2, we know that, for j = 1, 2, there holds

∫ 1

0

∣∣ f2(α)Kj(α)
∣∣2dα� Nε

(
ZjN

1
2 +Z2

j
)
. (27)

It follows from Cauchy’s inequality, Lemma 4 and (27) that

I1 �
(

sup
α∈m1

| f3(α)|
)(

sup
α∈m1

| f4(α)|
)( ∫ 1

0
| f2(α)K1(α)|2dα

) 1
2
( ∫ 1

0
| f1(α)|2dα

) 1
2

� N
11
36+ε · N

23
96+ε ·

(
Nε
(
Z1N

1
2 +Z2

1
)) 1

2 · N
1
2

� N
301
288+ε

(
Z

1
2

1 N
1
4 +Z1

)
� Z

1
2

1 N
373
288+ε +Z1N

301
288+ε. (28)

Combining (26) and (28), we get

Z1N
13
12 log−5 N � I1 � Z

1
2

1 N
373
288+ε +Z1N

301
288+ε,

which implies
Z1 � N

61
144+ε. (29)

Next, we give the upper bound for Z2. By (9), we obtain

I2 �
∫
m2

∣∣ f1(α) f2(α)V3(α) f4(α)K2(α)
∣∣dα

+ N
4
15+ε ·

∫
m2

∣∣ f1(α) f2(α) f4(α)K2(α)
∣∣dα

= I21 + I22, (30)
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say. For α ∈ m2, we have either Q100
0 < q < Q1 or Q100

0 < N|qα − a| < NQ−1
2 = Q1. Therefore,

by Lemma 1, we get

sup
α∈m2

∣∣ f4(α)
∣∣� N

1
4

log40A N
. (31)

In view of the fact that m2 ⊆ I , where I is defined by (8), Hölder’s inequality, the trivial estimate
K2(α)� Z2 and Theorem 4 of Hua (See [7], p. 19), we obtain

I21 �Z2 sup
α∈m2

| f4(α)| ×
( ∫ 1

0
| f1(α)|2dα

) 1
2
( ∫ 1

0
| f2(α)|4dα

) 1
4
( ∫
I
|V3(α)|4dα

) 1
4

�Z2 ·
N

1
4

log40A N
· N

1
2 · (N logc N)

1
4 · (N

1
3 logc N)

1
4 � Z2N

13
12

log30A N
. (32)

Moreover, it follows from (27), (31) and Cauchy’s inequality that

I22 �N
4
15+ε · sup

α∈m2

| f4(α)| ×
( ∫ 1

0
| f1(α)|2dα

) 1
2
( ∫ 1

0
| f2(α)K2(α)|2dα

) 1
2

�N
4
15+ε · N

1
4

log40A N
· N

1
2 ·
(

Nε
(
Z2N

1
2 +Z2

2
)) 1

2

�N
61
60+ε

(
Z

1
2

2 N
1
4 +Z2

)
� Z

1
2

2 N
19
15+ε +Z2N

61
60+ε. (33)

Combining (26), (30), (32) and (33), we deduce that

Z2N
13
12

log5 N
� I2 = I21 + I22 �

Z2N
13
12

log30A N
+Z

1
2

2 N
19
15+ε +Z2N

61
60+ε,

which implies
Z2 � N

11
30+ε. (34)

From (29) and (34), we have

Z(N)� Z1 +Z2 � N
61

144+ε,

which completes the proof of Proposition 2.
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