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Abstract: The main purpose of the present study was to mathematically integrate different decision
support systems to enhance the accuracy of seismic vulnerability mapping in Sanandaj City,
Iran. An earthquake is considered to be a catastrophe that poses a serious threat to human
infrastructures at different scales. Factors affecting seismic vulnerability were identified in three
different dimensions; social, environmental, and physical. Our computer-based modeling approach
was used to create hybrid training datasets via fuzzy-multiple criteria analysis (fuzzy-MCDA)
and multiple criteria decision analysis-multi-criteria evaluation (MCDA-MCE) for training the
multi-criteria evaluation–logistic regression (MCE–LR) and fuzzy-logistic regression (fuzzy-LR)
hybrid model. The resulting dataset was validated using the seismic relative index (SRI) method and
ten damaged spots from the study area, in which the MCDA-MCE model showed higher accuracy.
The hybrid learning models of MCE-LR and fuzzy-LR were implemented using both resulting datasets
for seismic vulnerability mapping. Finally, the resulting seismic vulnerability maps based on each
model were validation using area under curve (AUC) and frequency ratio (FR). Based on the accuracy
assessment results, the MCDA-MCE hybrid model (AUC = 0.85) showed higher accuracy than the
fuzzy-MCDA model (AUC = 0.80), and the MCE-LR hybrid model (AUC = 0.90) resulted in more
accurate vulnerability map than the fuzzy-LR hybrid model (AUC = 0.85). The results of the present
study show that the accuracy of modeling and mapping seismic vulnerability in our case study area
is directly related to the accuracy of the training dataset.

Keywords: seismic vulnerability; natural disasters; multiple criteria decision analysis; risk
management; hybrid model

1. Introduction

During the 20th century, more than 1100 destructive earthquakes occurred in various parts of
the world, resulting in the deaths of more than 1,500,000 people, of which about 90% were due to
insufficient engineering and safety standards for buildings [1]. Earthquakes are natural events that can
also have long-term social and economic adverse impacts on societies. The vulnerability of cities and
settlement areas to natural disasters such as earthquakes is to some extent a consequence of the role
of human behaviors and is strongly related to the importance of planning systems in reducing the
damaging effects of natural disasters [2].
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In developed countries the financial casualties of natural disasters are generally high while human
casualties are low; however, in developing countries this is the reverse, indicating better planning
in developed countries [3]. It is not possible to accurately control or predict natural disasters such
as earthquakes, or how particular measures can help in making cities less vulnerable to a disaster
event [4].

The complex nature and variable effects that disaster events can have on societies in general, and
specifically cities, can partly be attributed to the variable nature of hazard distribution (especially
seismic intensity), the number of people exposed, environmental vulnerability, and the degree of
resistance of communities [5]. Much of the physical and economic damage caused by such incidents is
often attributed to a lack of planning and weaknesses in building standards and infrastructure codes [6].
As cities are more vulnerable to catastrophes due to their high population, densities of buildings
and infrastructure, ways of assessing seismic physical vulnerability in urban areas are needed [7].
With the expansion of the physical and economy of urban communities, the need to reduce risks has
gradually become not only a reliable factor in controlling risk, but has also become more important
as a vulnerability mitigation plan. One of the managerial measures that can play a significant role
in reducing the damage caused by natural disasters is the zoning of natural hazards. In order to
reduce earthquake risks, comprehensive studies are needed to identify the impacts of earthquakes in
urban and rural areas and identify areas with high vulnerability [8]. Dimensions affecting the risk of
cities can broadly be divided into three groups, i.e., environmental, physical and social aspects. The
most important natural factors affecting earthquake hazards are fault lines, lithology, slope degree,
and proximity to faults. The physical dimension is the most tangible dimension of the role of urban
planning in reducing the impact of earthquakes. One of the most important physical dimensions is the
urban structure and urban land use [9].

Different areas of the city are vulnerable to crises due to the type of population living there [10].
Criteria such as distance and proximity to faults, horizontal acceleration of land, number of floors in
buildings, remoteness, proximity to treatment centers, building density, distance from hazardous sites
and facilities, population density, building materials, and adjacent land uses have a significant impact
on reducing or increasing earthquake damage [11].

To identify earthquake risk areas, various studies have been conducted in recent decades. Some
studies with a strong focus on holistic risk analyses include a seismic risk assessment, e.g., the authors
of [12] who introduced a new approach to seismic risk assessment and stated that in order to achieve
effective risk management, it is necessary to identify social and environmental vulnerabilities in
addition to determining physical and economic damages. The readiness of citizens in three New
Zealand cities three years after the Christchurch earthquake was examined in [13]. Their results
showed to what degree people were aware of the likelihood of danger and vulnerability in their area
of residence. The whole of Japan was zoned in [14] using statistical methods and principal component
analysis (PCA) based on gravity, earthquake, active fault and seismic parameters, and in [15] risk
assessment using an artificial neural network (ANN) was performed, which addressed the lack of
accurate validation methods which can be one of the shortcomings of these studies. Using social,
environmental and physical metrics, another study performed post-earthquake hazard modeling and
studied the health of individuals and the threat of poisonous insects, using a hierarchical analysis
process model to weigh the criteria [16].

Many studies have also used only a limited number of criteria and have carried out a
one-dimensional seismic vulnerability assessment, including: [17], which assessed the economic
damages of highway bridges in Campania, Italy and has used statistical methods of updating ground
motion prediction and fragility (their results show that the structural dependence of land movement
is an important factor in the economic damage caused by earthquakes); [18], which used an expert
system containing specialized knowledge for masonry structures in assessing the seismic vulnerability
of old buildings in Sri Lanka; [19], which performed a seismic vulnerability assessment by focusing
on one of the Romanian cities subject to earthquake, using multi-criteria analysis and a number of
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physical and social criteria, the results of which identified 385 earthquake-prone structures, as well
as the decision-making process to reduce the damage. Other methods and models have been used
to map natural hazard vulnerability in some current studies, including certainty factors (CF) [20],
ANN [21,22], logistic regression (LR) [23], support vector machine (SVM) [24–26], convolutional
neural network (CNN) [27], ordered weight averaging (OWA) [4], fuzzy quantifier algorithm [28],
adaptive neuron-fuzzy inference system (ANFIS) [29,30], and different multiple criteria decision
analysis (MCDA) models [31] such as the analytic hierarchy process (AHP) [32–34] and the analytical
network process (ANP) [35,36]. Several models and techniques have also been integrated and combined
to produce more efficient hybrid models [37–39]. Ghorbanzadeh et al. (2019) [22] integrated a hazard
susceptibility index with a social/infrastructural vulnerability index using a geographic information
system multi-criteria decision making (GIS-MCDM). Their hazard susceptibility index was generated
based on mostly environmental conditioning factors, such as the slope angle and distance to streams
using an ANN. They emphasized different types of land use and construction, like industrial, residential,
and recreation areas for creating the infrastructural vulnerability index. The dataset of infrastructural
vulnerability index was combined with the social vulnerability factors, e.g., population, age, and
family information.

Given the importance of earthquake-related issues and their effects, the main purpose of this
study was to develop a model for earthquake vulnerability assessment in Sanandaj City, in order
to eliminate the shortcomings of previous studies, such as: not using all the criteria that affect the
earthquake; modeling with individual models containing uncertainties; lack of final validation for
the final models; and so on. In addition, estimation of vulnerable population and risk assessment of
different areas of the city in critical times was based on different degrees such as low, moderate and high
and many other goals of this study. In this study, in order to determine the vulnerability areas and to
prepare earthquake susceptibility map, five models, namely OWA, fuzzy logic, AHP, ANP and logistic
regression (LR), and four hybrid models, namely (ANP-AHP)-fuzzy, (ANP-AHP)-OWA, and OWA-LR,
and fuzzy-LR, were used. Accordingly, the average weight of the AHP and ANP models was used to
construct the OWA and fuzzy models. Also, for simplicity, we used the (ANP-AHP)-fuzzy (A-fuzzy)
and (ANP-AHP)-OWA (A-OWA) hybrid models to make training sites, so that two training datasets
would be created and the OWA-LR and fuzzy-LR hybrid models would be built separately. Finally, the
seismic relative index (SRI) validation method was used for the initial validation of two A-fuzzy and
A-OWA hybrid models and relative operating characteristic (ROC) curves for four hybrid models and
frequency ratio (FR) [40] methods were used to validate the final hybrid models of fuzzy-LR (FLR) and
OWA-LR (OLR).

2. Overview of the Study Area

Sanandaj City is located in Kurdistan province and western Iran, which covers an area of 3033
square kilometers with 35◦18′52” N and 46◦59′32” E (Figure 1). It also has a population of 334,833
according to the 2016 census. The elevation of this city ranges from 1368 to 1720 m in the western part
of Kurdistan province. Sanandaj City is surrounded by natural features between mountains and hills
that are part of the Zagros Mountains. The topography of the city and the surrounding mountains have
made the city naturally flat in a relatively flat valley with elevated hills at various points, with slopes
ranging from 25 to 40 degrees. The main rock units of this city are dark-gray shale and sandstone.
According to Iran′s active fault maps, Sanandaj City is located in a relatively quiet structure zone of
Sanandaj-Sirjan, but due to the crossing of two famous faults Zagros Javan and Marivan-Sirjan, it is
exposed to surrounding earthquakes (Table 1). The Zagros Mountains are formed by the movement
of the Arabian plate and its impact on the Iranian and Caucasian plate, which is one of the most
seismically active parts of Iran, indicating that this section has many faults and features and there is a
high potential for seismic hazard in this area [41].
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Figure 1. Location of the study area in Iran.

Table 1. Characteristics of Faults in the Study Area.

Row Fault Name Fault Type Fault Length
(Km)

Minimum Distance
from the Site (km)

Maximum Distance
from the Site (km)

1 Morvarid strike-slip fault 23 29 43
2 Sartakht strike-slip fault 75 39 71
3 Piranshahr strike-slip fault 149 34 150
4 Dinoor strike-slip fault 52 66 111
5 Sahneh strike-slip fault 47 103 150
6 Nahavand strike-slip fault 16 133 150
7 Zagros Rivers fault 250 91 150
8 Garun strike-slip fault 47 133 138
9 Takht soleaman strike-slip fault 30 130 150

Data Used

The factors affecting the seismic vulnerability were prepared based on three different dimensions,
which were social, environmental and physical factors, including population density, distance from
the hospital, percentage of population under 4 years old and over 70 years old, building materials,
distance from the fire station, distance from the street, area of each piece, land use, distance from the
fault, the number of floors, distance from the stream, lithology, and altitude. The data used in this
present study are shown in Figure 2.
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risk and damage, and distance from it will reduce the risk and consequently higher resilience [42]. 
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Figure 2. Layers standardized in this study. (a). Area of each piece, (b). Building with inappropriate
materials, (c). Land use, (d). Distance from the hospital, (e). Distance from the fire station, (f). The
number of floors, (g). Distance from the Street, (h). Altitude, (i). Lithology, (j). Distance from Fault, (k).
Slope, (l). Distance from the stream, (m). Population density, (n). Percent of population under 4 years
old and over 70 years old, (o). Family density.

Distance from the fault; the faults are one of the objective forms of tectonic factors whose presence
or absence can be examined in relation to the seismic hazard of different areas. Fault distance plays a
key role in resilience to earthquake hazards, as proximity to it causes high seismic risk and damage,
and distance from it will reduce the risk and consequently higher resilience [42].

Population density; increasing population growth, population density, and poor distribution of
services and infrastructure pose risks to society [43]. In recent earthquakes around the world, it can be
said that most of the damage is to humans and with the increase in population it is predicted that in
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the future the mortality rate will be higher. The earthquake hazard coefficient in urban centers is also
more complex and riskier due to urbanization without planning and development [44].

Distance from the hospital; access to health services such as hospitals play a key role in controlling
post-emergency complications and providing earthquake rescue and hospitalization services. Proper
and quick access to medical facilities will increase earthquake resilience [45].

The number of floors; the number of floors in a building is directly related to the earthquake
vulnerability. The higher the number of floors of a building despite its quality, the greater the
vulnerability. The number of floors in the building, if not in accordance with safety principles, will
definitely increase the damage [46]. Even if the elevation is met with due diligence and calculations,
it is difficult for the evacuation of buildings, search and rescue people. In addition, due to the large
population of multi-floor buildings, it is slower to do at the time of the accident and due to the high
volume of rescue operations; it is very difficult to save the lives of the occupants of high-rise buildings.

Building materials; the type of building materials is one of the most important criteria in
determining the vulnerability of cities to earthquakes. Obviously, structures made of high strength
and standard materials have good earthquake safety [47].

Area of each piece; from factors affecting the earthquake vulnerability in the area of buildings.
The greater the area of the building, the less waste it will cause to the buildings and the surrounding
passages [48].

Land use; proper deployment of land uses on the basis of urban planning principles such as
proper accessibility, proper distance from the hotspots biological, safety, comfort, and utility can
substantially reduce the amount of vulnerability, injury and economic damage [49]. For this reason,
the type of urban land use has a significant impact on earthquake vulnerability.

Distance from the street; generally, communication networks are set. up for motor, bicycle and
pedestrian traffic. In addition, escaping dangerous situations and facilitating the relief and assistance
of the injured require roads and streets to pass vehicles. In most earthquake-affected areas, the
number of casualties is not always due to the earthquake itself, but often due to the blockage of
communications networks. Therefore, communication networks play a key role in reducing earthquake
vulnerability [50].

Slope; the slope is another factor affecting the vulnerability of earthquakes to urban environments.
Degradation in terrain with steep topography, especially at the top of hills and peaks, is greatly enhanced.
According to construction standards, a slope of 5 to 9 percent is suitable for urbanization [42].

Lithology; lithological conditions are one of the most important environmental parameters in
earthquake events. So that the more geological formation of harder minerals, the lower the earthquake
wave transmission power, and the weaker the destructive power of the earthquake. Also, the gaps and
cracks in the geological formations are one of the most important areas for earthquake power transfer
from earthquake focal point to ground level [50]. The geological units are represented in Figure 3, and
detailed corresponding descriptions are shown in Table 2.

Table 2. Geological formations present in the Study Area.

Unit Description Percent

k2av Andesite volcano 1
kpef Limestone and conglomerate 1
kupl Limestone 8

kussh Dark gray hose and Sandstone 68
peEf Sandstone and calcareous ash 2
Qft2 Quaternary formation 20
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Percentage of population under 4 years old and over 70 years old; in events such as earthquakes,
everyone in the community is vulnerable, but older people and children are the most vulnerable
groups in a community and more attention is needed to minimize pain and injury [51]. Children do
not tolerate disruption well and older people are psychologically fragile because of their disrupted life
rhythms. Elderly, in addition to the specific problems of old age, are exposed to social traits such as
social incompatibility, social isolation, rejection, and lack of social support [42].

Distance from the fire station; access to the fire stations through the communication networks
will speed up rescue operations and service the injured. As such, the greater the distance from the fire
stations, the more likely it is to be vulnerable [52].

Distance from the stream; the presence of rivers will create post-glacial alluvial sands, making
the surface vulnerable to vibration and lubrication [53]. As a result, buildings in the vicinity of the
waterway network are subject to slip.

Altitude; is one of the effective parameters in earthquake vulnerability [54]. The highs and lows
available in each area are highly correlated with landslide susceptibility in each area [55]. So, because
of the amount of erosion and its relation to human activity, the higher the altitude of an area, the greater
the seismic vulnerability.

3. Earthquake Vulnerability Mapping

This study consisted of four stages (see Figure 4). In the first part, using the expert opinions and
previous studies, 15 layers were selected as conditioning layers in urban seismic vulnerability and
then in order to use layers in modeling, using specific functions in ArcGIS10.4 software the layers
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were edited and standardized. In the second part, using the AHP and ANP models, the pairwise
comparison matrices were formed. Moreover, to create hybrid models, the mean weight of AHP and
ANP models was obtained, Thereby, using the weighted average, the A-fuzzy and A-OWA hybrid
models were run as maps with five sensitivity classes. In addition, in order to validate the hybrid
models, 10 damaged sites in Sanandaj were harvested using the Global Positioning System (GPS).
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Figure 4. Flowchart of the method used in this study.

The developed model is built in accordance with the combination of ANN with hybrid models for
seismic vulnerability assessment (SVA). In the third part, the proposed model is presented. The model
consists of two main stages, the ANN and the A-OWA, and A-fuzzy hybrid models. Considering that
the LR model in the field of environmental hazards zoning has important features such as accuracy
and fast computation ability [56], these algorithms were considered for this part of our methodology.
To implement the LR model, we need standardized factors and training data. For this reason, two
training databases were created through the combined models of A-fuzzy and A-OWA. Each training
database consists of 150 points that were randomly selected from five sensitivity classes (30 points
from each sensitivity class). After training the LR model, the fuzzy-LR and OWA-LR hybrid models
were validated using the harvested points.
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3.1. Background of the Multi-Criteria Decision and Statistical Models Used

3.1.1. Fuzzy Logic

Fuzzy logic is a multi-valued logic, meaning its parameters and variables can take into account all
values between the two numbers in addition to considering 0 or 1 [57]. The attribution of each member
of the reference set to a specific subset member is not definitive; that is, it cannot be stated with certainty
whether the member belongs to this set. This uncertainty assessment is done by assigning a number
between 0 and 1 to this member. If this number is equal to 0, it can be stated with certainty that the
target member does not belong to the set, and if this number is 1 it can also be claimed that the target
member belongs to that set. In this way, the subsets of a fuzzy set can be represented by assigning the
numbers 0 and 1 to each set member [58]. The application of fuzzy logic includes five main steps:

Fuzzification: In the fuzzification step, the inputs are converted to fuzzy information. In fact, the
numbers and information that need to be processed will become fuzzy sets and numbers.

i. Rules Base: This section covers all the rules and conditions that are specified “if . . . then” by an
expert to be able to control the decisions of a “decision system”.

ii. Fuzzy inference: In this section, the degree of fuzzy inputs′ compliance with the basic rules is
determined. Thus, based on the percentage of adaptation, different decisions are produced as a
result of fuzzy inference.

iii. Aggregation: Because decisions are made on the basis of testing all the rules in parallel, as a
result, all the rules calculated by the above method are brought together and a fuzzy set of output
is created.

iv. Defuzzification: In the last step, the results of fuzzy inference, which are fuzzy sets, are converted
into quantitative data and information. A variety of methods are used for defuzzification, but the
COG (relation 1) method provided by the Center of Gravity (COG) is most used [59].

COG(A) =

∫ b
a µA(x)xdx∫ b
a µA(x)dx

(1)

where µA (x) is the aggregate membership function, x is the crisp output of the fuzzy system and [a, b]
is the interval in which the aggregated fuzzy set A is defined. The fuzzy operators are represented in
Table 3.

Table 3. Fuzzy Operators.

Operator Mathematical Expression

X AND Y Min (X, Y)
X OR Y Max (X, Y)
not X 1-X

The general form of a fuzzy set is as follows:

A =
{
(µA(xi)/xi)

∣∣∣xi ∈ X, i = 1, . . . , nx
}

(2)

There are several operators for fuzzy logic [60,61], presented in the Table 3.

3.1.2. Analytical Hierarchical Process (AHP)

The AHP is considered to be one of the most common decision-making methods [62]. This method
is one of the most commonly used methods for ranking and determining the importance of factors that
prioritize each criterion using pairwise comparisons of options [63]. If there are too many options,
it is difficult to form a matrix of paired comparisons. Given that all comparisons are made in pairs,
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decision-makers are able to compare verbal judgments with each other; thereby, element A is compared
to element B, the decision-makers will say that the importance of element A over B will be one of the
modes in Table 4 [64]. For example, if the three alternatives a, b, and c are compared to criteria a, b,
and c, then the alternatives are initially compared to the three criteria a, b, and c, and the weight of
each alternative obtained given those three criteria, the self-criteria are compared, and finally, in the
weighted linear combination, the final weight of the alternatives will be calculated [65].

Table 4. The Fundamental Scale for Making Judgments [66].

Definition The Intensity of Relative Importance

Extremely Preferred 9
Very strongly Preferred 7

Strongly Preferred 5
Moderately Preferred 3

Equally Preferred 1
Intermediate Values Between 2, 4, 6, 8

After the criteria have been prioritized, the consistency ratio (CR) (relation) of these criteria should
be calculated and the value of the consistency ratio should be less than 0.1. The consistency ratio
is obtained by dividing the consistency index (CI) by the average random consistency index (RI).
The RI was compiled by Saaty in the year 1991 [67] for various sizes and the CI is calculated by the
following Equation.

CR =
CI
RI

(3)

CI = µMax −
n

n− 1
(4)

where n is the number of criteria, and µMax is the maximum 8 value. Weights should be corrected if the
CR value exceeds 0.1 [68]. Although, in the AHP method, the experts and decision-makers are asked
to compare the factors considering their experience and intellectual skills, it may not fully reproduce
the experts thinking style. Moreover, the weightings of the AHP method is not very reliable; and the
associated uncertainty by comparison, evaluation, and development according to the preference of
experts and decision-makers have a substantial influence on AHP weightings [69].

3.1.3. Analytic Network Process (ANP)

The ANP is a multi-criteria decision-making technique and falls into the category of compensatory
models, like AHP [36]. This model is designed based on the hierarchical analysis process and the
network has replaced the hierarchy [69]. One of the assumptions of the hierarchical analysis process
is that the higher sections and branches of the hierarchy are independent of the lower sections and
levels [70]. In many decisions, however, decision elements cannot be modeled hierarchically and
independently of each other. Therefore, to solve such a problem, they combine different elements.
Saaty suggests using the network analysis process technique. In the hierarchical analysis process, the
relationships between different levels of decision making are considered one-sided [70,71].

The main advantage of this approach is that the different elements are measured based on their
relationships and not hierarchically, and given the complexity of the different issues, better results can
be obtained. Although the analytic network process also employs a pairwise comparative measurement
scale, like the hierarchical analysis process it does not impose an absolutely hierarchical structure
on the problem, but it does model the decision problem with Applying a system perspective with
feedback [72]. Since the ANP is also based on the pairwise comparisons that are filled by experts
and decision-makers, the associated uncertainty can also threaten the final weightings of this method
like the AHP. To deal with the uncertainty problems and enhance the accuracy of results, several
studies have integrated different techniques and approaches with AHP and ANP models, such as the
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interval-AHP decision support model [62] and the integration of fuzzy theory with MCDAs [57]. The
integration of fuzzy theory with AHP and ANP methods, compared to use only the AHP and ANP
methods, have greater reliability and certainty.

3.1.4. Ordered Weight Average (OWA)

There are different weight composition methods for calculating the final weight in multi-criteria
decision-making methods, one of the most important of which is the OWA. This method, first proposed
by Yager [73], combines weighting with prioritization of evaluation criteria, and in addition to weighting
the criteria, prioritizing them. Prioritizing weights allows for direct control of criteria. The main feature
of this method is its reclassification. The coefficients of weights are not directly applied to the criteria
but are applied to the prioritized position of the criteria values for the chosen alternative, for example,
the weight of the first-priority evaluation criterion is assigned to the one that has the most value and
highest amount among those criteria [74].

The OWA operator depicts n dimension space to one dimension [75]. There are three basic
operations (or integration functions) based on the bellman model for fuzzy set integration operations:
fuzzy set sharing operators, fuzzy set community operators, and average operators [73].

The OWA operator contains the fuzzy min and max, where the max operator in line with the
logical OR and the minimum operator in line with the logical AND [74].

F
(
Xi j

)
= (X1i ∗Y1i + X2i ∗Y2i + . . .+ Xni + Yni) (5)

In the equation, X is the values of the criteria for the alternative i and Y is the weight of these criteria.

3.1.5. Logistic Regression (LR)

LR is one of the predictive statistical methods that predict the trend of the dependent variable
using independent variables. This model can be considered as a generalized linear model that uses the
logit function as the link function and its error follows the polynomial distribution. To be two-sided,
it is possible for a random event to occur in two situations. This model considers several physical
parameters that may influence the probability of a flood occurring. One of the advantages of logistic
regression is that the data do not need to be normal distribution and the effective factors can be
continuous or discrete [76]. Therefore, the main purpose of logistic regression is to determine a suitable
model for defining the relationship between the dependent variable and the factors influencing the
flood to generate coefficients for each variable. The logistic regression for predicting the presence or
absence of a phenomenon at 0 and 1, depends on the values of the predictor variables [77]. In general,
the relationship between the event and its dependence on several variables is expressed as follows:

P (event) =
ez

(1 + ez)
(6)

where P (event) is the probability of a flood occurring. The probability of occurrence varies from 0 to
1 as the value of Z varies from −∞ to +∞. Z is a function of the linear combination function of the
effective factors that represent the linear relationship and b0 is the width of the model′s origin.

Z = b0 + b1X1 + b2X2 + · · ·+ bnXn (7)

The general equation of logistic regression is as follows:

Y = logit (p) = ln
(

p
1− p

)
= b0 + b1X1 + b2X2 + · · ·+ bnXn (8)

where Y is the probability of flood occurrence, bn (i = 0, 1, . . . , n) estimation coefficients of the sample
data, n number of independent variables, and Xn (i = 0, 1, . . . , n) independent variables. The positive
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coefficients indicate the correlation between the effective factors and the dependent variable, and
the negative coefficients indicate the effect of the opposite. Because the relationship between the
independent variables and the probability of occurrence is nonlinear, the iterative algorithm is necessary
for parameter estimation [78].

3.2. Validation and Accuracy Assessment

3.2.1. Relative Operating Characteristic (ROC)

The accuracy of the final map of earthquake susceptibility was evaluated using a ROC. The ROC
is a relative factor that shows the position of a class compared to the actual map using the Boolean
method and specifies the likelihood of that class [79]. In this method, the area under the curve (AUC) is
a graph whose vertical axis represents the actual positive percentage and the horizontal axis represents
the false positive percentage [80]. The AUC represents the area under the ROC curve, and the larger
the value, the more efficient the final classification performance is evaluated. Normally, the value of
AUC has a range of 0.5–1. The higher value of AUC indicates the better prediction capacity of the
models. If the AUC value is approximate 1, the accuracy of the prediction model is very high.

3.2.2. Seismic Relative Index (SRI)

The seismic relative index (SRI) has been used in this study as a novel approach to validate
seismic vulnerability assessment results. Using this index and examining the seismic vulnerability
point distribution in sensitivity classes, the accuracy of the hybrid models implemented in this study
will be measured. This index can be calculated by relation (9):

RI = 100 ∗
(

pi

Pi

)
/
∑(

pi

Pi

)
(9)

In relation to (9), pi is the percentage of existing pixels and Pi is the percentage of seismic
vulnerability points in each sensitivity class.

3.2.3. Frequency Ratio (FR)

The FR is one of the evaluation techniques to determine the spatial relationship between data and
classes of different factors. Based on the numerical values of FR, the percentage of data in each class i
of factor j represents a correlation with the rate of occurrence [81]. The FR index is calculated using the
values of each class as follows:

FR =
(LiKji ∗

∑
pix)

(li Kji ∗
∑

Li)
(10)

where Li is the point of occurrence in each class of the Kji criterion,
∑

pix is the total number of pixels
in the range, li is the pixel values in each class of the Kji criterion, and

∑
Li is the total number of

occurrence points in the studied range.

4. Experiment Results and Analysis

In order to construct two A-MCE and A-fuzzy hybrid models, the average weight of ANP and
AHP decision models was calculated, based on which the sensitivity classes were ranked in each layer
(Table 5). The factors used in the study came from in three main groups, physical, environmental, and
social, and were classified based on the natural break method.
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Table 5. The Normalized Weights for the Classes of the Factors Based on Multi-Criteria Decision Analysis (MCDA) Models.

Group Factors Class Pixels in Domain Percentage of Domain Weight of
AHP-ANP Eigenvalue AHP-ANP

Physical

Area

<100 2549 0.60

0.05945

0.006

100–200 341,103 80.72 0.807

200–300 9554 2.26 0.023

300–400 27331 6.47 0.065

400< 42051 9.95 0.100

Inappropriate materials

<20 2549 0.60

0.05944

0.006

20–40 390,554 92.42 0.924

40–60 21947 5.19 0.052

60–80 6281 1.49 0.015

80< 1257 0.30 0.003

Land use

Group 1 2698 0.64

0.07825

0.006

Group 2 6532 1.55 0.015

Group 3 4909 1.16 0.012

Group 4 314,582 74.44 0.744

Group 5 93867 22.21 0.222

Distance from hospital

<1000 2613 0.62

0.06863

0.006

1000–2000 115,241 27.27 0.273

2000–3000 154,422 36.54 0.365

3000–4000 85,553 20.25 0.202

4000< 64759 15.32 0.153

Distance from fire station

<1300 2613 0.62

0.06889

0.006

1300–2400 88,341 20.90 0.209

2500–3600 89,141 21.09 0.211

3700–4800 97,463 23.06 0.231

4800< 145,030 34.32 0.343
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Table 5. Cont.

Group Factors Class Pixels in Domain Percentage of Domain Weight of
AHP-ANP Eigenvalue AHP-ANP

Number of floors

1 Floor 320,809 75.92

0.06866

0.759

2 Floor 32,503 7.69 0.077

3 Floor 46,257 10.95 0.109

4 Floor 16,548 3.92 0.039

5 Floor 6471 1.53 0.015

Distance from the Street

<100 2578 0.61

0.06054

0.006

100–200 27,649 6.54 0.065

200–300 15,473 3.66 0.037

300–400 30,891 7.31 0.073

400< 345,997 81.88 0.819

Environmental

Altitude

<1400 2560 0.61

0.03929

0.006

1400–1500 13124 3.11 0.031

1500–1600 175,334 41.49 0.415

1600–1700 182,582 43.21 0.432

1700< 48,988 11.59 0.116

Lithology

K2av 1484 0.35

0.07935

0.004

Kupl 4601 1.09 0.011

Kussh 33,517 7.93 0.079

PeEf 288,315 68.23 0.682

Qft2 94,671 22.40 0.224

Distance from Fault

<1300 2549 0.60

0.08766

0.006

1300–2400 56,655 13.41 0.134

2400–3500 100,967 23.89 0.239

3500–4600 113,184 26.78 0.268

4600< 149,233 35.31 0.353
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Table 5. Cont.

Group Factors Class Pixels in Domain Percentage of Domain Weight of
AHP-ANP Eigenvalue AHP-ANP

Slope

<10 2560 0.61

0.04609

0.006

10–15 32850 7.77 0.078

15–20 149,963 35.49 0.355

20–25 118,412 28.02 0.280

25 < 118,803 28.11 0.281

Distance from stream

< 300 2558 0.61

0.06054

0.006

300–600 322,256 76.26 0.763

600–900 47,553 11.25 0.113

900–1200 24,051 5.69 0.057

1200< 26,170 6.19 0.062

Social

Population density

<35 2549 0.60

0.08810

0.006

35–92 193,194 45.72 0.457

93–150 77,680 18.38 0.184

160–230 71,061 16.82 0.168

240–440 78,104 18.48 0.185

Percent of population

<390 2549 0.60

0.07809

0.006

400–990 160,639 38.01 0.380

1000–1700 107,761 25.50 0.255

1800–2700 90,444 21.40 0.214

2800–43000 61,195 14.48 0.145

Family density

<10 2708 0.64

0.04879

0.006

11–27 212,088 50.19 0.502

28–45 107,093 25.34 0.253

46–48 63,093 14.93 0.149

69–110 37,606 8.90 0.089
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Given that there were differences in the calculations of the weights of the factors in the two
decision-making models AHP and ANP for pairwise comparisons, the weighted means were used. The
fuzzy hybrid model was mapped using layers fuzzy with values from 0 to 1 and applying combined
weights obtained by the MCDA technique in ArcGIS software. Then, in order to prepare the A-OWA
hybrid map by standardizing the layers based on the MAX and MIN method, the A-OWA hybrid
model was implemented by applying hybrid weights in the IDRISI software.

Based on the results of Table 5, the combined weight calculated for effective layers is based on the
weighted normalized multi-criteria decision analysis (MCDA) method. Also, population density and
distance from fault factors, with values of 0.088 and 0.087 respectively, had the highest weight, and
altitude had the lowest weight in the study with 0.039.

Selection of Training Sites Used in Modeling

The outputs of the hybrid models A-OWA and A-fuzzy are maps with five vulnerability classes
very low, low, moderate, high, and very high (see Figure 5). Providing training data plays an important
role in the accuracy of the vulnerability map. In fact, the most important step in training artificial
neural networks involves collecting, selecting and processing training data. Therefore, in order to
comply with this principle, it is necessary to select the appropriate data at the training stage. Due to
the lack of available earthquake records in the study area and insufficient sampling, the proposed
method in this study employs a new training technique. As described in the preceding section, the
purpose of using the AHP-ANP hybrid weight and the A-OWA and A-fuzzy hybrid models in this
study is to create two suitable training databases for training the LR neural network. At this point, two
training databases are created through two hybrid models. So, in each of the A-OWA and A-fuzzy
base maps, 150 training points were randomly selected as final training sites (see Figure 5). In order to
compare the accuracy of the results of the two hybrid models, 10 points of earthquake damage from
12 November 2017 (Sar-e Pol Zahab earthquake) and 26 August, 2018 (Tazeh Abad earthquake) was
recorded with GPS during field surveys in the study area. The accuracy of the sensitivity results of the
models was then measured using the seismic relative index (Table 6).

Table 6. Analysis of Earthquake Susceptibility Maps Based on R Index.

Hybrid Model Class Pixel pi SV (Occurrence) Pi RI

A-OWA

Very Low 2553 0.60 0 0.00 0
Low 136,693 32.35 1 10.00 4

Moderate 165,176 39.09 3 30.00 10
High 79,187 18.74 0 0.00 0

Very High 38979 9.22 6 60.00 86

A-fuzzy

Very Low 2551 0.60 0 0.00 0
Low 125,175 29.62 1 10.00 5

Moderate 165,388 39.14 3 30.00 11
High 84,126 19.91 0 0.00 0

Very High 45,348 10.73 6 60.00 84
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hybrid models.

Based on the numerical values in Figure 6 and Table 6 for the R-index using 10 occurrence points,
the percentage of dispersal of these points in the very low to very high vulnerability class for each class
of A-OWA and A-fuzzy models was 86% and 84% respectively. The SRI result demonstrates the high
accuracy of the A-OWA hybrid model in showing seismic vulnerability sensitivity classes based on
available points. This validation step was performed to test the training databases.
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5. Results

5.1. Seismic Vulnerability Map

After constructing two training databases using the A-OWA and A-fuzzy hybrid models, the
LR model was run each time through one of the training sets using input values (standardized data).
For modeling seismic vulnerability in Sanandaj City, the LR model was implemented in classification
mode using IDRISI Selva software (version 18). We also used the classification option for output to
show the percentage of seismic vulnerability. Since in the LR model the dependent variable (training
points) must be binary (0 or 1), the training values were used as occurrence (1) and non-occurrence (0)
in model implementation. After ANN analysis, the seismic vulnerability map was prepared using the
LR model in five classes very low, low, moderate, high and very high vulnerability classes (Figure 7c,d).
The seismic vulnerability map was generated by the combined OWA-LR and fuzzy-LR methods and
the final maps were transferred to the ArcGIS software.
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5.2. Validation of the Seismic Susceptibility Maps

In this section, we describe the validation of A-OWA, A-fuzzy, OWA-LR and fuzzy-LR hybrid
models, which was performed to evaluate the accuracy of seismic vulnerability map in Sanandaj.
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Accordingly ROC curve have been used to investigate the accuracy of earthquake vulnerability maps
produced [54]. The results of the ROC curve analysis showed that the AUC for ensemble models
OWA_LR, fuzzy-LR, A-OWA, and A-fuzzy had values of 0.9, 0.85, 0.855 and 0.805, respectively (Figure 8
and Table 7). Therefore, the OWA-LR hybrid model with AUC = 0.9 was the most accurate in preparing
the earthquake vulnerability map in the studied logic.
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Table 7. ROC Curve Validation Results.

Hybrid Model AUC Std. Error
Confidence Interval (95%)

Lower Upper

A-fuzzy 0.805 0.0966 0.569 0.945
A-OWA 0.855 0.0830 0.627 0.970

Fuzzy-LR 0.850 0.0872 0.621 0.968
OWA-LR 0.9 0.0667 0.683 0.988

In order to validate the combined models of OWA-LR and fuzzy-LR, FR index was used. By
observing the logical relationship between the vulnerability points and the sensitivity classes, the
high values of FR in the very high class for each model indicate its high accuracy compared to the
other models (see Table 8). This distribution indicates that there is a positive relationship between the
percentage of presence of vulnerability points and the high susceptibility class.

Table 8. Seismic Susceptibility of Models Based on Frequency Ratio Index.

Hybrid
Model Class No. Pixels

in Domain
Percentage
of Domain No. of SV Percentage

of SV FR

Fuzzy-LR

Very Low 20,068 4.75 0 0 0
Low 113,849 26.94 2 10 2.20

Moderate 75,272 17.81 2 10 3.32
High 140,599 33.27 0 0 0.00

Very high 72,800 17.23 6 30 10.30

OWA-LR

Very Low 15,254 3.61 0 0 0.00
Low 169,861 40.20 1 5 0.74

Moderate 105,310 24.92 2 10 2.37
High 59,440 14.07 0 0 0.00

Very high 72,723 17.21 7 35 12

6. Discussion and Conclusions

Identifying areas prone to seismic vulnerability is one of the most important issues in crisis
management in cities. Although many methods and techniques have been developed to assess
earthquake hazards around the world so far, the goals of all these studies are to reduce the economic
losses and resulting losses. Researchers have previously focused on individual models for vulnerability,
assessing the location of natural disasters such as earthquakes. However, many hybrid models have
recently been used to model natural hazards [37,40,81]. The purpose of this study was to introduce
new hybrid learning models for seismic vulnerability mapping in Sanandaj City. In fact, the basis of
this study was the application of hybrid models and synthetic neural network training in combination
to predict the location of earthquake hazards. Fifteen factors were selected as effective factors in
measuring seismic vulnerability. The purpose of using hybrid models in this study was to provide
detailed analyses and eliminates some of the unreliable results in individual models. Artificial neural
networks can be used to provide classified maps in predicting natural disasters such as earthquakes
with good accuracy worldwide. After building the A-OWA and A-fuzzy hybrid models and creating
training databases, the fuzzy-LR and OWA-LR hybrid models were implemented. Comparing the
accuracy of hybrid models using the area under curve (AUC) and FR shown, the A-OWA hybrid model
with AUC = 0.855 is more accurate than the A-fuzzy hybrid model with AUC = 0.805.

In addition, by comparing the accuracy of hybrid models, the OWA-LR model with AUC = 0.9
and lower standard error (STD error = 0.0677) and FR = 12 index value in class of high sensitivity,
than the Fuzzy-LR hybrid model with AUC = 0.85 and FR = 10.30 has higher accuracy. However,
other models such as A-fuzzy and A-OWA have also been powerful models, with high predictive
accuracy of earthquake sensitivity in this study (Table 8). In principle, two types of hybrid models
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have been used to construct training data for integration with artificial neural networks in this study.
Therefore, the models used in the study may have lower accuracy when used with individual modes.
In this study, all hybrid models provided accurate predictions regarding the seismic vulnerability
assessment. Nevertheless, based on the results, the high accuracy of the hybrid A-OWA model and the
lower standard error (STD error = 0.083) increase the accuracy of the training database. Therefore, the
validation of the training database constructed and the final accuracy of the combined models by the
damaged points have provided reliable accuracy in this study.

According to the results of the OWA-LR hybrid model, as an optimal model, 44% of Sanandaj
city space is in the low and very low vulnerability spectrum and 25% is in the moderate vulnerability
spectrum. In addition, about 32% of the city area is in vulnerable classes and the highest vulnerability
is in urban areas 1 and 2. One of the main causes of seismic vulnerability in the north of Sanandaj
is physical and social criteria, such as worn-out urban texture, population density, number of floors,
distance from health centers, and so on. Meanwhile environmental factors such as proximity to
the fault are more influential in vulnerability to the south of the city (Zone 3). Therefore, attention
should be paid to the strengthening of worn-out urban texture and better access to health centers
in urban areas 1 and 2 of Sanandaj City. In addition, consideration of construction in open areas of
Zone 3 based on environmental factors (distance from the fault, lithology) will reduce the amenity of
earthquake damage.

In order to reduce the damage caused by an earthquake, an earthquake vulnerability map can
show suitable areas for building and housing and be used by planners. Human science and technology
at the present moment cannot cope with the earthquake and prevent it from happening, so man must
use his science and technology to adapt to environmental hazards. Due to access restrictions, it is
not possible to thoroughly investigate all the factors affecting the city′s vulnerability, but with field
reviews and expert opinions, this study attempted to address this issue with the highest number of
indicators. Therefore, in this study, three factors affecting earthquake vulnerability in the three physical,
environmental and social dimensions were used. Due to the limitations of each of the ANP and AHP
models in weight determination this study used a novel approach to order the average weight of both
models, to obtain the optimal weight of each agent. Finally, in order to improve the AHP and ANP
models and to build two hybrid models, the earthquake vulnerability map of Sanandaj was produced
by combining the weight of multi-criteria decision-making models AHP and ANP and combining this
with two fuzzy and OWA models. In addition, a new hybrid approach was used to train the LR neural
network model to overcome the limitations of access to seismic vulnerability points in Sanandaj city.
Thus, the A-OWA and A-fuzzy hybrid models, as the basis for building educational databases, can
overcome the limitations of data access in such studies. In order to ensure the accuracy of the hybrid
models, the seismic relative index validation method based on 10 vulnerability points recorded by the
researchers in this study in urban areas was used. As a result, by combining the logistic regression (LR)
model with MCDA-fuzzy and MCDA-OWA hybrid models, two maps using these models were also
prepared. After modeling, the accuracy of the first A-OWA and A-fuzzy hybrid models in building
the training database were compared with the accuracy of the new hybrid models (OWA-LR and
Fuzzy-LR) built through them. The results of the evaluation of the models used showed that the
A-OWA hybrid database and hybrid model OWA-LR with the Area under curve (AUC = 0.855 and
AUC = 0.9) are the most accurate models for mapping earthquake vulnerability. Therefore, it can be
concluded that the accuracy of the educational database used in the study influenced the accuracy of
the final model. Therefore, the new hybrid model OWA-LR is introduced as the most desirable model
in this study. According to this model, 17.3% of the study area is very highly vulnerable. Results of the
potential earthquake vulnerability map showed that Zone 1 and parts of Zone 2 are more sensitive to
the earthquake and more possible to be damaged in these areas than other zones. In Zones 1 and 2, in
addition to the influence of natural factors on seismic vulnerability, physical and human factors caused
by high population density and households, poor quality of building materials, low width of passages
have played a greater role. Although there are necessary and appropriate post-crisis service facilities
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such as hospitals and fire stations in these areas, inadequate performance of buildings and pedestrian
networks will hamper relief operations. Due to the distribution of high vulnerability locations in the
north and west of the city, it is necessary to consider these areas for earthquake resilience, earthquake
preparedness and risk reduction operations. In urban Zone 3 environmental factors such as proximity
to major faults and high slope also had more impact on seismic vulnerability. Also improvement in
crisis management projects in the area, by taking measures such as rebuilding buildings, preventing
non-regular construction, taking into account environmental conditions for the construction of houses
in Zone 3, building a fire station and an emergency medical center in the vulnerable areas of Sanandaj
city it is essential.
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