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Abstract: In this paper, we give some interesting identities and asymptotic formulas for one kind of
counting function, by studying the computational problems involving the symmetry sums of one
kind quadratic residues and quadratic non-residues mod p. The main methods we used are the
properties of the Legendre’s symbol mod p, and the estimate for character sums. As application,
we solve two open problems proposed by Zhiwei Sun.
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1. Introduction

Let p be an odd prime. For any integer a satisfying (a, p) = 1 (i.e., a co-prime to p), if there
exists an integer x such that the congruence x2 ≡ a mod p, then a is called a quadratic residue mod p.
Otherwise, a is called a quadratic non-residue mod p. In order to facilitate the study of the properties
of quadratic residues mod p, Legendre first introduced the characteristic function of the quadratic
residues mod p. The defination of Legendre’s symbol

(
∗
p

)
is that, for any integer a,

(
a
p

)
=


1, if a is a quadratic residues mod p;
−1, if a is a quadratic non-residues mod p;
0 if p | a.

We can find various interesting properties of the quadratic residues and Legendre’s symbol in
number theory books such as [1,2].

In fact, the properties of quadratic residues and Legendre’s symbol mod p are very meaningful
in number theory, which attract attention of many experts and scholars. Valuable research results
about them have been obtained. For example, Burgess [3,4] proved that the least quadratic non-residue
mod p is less than p

1
4+ε, where ε denotes any fixed positive number. The constant 1

4 has been improved
by some authors, see references [5–7].

Let p ≥ 3 be a prime satisfying p = 4k + 1. For any quadratic residue r mod p and quadratic
non-residue s mod p, it holds that (see [2]: Theorems 4–11)(

1
2

p−1

∑
a=1

(
a + ra

p

))2

+

(
1
2

p−1

∑
a=1

(
a + sa

p

))2

= p, (1)

where a is satisfied with the equation a · a ≡ 1 mod p.
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Some papers as regards quadratic residues and non-residues mod p can be found in
references [8–16].

Recently, Zhiwei Sun proposed two conjectures during his communication with us:
A. For any prime p ≥ 101, there is at least one integer a, such that a, a + a and a − a are all

quadratic residues mod p?
B. For any prime p ≥ 18, there is at least one quadratic non-residue a mod p, such that a + a and

a− a are quadratic residues mod p?
Zhiwei Sun carried out some numerical tests to support his conjectures but cannot prove them.

In this paper, we concern about problems involving quadratic residues and non-residues mod p.
We think Zhiwei Sun’s conjectures not only show the symmetry of quadratic residues and

non-residues but also reveal their profound distribution properties of the quadratic residues and
non-residues mod p.

As application of our results, we solve them thoroughly. We actually proved two stronger
conclusions. For narrative purposes, let p denote any odd prime S(p, 1) denote the number of all
integers 1 ≤ a ≤ p− 1 such that a, a + a, and a− a are all quadratic residues mod p, S(p,−1) denotes
the number of all integers 1 ≤ a ≤ p− 1 such that a is a quadratic non-residue mod p, a + a and a− a
are quadratic residues mod p.

2. Results

The notations are as above. We prove our main results using elementary methods, the estimate
for character sums, and the properties of Legendre’s symbol mod p.

Theorem 1. For any prime p with p ≡ 3 mod 4, we have the identities

S(p, 1) =

{
1
8 (p− 3) , if p ≡ 3 mod 8;
1
8 (p− 7) , if p ≡ 7 mod 8

and

S(p,−1) =

{
1
8 (p− 3) , if p ≡ 3 mod 8;
1
8 (p + 1) , if p ≡ 7 mod 8.

Theorem 2. For any prime p with p ≡ 1 mod 4, we have the asymptotic formulas

S(p, 1) =

{
1
8 (p− 3) + K(p, 1), if p ≡ 5 mod 8;
1
8 (p− 17) + K1(p, 1), if p ≡ 1 mod 8

and

S(p,−1) =

{
1
8 (p + 3) + K(p,−1), if p ≡ 5 mod 8;
1
8 (p + 3) + K1(p,−1), if p ≡ 1 mod 8,

where we have the estimates |K(p, 1)| ≤ 3
4 ·
√

p, |K1(p, 1)| ≤ 5
4 ·
√

p, |K(p,−1)| ≤ 3
4 ·
√

p and |K1(p,−1)| ≤
5
4 ·
√

p.

From Theorems 1 and 2 and some simple calculations, we can deduce the following two corollaries:

Corollary 1. For any prime p ≥ 101, there is at least one integer a, such that a, a + a and a − a are all
quadratic residues mod p.

Corollary 2. For any prime p ≥ 18, there is at least one quadratic non-residue a mod p, such that a + a and
a− a are quadratic residues mod p.
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Thus, we solved two problems proposed by professor Zhiwei Sun.

3. Several Lemmas

To complete the proofs of our main results, we need the following two basic lemmas.

Lemma 1. Let p be a prime with p ≡ 1 mod 4; then, for any integer k with (k, p) = 1, we have the identity

p−1

∑
a=1

(
a2 + k

p

)
= −1−

(
k
p

)
.

Proof of Lemma 1. Note that, for any integer a with (a, p) = 1, there is
(

a
p

)
=
(

a
p

)
. Using the

properties of the Legendre’s symbol and reduced residue system mod p, we have

p−1

∑
a=1

(
a2 + k

p

)
=

p−1

∑
a=1

(
1 +

(
a
p

))(
a + k

p

)
=

p−1

∑
a=1

(
a + k

p

)
+

p−1

∑
a=1

(
a2 + ak

p

)

=
p−1

∑
a=0

(
a + k

p

)
+

p−1

∑
a=1

(
1 + ak

p

)
−
(

k
p

)
=

p−1

∑
a=1

(
1 + a

p

)
−
(

k
p

)

=
p−1

∑
a=0

(
1 + a

p

)
−
(

k
p

)
− 1 = −1−

(
k
p

)
.

This proves Lemma 1.

Lemma 2. Let p be a prime with p ≡ 1 mod 4; then, we have the estimate∣∣∣∣∣p−1

∑
a=1

(
a± a

p

)∣∣∣∣∣ ≤ 2 · √p and

∣∣∣∣∣p−1

∑
a=1

(
a4 − 1

p

)(
a
p

)∣∣∣∣∣ ≤ 4 · √p.

Proof of Lemma 2. Let f (x) = x3 ± x; then, f (x) is not a complete square of an integral coefficient
polynomial g(x). Thus, from Weil’s important work [17], we have∣∣∣∣∣p−1

∑
a=1

(
a± a

p

)∣∣∣∣∣ =
∣∣∣∣∣p−1

∑
a=1

(
a± a

p

)(
a2

p

)∣∣∣∣∣ =
∣∣∣∣∣p−1

∑
a=1

(
a3 ± a

p

)∣∣∣∣∣ ≤ 2 · √p.

Of course, for any prime p = 4k + 1, note that 1 and −1 are two quadratic residues mod p,
so, from identity (1), we can also deduce the above estimate.

This proves the first estimate in Lemma 2.

Now, let χ2 =
(
∗
p

)
, e(y) = e2πiy, τ(χ) =

p−1

∑
a=1

χ(a)e
(

a
p

)
denote the classical Gauss sums.

Then, note that τ(χ2) =
√

p; from the properties of τ(χ), we have

p−1

∑
a=1

(
a
p

)(
a4 − 1

p

)
=

1
τ (χ2)

p−1

∑
a=1

(
a
p

) p−1

∑
b=1

(
b
p

)
e

(
b
(
a4 − 1

)
p

)

=
1
√

p

p−1

∑
b=1

(
b
p

)
e
(
−b
p

) p−1

∑
a=1

(
a
p

)
e
(

ba4

p

)
. (2)
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Let g denote a primitive root mod p, r = g
p−1

4 . It is clear that, if p = 8k + 5, then r is a quadratic
non-residue mod p and r4 ≡ 1 mod p. Thus, in this case, for any integer 1 ≤ b ≤ p− 1, we have

p−1

∑
a=1

(
a
p

)
e
(

ba4

p

)
=

p−1

∑
a=1

(
ar
p

)
e
(

b(ra)4

p

)
= −

p−1

∑
a=1

(
a
p

)
e
(

ba4

p

)
or

p−1

∑
a=1

(
a
p

)
e
(

ba4

p

)
= 0. (3)

If p = 8k + 1, then r is a quadratic residue mod p. Thus, in this case, there must be a character
χ1 mod p such that χ4

1 =
(
∗
p

)
. Let λ be a fourth-order character mod p (That is, λ4 = χ0 is the

principal character mod p); then, from the properties of the Gauss sums and character sums mod p,
we have

p−1

∑
a=1

(
a
p

)
e
(

ba4

p

)
=

p−1

∑
a=1

χ4
1(a)e

(
ba4

p

)
=

p−1

∑
a=1

χ1

(
a4
)

e
(

ba4

p

)

=
p−1

∑
a=1

χ1(a)
(

1 + λ(a) + λ2(a) + λ3(a)
)

e
(

ba
p

)
= χ1(b)τ (χ1)

+χ1(b)λ(b)τ (χ1λ) + χ1(b)λ
2
(b)τ

(
χ1λ2

)
+ χ1(b)λ

3
(b)τ

(
χ1λ3

)
. (4)

For any character χ mod p, note that the estimate |τ(χ)| ≤ √p; from (2) and (4), we have
the estimate ∣∣∣∣∣p−1

∑
a=1

(
a
p

)(
a4 − 1

p

)∣∣∣∣∣ =
∣∣∣∣∣ 1
√

p

p−1

∑
b=1

(
b
p

)
e
(
−b
p

) p−1

∑
a=1

(
a
p

)
e
(

ba4

p

)∣∣∣∣∣
≤ |τ (χ1) τ (χ1χ2)|√

p
+

∣∣τ (χ1λ) τ
(
χ1λχ2

)∣∣
√

p
+

∣∣∣τ (χ1λ2) τ
(

χ1λ
2
χ2

)∣∣∣
√

p

+

∣∣∣τ (χ1λ3) τ
(

χ1λ
3
χ2

)∣∣∣
√

p
≤ 4 · √p. (5)

Now, the second estimate in Lemma 2 follows from (2), (3) and (5).

4. Proofs of the Theorems

In this section, we shall complete the proofs of our main results.

Proof of Theorem 1. For any prime p with p ≡ 3 mod 4, note that
(
−1
p

)
= −1, so, for all integers

1 ≤ a ≤ p − 1, we have (a + a, p) = 1 or
(
a2 + 1, p

)
= 1. If a = 1 or p − 1, then a − a = 0,

and
(
a2 − 1, p

)
= 1 for all integers 2 ≤ a ≤ p− 2. Note that the identities

p−1

∑
a=1

(
a4 − 1

p

)
=

p−1

∑
a=1

(
1− a4

p

)
=

p−1

∑
a=1

(
1− a4

p

)
= −

p−1

∑
a=1

(
a4 − 1

p

)
= 0,

p−1

∑
a=1

(
a
p

)(
a2 − a2

p

)
=

p−1

∑
a=1

(
−a
p

)(
a2 − a2

p

)
= −

p−1

∑
a=1

(
a
p

)(
a2 − a2

p

)
= 0,

p−1

∑
a=1

(
a + a

p

)
=

p−1

∑
a=1

(
a− a

p

)
=

p−1

∑
a=1

(
−a− a

p

)
=

p−1

∑
a=1

(
−a + a

p

)
= 0,
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from Lemma 1, the definitions of S(p,1) and quadratic residues mod p we have

S(p, 1) =
1
8

p−2

∑
a=2

(
1 +

(
a
p

))(
1 +

(
a + a

p

))(
1 +

(
a− a

p

))

=
p− 3

8
+

1
8

p−2

∑
a=2

(
a
p

)
+

1
8

p−2

∑
a=2

(
a + a

p

)
+

1
8

p−2

∑
a=2

(
a− a

p

)
+

1
8

p−2

∑
a=2

(
a2 − a2

p

)

+
1
8

p−2

∑
a=2

(
a2 + 1

p

)
+

1
8

p−2

∑
a=2

(
a2 − 1

p

)
+

1
8

p−2

∑
a=2

(
a
p

)(
a2 − a2

p

)

=
p− 3

8
+

1
8

p−1

∑
a=1

(
a
p

)
+

1
8

p−1

∑
a=1

(
a + a

p

)
+

1
8

p−1

∑
a=1

(
a− a

p

)
− 1

4

(
2
p

)

+
1
8

p−1

∑
a=1

(
a2 + 1

p

)
+

1
8

p−1

∑
a=1

(
a2 − 1

p

)
+

1
8

p−1

∑
a=1

(
a
p

)(
a2 − a2

p

)
+

1
8

p−1

∑
a=1

(
a4 − 1

p

)

=
p− 3

8
− 1

4

(
2
p

)
− 1

8
+

1
8

p−1

∑
a=0

(
a2 + 1

p

)

=
1
8

(
p− 5− 2

(
2
p

))
=

{
1
8 (p− 3) , if p ≡ 3 mod 8;
1
8 (p− 7) , if p ≡ 7 mod 8.

(6)

Similarly, from the methods of proving (6), we have the computational formula

S(−1, p) =
1
8

p−2

∑
a=2

(
1−

(
a
p

))(
1 +

(
a + a

p

))(
1 +

(
a− a

p

))

=
1
4

p−2

∑
a=2

(
1 +

(
a + a

p

))(
1 +

(
a− a

p

))
− S(p, 1)

=
p− 3

4
+

1
4

p−1

∑
a=1

(
a + a

p

)
+

1
4

p−1

∑
a=1

(
a− a

p

)
+

1
4

p−1

∑
a=1

(
a2 − a2

p

)
− S(p, 1)

=
1
8

(
p− 1 + 2

(
2
p

))
=

{
1
8 (p− 3) , if p ≡ 3 mod 8;
1
8 (p + 1) , if p ≡ 7 mod 8.

(7)

It is clear that Theorem 1 follows from Formulas (6) and (7).

Proof of Theorem 2. If p ≡ 1 mod 4, then a + a ≡ 0 mod p has two solutions λ and −λ with λ 6= ±1.
Thus, note that

(
−1
p

)
= 1; from the definition of S(p, 1) and the properties of the Legendre’s symbol

mod p, we have

S(p, 1) =
1
8

p−1

∑
a=2

(a+a,p)=1

(
1 +

(
a
p

))(
1 +

(
a + a

p

))(
1 +

(
a− a

p

))

=
p− 5

8
+

1
8

p−2

∑
a=2

(
a
p

)
+

1
8

p−2

∑
a=2

(
a + a

p

)
+

1
8

p−2

∑
a=2

(
a− a

p

)
+

1
8

p−2

∑
a=2

(
a2 − a2

p

)

+
1
8

p−2

∑
a=2

(
a2 + 1

p

)
+

1
8

p−2

∑
a=2

(
a2 − 1

p

)
+

1
8

p−2

∑
a=2

(
a
p

)(
a2 − a2

p

)

−1
4

(
1 +

(
λ

p

))(
1 +

(
2λ

p

))
=

p− 7
8

+
1
8

p−1

∑
a=1

(
a + a

p

)
+

1
8

p−1

∑
a=1

(
a− a

p

)
− 1

2

(
2
p

)
+

1
8

p−1

∑
a=1

(
a2 + 1

p

)
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+
1
8

p−1

∑
a=1

(
a2 − 1

p

)
+

1
8

p−1

∑
a=1

(
a
p

)(
a2 − a2

p

)
+

1
8

p−1

∑
a=1

(
a4 − 1

p

)
−1

4

(
1 +

(
λ

p

)
+

(
2λ

p

)
+

(
2
p

))
=

p− 13
8

+
1
8

(
1 +

(
λ

p

)) p−1

∑
a=1

(
a + a

p

)
− 3

4

(
2
p

)
+

1
8

p−1

∑
a=1

(
a
p

)(
a4 − 1

p

)

−1
4

(
1 +

(
2
p

))(
λ

p

)
+

1
8

p−1

∑
a=1

(
1 +

(
a
p

))(
a2 − 1

p

)
. (8)

When p = 8k + 5, we have
(

2
p

)
=
(

λ
p

)
= −1; from Lemma 2, we have

∣∣∣∣∣p−1

∑
a=1

(
a
p

)(
a4 − 1

p

)∣∣∣∣∣+
∣∣∣∣∣p−1

∑
a=1

(
a
p

)(
a2 − 1

p

)∣∣∣∣∣
≤ 4 · √p +

∣∣∣∣∣p−1

∑
a=1

(
a− a

p

)∣∣∣∣∣ ≤ 6 · √p. (9)

Combining (8) and (9) and Lemma 1, we have the asymptotic formula

S(p, 1) =
1
8
(p− 9) + K(p, 1), (10)

where |K(p, 1)| ≤ 3
4 ·
√

p.

If p = 8k + 1, then
(

2
p

)
=
(

λ
p

)
= 1; from (8) and (9), Lemmas 1 and 2, we have the

asymptotic formula

S(p, 1) =
1
8
(p− 25) + K1(p, 1), (11)

where |K1(p, 1)| ≤ 5
4 ·
√

p.
On the other hand, note that the identity

S(p,−1) =
1
8

p−1

∑
a=2

(a+a,p)=1

(
1−

(
a
p

))(
1 +

(
a + a

p

))(
1 +

(
a− a

p

))

=
1
4

p−1

∑
a=2

(a+a,p)=1

(
1 +

(
a + a

p

))(
1 +

(
a− a

p

))
− S(p, 1)

=
p− 5

4
+

1
4

p−1

∑
a=1

(
a + a

p

)
+

1
4

p−1

∑
a=1

(
a− a

p

)
−
(

2
p

)
− 1

2

+
1
4

p−1

∑
a=1

(
a
p

)(
a2 − 1

p

)
− S(p, 1). (12)

From (8)–(12), we have the asymptotic formulas

S(p,−1) =

{
1
8 (p + 3) + K(p,−1), if p ≡ 5 mod 8;
1
8 (p + 3) + K1(p,−1), if p ≡ 1 mod 8,

(13)

where |K(p,−1)| ≤ 3
4 ·
√

p and |K1(p,−1)| ≤ 5
4 ·
√

p.
It is clear that Theorem 2 follows from asymptotic Formulas (10), (11) and (13).
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To prove Corollary 2, we only require S(p, 1) > 0. That is,

1
8
(p− 17) >

5
4
· √p.

This inequality implies that S(p, 1) > 0 for all primes p > 144.
It is easy to verify S(p, 1) > 0 for all 101 ≤ p ≤ 143 by simple calculation.
Thus, Zhiwei Sun’s problem A is correct for all primes p ≥ 101.
Similarly, we can also prove that the problem B is also correct for all primes p ≥ 18. This completes

the proofs of our all results.

5. Conclusions

The main results of this paper are two theorems. Theorem 1 establishes two exact formulas for
S(p, 1) and S(p,−1) with p = 4k + 3. Theorem 2 establishes two asymptotic formulas for S(p, 1) and
S(p,−1) with p = 4k + 1. At the same time, we give two sharp upper bound estimates for the error
terms. As application, we obtain two conclusions as follows:

i For any prime p ≥ 101, there is at least one integer a, such that a, a + a and a− a are all quadratic
residues mod p.

ii For any prime p ≥ 18, there is at least one quadratic non-residue a mod p, such that a + a and
a− a are quadratic residues mod p.

Therefore, we solved two problems proposed by Zhiwei Sun.
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