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Abstract: The Pythagorean fuzzy models deal with graphical and algebraic structures in case of vague
information related to membership and non-membership grades. Here, we use Pythagorean fuzzy sets
to generalize the concept of vector spaces and discuss their basis and dimensions. We also highlight
the concept of Pythagorean fuzzy matroids and examine some of their fundamental characteristics like
circuits, basis, dimensions, and rank functions. Additionally, we explore the concept of Pythagorean
fuzzy matroids in linear algebra, graph theory, and combinatorics. Finally, we demonstrate the use of
Pythagorean fuzzy matroids for minimizing the time taken by a salesman in delivering given products.

Keywords: pythagorean fuzzy vector space; pythagorean fuzzy matroid; pythagorean fuzzy bases;
pythagorean fuzzy rank function; pythagorean fuzzy cycle matroid

1. Introduction

The fields of graph theory, combinatorics, and fuzzy set theory are reckoned to be closely linked.
In the last few decades, these fields have achieved renewed attention from the research community,
where matroids and matroids theory has been the main focus of much dynamic research. This concept
of matroids was first presented by Whitney [1], where he developed a significant relationship for the
fundamental parameters of graph theory, combinatorics, and several other aspects of mathematics.
After the introduction of a new term, namely fuzzy logic by Zadeh [2] in 1965, the theory of fuzzy sets
became popular among many researchers. Atanassov [3] generalized fuzzy sets and offered the concept
of “intuitionistic fuzzy sets (IFSs)” by explaining the degree of membership and non-memberships
whose sum was not greater than 1. Later on, this idea of intuitionistic fuzzy sets was studied extensively
for the wide scope of applications in numerous fields [4–8]. A new type of fuzzy sets, known as
Pythagorean fuzzy sets (PFSs), proposed by Yager [9,10], are regarded as more general than IFSs and
are characterized into a membership and non-membership degree, with the square sum not greater
than 1.

The idea of “fuzzy vector spaces” was first presented by Katsaras and Liu [11]. It was further
developed by Lowen [12] who generalized normal linearly independence of vector space for fuzzy
vector space and discussed its finite dimensions. Lubczonok [13] contributed to this field by defining
dimensions of fuzzy vector spaces as infinity and explaining their properties. Later, many studies
investigated several properties of vector spaces based on several fuzzy set types [14–17].

A graph is of great significance in developing a better understanding of information and exhibiting
the relationship between objects. The fuzzification of graphs is a significant area of research with
increasing connections to the fields of pure and applied mathematics. Kauffman (1973) was the first
to put forward the concept of fuzzy graphs [18]. Later, some of the theoretical concepts regarding
paths and cycles in these graphs were characterized by Rosenfeld [19]. Presently, several advanced
modifications of graph theory have been simplified to model the uncertainties in reliability theory
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as well as graphical networking problems. Moreover, the study of fuzzy graphs based on different
sets, such as intuitionistic fuzzy graphs, intuitionistic fuzzy hypergraphs, m-polar fuzzy graphs,
edge-regular q-rung picture fuzzy graphs, Pythagorean fuzzy graphs (PFGs), and n Pythagorean fuzzy
graphs have been carried out by different researchers [20–26]. Recently, some new operations like
rejection, symmetric difference, residue product, and maximal product have also been proposed for
PFGs (see [27]). Goetschel and Voxman [28], proposed a new idea of fuzzy matroids and defined their
rank functions. They also discussed basis, circuits, and other concepts related to the fuzzy matroids
in their subsequent work [29,30]. With the passage of time, different kind of fuzzy matroids were
presented, based on varied definitions of fuzzy sets and their axioms [31–37]. Sarwar and Akram [38],
highlighted the idea of m-polar fuzzy matroids and also discussed their pivotal properties. However,
all fuzzy matroids are interpreted by the direct generalization of the axiomatic definition of crisp to
fuzzy matroids. For details about the notions used in this paper, the readers are referred to [27–29,39].

In this study, firstly, we define Pythagorean fuzzy vector spaces, their basis, and dimensions.
Then matroids are defined based on PFSs and are named as Pythagorean fuzzy matroids. Here,
Pythagorean fuzzy matroids are applied to linear algebra as well as graph theory, and combinatorics
with some of their basic properties. The notions of circuits, basis, dimensions, closure of Pythagorean
fuzzy matroids, and more importantly Pythagorean fuzzy rank function are also discussed here in
detail. Moreover, we supported our proposed idea by explaining the graphical view of a salesman
regarding his package delivery, using Pythagorean fuzzy matroids.

2. Preliminaries

This section presents basic notions related to PFSs, crisp matroids, and fuzzy matroids which are
useful for further advancement.

Definition 1 ([1]). Let X 6= φ be a finite universe with power set P(X). ForA ⊆ P(X), the pairM = (X,A)
is said to be a matroid if it satisfies the following conditions,

1. φ ∈ A;
2. If A1 ⊂ A2 and A2 ∈ A, then A1 ∈ A;
3. If A1, A2 ∈ A with | A2 |<| A1 |, then there exists A3 ∈ A such that A2 ⊂ A3 ⊆ A1 ∪ A2, where | A |

is a cardinality of the set A.

Here A is called the collection of independent sets inM.

The set A ∈ A is called maximal independent if there does not exist A′ in A such that A ⊂ A′.

Definition 2 ([1]). LetM = (X,A) be a matroid and B ∈ A. Then B is a base ofM if B is maximal in A
and B(M) is the set family of all bases.

Definition 3 ([1]). A subset C ⊆ X is called dependent if C is not in A. A minimal dependent set (inclusion
wise minimal in P(X) \ A) is called circuit ofM and C(M) is the collection of all circuits ofM.

Definition 4 ([2,40]). A fuzzy set υ in a universe X is defined as a membership function υ : X → [0, 1] i.e.,

υ = {〈x, υ(x)〉 | x ∈ X}.

Here, F(X) denotes the family of all fuzzy sets. The support and cardinality of a fuzzy set υ ∈ F(X)

defined as,

(i). supp(υ) = {x ∈ X | υ(x) > 0};
(ii). | υ |= ∑x∈X(υ(x)).

Definition 5 ([28]). Let F(X) be the family of all fuzzy sets on a finite universe X 6= φ and A ⊆ F(X).
The pair FM = (X,A) is called fuzzy matroid if it satisfies for any fuzzy sets υ1, υ2, υ3,
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1. φ ∈ A;
2. If υ1 ⊂ υ2 and υ2 ∈ A, then υ1 ∈ A, where υ1 ⊂ υ2 means υ1(x) < υ2(x), for all x ∈ X;
3. If υ1, υ2 ∈ A with | supp(υ1) |<| supp(υ2) |, then there exists υ3 ∈ A such that,

a. υ1 ⊂ υ3 ⊆ υ1 ∪ υ2, where (υ1 ∪ υ2)(x) = max{υ1(x), υ2(x)}, f or any x ∈ X.
b. m(υ3) ≥ min{m(υ1), m(υ2)} where m(υi) = min{υi(x) : x ∈ supp(υi)}, for any x ∈ X and i=1,2.

Here A is called the collection of independent fuzzy sets of FM.

Definition 6 ([9,10]). Let X be a finite universal set. Then the set of pairs ξ= (ξP, ξN) is called Pythagorean
fuzzy set or PFS and is defined by,

ξ = {〈x, ξP(x), ξN(x)〉 | x ∈ X}.

The degree of membership and non-membership of x ∈ X to ξ are given by the mappings ξP : X → [0, 1] and
ξN : X → [0, 1] respectively, satisfying 0 ≤ (ξP(x))2 + (ξN(x))2 ≤ 1. For each x ∈ X, the hesitation degree
=P (x), which is given as,

=P (x) =
√

1− (ξP(x))2 − (ξN(x))2.

We write P(X) for the family of all PFSs on X. For ξ ∈ P(X), mentioned above, one has the
following notations,

1. supp(ξ) = {x | x ∈ X, ξP(x) > 0, ξN(x) > 0}. Let ξ(x) = (ξP(x), ξN(x)), for any x ∈ X, then
ξ(x1) <

∗ ξ(x2) if and only if ξP(x1) < ξP(x2) and ξN(x1) > ξN(x2), for all x1, x2 ∈ X;
2. m(ξ) = min{ξ(x) | x ∈ supp(ξ)}, for the order relation <∗;
3. | ξ |= ∑x∈X(ξ

P(x), ξN(x)) = (∑x∈XξP(x), ∑x∈XξN(x)).

Definition 7 ([9,10]). Let ξ1 = {〈x, ξP
1 (x), ξN

1 (x)〉 | x ∈ X} and ξ2 = {〈x, ξP
2 (x), ξN

2 (x)〉 | x ∈ X} be the
two PFSs on X. The set operations defined on PFSs are as follows,

1. ξ1 ⊆ ξ2 i f and only i f ξP
1 (x) ≤ ξP

2 (x) and ξN
1 (x) ≥ ξN

2 (x), ∀x ∈ X;
2. ξ1 ∪ ξ2 = {〈x, max(ξP

1 (x), ξP
2 (x)), min(ξN

1 (x), ξN
2 (x))〉 | x ∈ X};

3. ξ1 ∩ ξ2 = {〈x, min(ξP
1 (x), ξP

2 (x)), max(ξN
1 (x), ξN

2 (x))〉 | x ∈ X}.

To be more precise, call z̃ = (ξP, ξN) Pythagorean fuzzy number (PFN) such that 0 ≤ (ξP)2 +

(ξN)2 ≤ 1 with ξP, ξN ∈ [0, 1]. Note that 0=(0,1) is the smallest Pythagorean fuzzy element and 1=(1,0)
is the largest Pythagorean fuzzy element.

Definition 8 ([39]). Let z̃ = (ξP, ξN) be a PFN. A score function S of z̃ is defined as,

S(z̃) = 1
2
(1 + (ξP)2 − (ξN)2), 0 ≤ S(z̃) ≤ 1.

Definition 9 ([39]). Let z̃ = (ξP, ξN) be a PFN. An accuracy functionH of z̃ is defined as,

H(z̃) = (ξP)2 + (ξN)2, 0 ≤ H(z̃) ≤ 1.

Definition 10 ([39]). Let z̃1 = (ξP
1 , ξN

1 ) and z̃2 = (ξP
2 , ξN

2 ) be two PFNs. The comparing relation between
two PFNs is defined as follows,

(i). If S(z̃1) < S(z̃2), then z̃1 < z̃2;
(ii). If S(z̃1) = S(z̃2), then

(a). IfH(z̃1) < H(z̃2), then z̃1 < z̃2,
(b). IfH(z̃1) = H(z̃2), then z̃1 = z̃2.
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Definition 11 ([27]). Let G = (V, E) be a graph. Consider V′ and E′ are two PFSs in V and E ⊆ V × V
respectively. The pair G′ = (V′, E′) is called Pythagorean fuzzy graph(PFG) and defined as,

ξP
E′(xy) ≤ min(ξP

V′(x), ξP
V′(y)), ξN

E′(xy) ≥ max(ξN
V′(x), ξN

V′(y)) where xy is an edge between x and y.

For each x, y ∈ V, the mappings ξP
E′ : V × V → [0, 1] and ξN

E′ : V × V → [0, 1] satisfies 0 ≤ (ξP
E′(xy))2 +

(ξN
E′(xy))2 ≤ 1.

3. Pythagorean Fuzzy Matroids

This section presents Pythagorean fuzzy vector spaces with basic notions such as basis and
dimensions. Here, we also define Pythagorean fuzzy matroids with their significant properties.

Definition 12. Let X 6= φ be a vector space over a field F. The PFS ξ = (ξP, ξN) in X is called Pythagorean
fuzzy vector space (PFVS) over X, if for a, b ∈ F and x, y ∈ X we have,

ξP(ax + by) ≥ min
{

ξP(x), ξP(y)
}

,

and
ξN(ax + by) ≤ max

{
ξN(x), ξN(y)

}
.

where mappings ξP : X → [0, 1] and ξN : X → [0, 1] satisfies 0 ≤ (ξP(x))2 + (ξN(x))2 ≤ 1. Then the pair
X̃ = (X, ξ) called the set of all PFVSs over X.

Definition 13. Let X̃ = (X, ξ) be a PFVS over F. The set of vectors {xk}n
k=1 is called a Pythagorean fuzzy

linearly independent in X̃ if,

1. {xk}n
k=1 is linearly independent;

2. For any {ak}n
k=1 ⊂ F we have,

ξP

(
n

∑
k=1

akxk

)
=

n
min
k=1

ξP(akxk),

and

ξN

(
n

∑
k=1

akxk

)
=

n
max
k=1

ξN(akxk).

Definition 14. A set of vectors B = {βk}n
k=1 is called Pythagorean fuzzy basis in X̃, if the following

conditions satisfies,

1. B is basis in X;
2. For any {ak}n

k=1 ⊂ F we have,

ξP

(
n

∑
k=1

akβk

)
=

n
min
k=1

ξP(akβk),

and

ξN

(
n

∑
k=1

akβk

)
=

n
max
k=1

ξN(akβk).

Definition 15. Let X̃ = (X, ξ) be a PFVS with basis B. Then the dimension of X̃ is defined as,

dimP(X̃) = sup
B is a basis o f X

(
∑

β∈B

(
ξP(β), ξN(β)

))
.
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Example 1. Let X = R2 be a vector space over the field R and let ξ = (ξP, ξN) be a PFS in X. For each
ω = (x, y) ∈ R2, mappings ξP : X → [0, 1] and ξN : X → [0, 1] are defined by,

ξP(ω) =

{
0.4, if x = 0 or y = 0,

0.6, otherwise.

and

ξN(ω) =

{
0.8, if x = 0 or y = 0,

0.7, otherwise.

respectively. To prove ξ is a PFVS over X, here we need to discuss some cases. The first case is trivial for both
ω1 = ω2 = (0, 0).

For the second case, consider two vectors ω1 = (x1, 0) and ω2 = (0, y2) from X, then we have
min{ξP(ω1), ξP(ω2)} = 0.4 and max{ξN(ω1), ξN(ω2)} = 0.8. For any a, b ∈ R,

ξP(aω1 + bω2) = ξP(ax1, by2), ξN(aω1 + bω2) = ξN(ax1, by2)

we have,

ξP(aω1 + bω2) =

{
0.6, if a = b = 0 or a 6= 0, b 6= 0,

0.4, if a=0 or b=0

and

ξN(aω1 + bω2) =

{
0.7, if a = b = 0 or a 6= 0, b 6= 0,

0.8, if a=0 or b=0.

Clearly, conditions of Definition 12 are satisfied.
Now consider two vectors ω1 = (x1, y1) and ω2 = (x2, y2) from X with non zero components, then

min{ξP(ω1), ξP(ω2)} = 0.6, and max{ξN(ω1), ξN(ω2)} = 0.7. For a, b ∈ R,

ξP(aω1 + bω2) = ξP(ax1 + bx2, ay1 + by2), ξN(aω1 + bω2) = ξN(ax1 + bx2, ay1 + by2).

We get ax1 + bx2 6= 0 and ay1 + by2 6= 0 if only one between a and b is zero and similarly when both are non-zero.
So, ξP(aω1 + bω2) = 0.6 = min

{
ξP(ω1), ξP(ω2)

}
and ξN(aω1 + bω2) = 0.7 = max

{
ξN(ω1), ξN(ω2)

}
.

Also if both a and b are zero, then we have the same values.
Now check for the basis of X̃, let B =

(
x1(

1
2 , 2

3 ), x2(
1
3 , 1

2 )
)

be a basis for X = R2. It stays just to prove
condition 2 of Definition 14. It is easy to see that, for all a1, a2 ∈ R we have,

ξP
(

a1

2
+

a2

3
,

2a1

3
+

a2

2

)
= 0.6 = min

{
ξP
(

a1

2
,

2a1

3

)
, ξP

( a2

3
,

a2

2
,
)}

and similarly,

ξN
(

a1

2
+

a2

3
,

2a1

3
+

a2

2

)
= 0.7 = max

{
ξN
(

a1

2
,

2a1

3

)
, ξN

( a2

3
,

a2

2

)}
.

Which implies that the set B is a Pythagorean fuzzy basis for X̃ = (X, ξ) and dimP(X̃) = (1.2, 1.4).

Proposition 1. Let X̃ = (X, ξ) be a PFVS. For each x, y ∈ X we have the following properties,

1. ξP(0, 0) = maxx∈X ξP(x) and ξN(0, 0) = minx∈X ξN(x);
2. ξP(ax) = ξP(x) and ξN(ax) = ξN(x), f or any a ∈ F, a 6= 0;
3. For x 6= y, if ξP(x) 6= ξP(y) and ξN(x) 6= ξN(y), we have

ξP(x + y) ≥ min{ξP(x), ξP(y)},
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and
ξN(x + y) ≤ max{ξN(x), ξN(y)}.

Proof.

1. Let X̃ = (X, ξ) be a PFVS and let x ∈ X. From Definition 12 we have,

ξP(0, 0) = ξP(0x) = ξP(0x + 0x)

≥ min(ξP(x), ξP(x))

= ξP(x).

Then ξP(0, 0) ≥ ξP(x) and hence ξP(0, 0) = maxx∈X ξP(x). Similarly, ξN(0, 0) = minx∈X ξN(x).
2. Consider any non zero element a ∈ F, then we have ξP(ax) ≥ ξP(x) (see Definition 12). On the

other hand, we replace x by ax and a by 1
a i.e.,

ξP(
1
a

. ax) ≥ ξP(ax).

Then ξP(ax) ≤ ξP(x) and hence ξP(ax) = ξP(x). Similarly, ξN(ax) = ξN(x).
3. Since from Definition 12 we have,

ξP(ax + by) ≥ min
{

ξP(x), ξP(y)
}

.

Consider a = 1, b = 1 and we obtain ξP(x + y) ≥ min{ξP(x), ξP(y)}. Similarly, ξN(x + y) ≤
max{ξN(x), ξN(y)}.

Remark 1. The membership values of every element of X can be determined from the basis elements of PFVSp
X̃ i.e., if x = ∑n

k=1 akβk, then directly from Proposition 1 we get,

ξP(x) = ξP

(
n

∑
k=1

akβk

)
=

n
min
k=1
{ξP (akβk)} =

n
min
k=1
{ξP (βk)},

and

ξN(x) = ξN

(
n

∑
k=1

akβk

)
=

n
min
k=1
{ξN (akβk)} =

n
min
k=1
{ξN (βk)}.

We currently go to the principal idea of this study about Pythagorean fuzzy matroids and their
properties. Firstly, we define Pythagorean fuzzy matroids and then investigate some basic notions.

Definition 16. Let X 6= φ be a finite universe and A ⊆ P(X) be a family of PFSs, which satisfies the
following conditions,

1. φ ∈ A;
2. ξ1 ∈ A, ξ2 ∈ P(X) and ξ2 ⊂ ξ1, then ξ2 ∈ A, where ξ2 ⊂ ξ1 means ξ2(y) < ξ1(y) that is, ξP

2 (y) <
ξP

1 (y) and ξN
2 (y) > ξN

1 (y), f or all y ∈ X;
3. If ξ1, ξ2 ∈ A and | supp(ξ1) |<| supp(ξ2) |, then there exists ξ3 ∈ A such that

a. ξ1 ⊂ ξ3 ⊆ ξ1 ∪ ξ2, where for any y ∈ X, (ξ1 ∪ ξ2)(y) = (sup{ξP
1 (y), ξP

2 (y)}, in f {ξN
1 (y), ξN

2 (y)}).
b. m(ξ3) ≥ in f {m(ξ1), m(ξ2)}, m(ξi) = in f {ξi(x)|x ∈ supp(ξi)}, for i ∈ {1, 2, 3}.

The pair PM(X) = (X,A) is called Pythagorean fuzzy matroid (PFM) on X and the set A is a collection of
independent PFSs. Sometimes we simply write PM in this research paper.

Proposition 2. Let X̃ = (X, ξ) be a PFVS of column vectors over the field R andA ⊆ P(X) such that column
vectors are Pythagorean fuzzy linearly independent in X̃. Then (X,A) is a PFM on X.



Symmetry 2020, 12, 423 7 of 18

Proof. Consider X̃ = (X, ξ) is a PFVS of column vectors over the field R and assume that X 6= φ

represents column labels of a Pythagorean fuzzy matrix, also ξx denotes a Pythagorean fuzzy submatrix
containing columns, labeled in X. It is defined as,

A = {ξx ∈ P(X) | columns vectors o f ξx are Pythagorean f uzzy linearly independent}.

For any ξx ∈ P(X), | ξx |= ∑m
i=1 sup{ξx(ai1), ξx(ai2), . . . , ξx(ain)}, and ξx = [aij]m×n. It follows from

Definition 12 and 16 that (X, A) is a PFM.

Note that the set ∂ ∈ P(X) such that ∂ /∈ A is called dependent PFS and family of dependent
PFSs in PM(X) denoted as Ar.

Definition 17. Let PM(X) = (X,A) be a PFM. The inclusion wise minimal dependent set ∂ ∈ Ar is called
the Pythagorean fuzzy circuit of PM and Ar(PM) is the collection of all circuits of PM i.e.,

Ar(PM) = {∂ | ∂ ∈ Ar, ∂ is minimal}.

Remark 2. The PFM can be obtained directly from Ar(PM) because the elements of A does not contain any
member of Ar(PM) (see Definition 17).

Consequently, the members of Ar(PM) have the following properties:

1. φ /∈ Ar(PM);
2. If ∂1 and ∂2 are Pythagorean fuzzy circuits and ∂1 ⊆ ∂2, then supp(∂1) = supp(∂2).

Definition 18. Let PM(X) = (X,A) be a PFM. A maximal independent set in a matroid PM(X) is called
Pythagorean fuzzy base or basis of PM(X) and B(PM) is the set of all Pythagorean fuzzy basis i.e.,

B(PM) = {ξ | ξ ∈ A, ξ is maximal independent }.

It can be seen easily that all the independent sets of a matroid are contained in some basis. However,
the following example illustrates that there exists PFMs with no independent set is contained in a
Pythagorean fuzzy basis.

Example 2. Let X = {1, 2, 3} and A = {ξ ∈ P(X) | ξ(3) < ( 1
2 , 1

2 )}. From Definition 16, the pair (X,A)
is a PFM. Let ξ ∈ A i.e.,

ξ = {(x1, y1), (x2, y2), (x3, y3)}, where (x3, y3) < (0.5, 0.5) with x3 < 0.5 and y3 > 0.5.

Then there exists ε < min{ 1
2 − x3, y3 − 1

2} and we have,

ξ ′ = {(x1 + ε, y1 − ε), (x2 + ε, y2 − ε), (x3 + ε, y3 − ε)},

such that ξ ′ ∈ A. Therefore, ξ ⊂ ξ ′ and hence PM = (X,A) is a PFM with no Pythagorean fuzzy basis.

Definition 19. Let PM = (X,A) be a PFM. The Pythagorean fuzzy rank function µr : P(X)→ [0, ∞)×
[0, ∞) is defined as,

µr(ζ) = sup{| ξ |: ξ ⊆ ζ and ξ ∈ A}.

where | ξ |= ∑y∈X
(
ξP(y), ξN(y)

)
=
(

∑y∈X ξP(y), ∑y∈X ξN(y)
)

. Moreover, | ξ1 |≤| ξ2 | iff ∑y∈X ξP
1 (y) ≤

∑y∈X ξP
2 (y) and ∑y∈X ξN

1 (y) ≥ ∑y∈X ξN
2 (y). Clearly, the Pythagorean fuzzy rank function has the

following properties:

1. If ξ ∈ P(X), then µr(ξ) ≤| ξ |;
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2. If ξ1, ξ2 ∈ P(X) and ξ1 ⊆ ξ2, then µr(ξ1) ≤ µr(ξ2);
3. If ξ ∈ A, then µr(ξ) =| ξ | .

The following proposition is the direct consequence of Example 2.

Proposition 3.

(i). The set of Pythagorean fuzzy basis B(PM) may or may not be empty;
(ii). The all Pythagorean fuzzy basis may or may not have the same cardinality.

Proof. It follows immediately from Definition 19.

Example 3.

1. An important trivial class of PFM is Pythagorean fuzzy cycle matroid PM(G′) associated with graph
G′(Definition 11). The set A is the family of edge subsets of E′(ξ ⊆ E′) with supp(ξ) not containing a
cycle of G′. In other words, the members of A are Pythagorean fuzzy subgraphs ξ of G′ whose supp(ξ) is
a forest and hence from Definition 16 PM(G′) is matroid.
Consider a graph G = (V, E) with vertex set V = {a, b, c, d} and edge set E = {e1 = ab, e2 = ba, e3 =

bc, e4 = cd, e5 = ad, e6 = bd} ⊆ V ×V. Let V′ and E′ be PFSs in V and E respectively and defined as,
V′ = {(a, 0.3, 0.5), (b, 0.6, 0.7), (c, 0.7, 0.3), (d, 0.5, 0.7)},
E′ = {(e1, 0.3, 0.7), (e2, 0.3, 0.7), (e3, 0.4, 0.8), (e4, 0.1, 0.7), (e5, 0.2, 0.9), (e6, 0.3, 0.8)}.
Then from Definition 11, G′ ia a PFG of G in Figure 1 and PM(G′) is a Pythagorean fuzzy cycle matroid.

(a,0.3,0.5) (b,0.6,0.7)

(c,0.7,0.3)(d,0.5,0.7)

(e1, 0.3, 0.7)

(e2, 0.3, 0.7)

(e
3

, 0
.4

, 0
.8

)

(e4, 0.1, 0.7)

(e
5

, 0
.2

,0
.9

)

(e6, 0.3, 0.8)

Figure 1. Pythagorean fuzzy multigraph.

A = {ξ | ξ ⊆ E′, supp(ξ) is not an edge set o f cycle}.
Ar(G′) = {{(e1, 0.3, 0.7), (e2, 0.3, 0.7)}, {(e1, 0.3, 0.7), (e5, 0.2, 0.9), (e6, 0.3, 0.8)},
{(e2, 0.3, 0.7), (e5, 0.2, 0.9), (e6, 0.3, 0.8)}, {(e3, 0.4, 0.8), (e4, 0.1, 0.7), (e6, 0.3, 0.8)},
{(e1, 0.3, 0.7), (e3, 0.4, 0.8), (e4, 0.1, 0.7), (e5, 0.2, 0.9)}, {(e2, 0.3, 0.7), (e3, 0.4, 0.8),
(e4, 0.1, 0.7), (e5, 0.2, 0.9)}}.
B(PM) = {{(e1, 0.3, 0.7), (e3, 0.4, 0.8), (e4, 0.1, 0.7)}, {(e1, 0.3, 0.7), (e3, 0.4, 0.8), (e5, 0.2, 0.9)},
{(e1, 0.3, 0.7), (e3, 0.4, 0.8), (e6, 0.3, 0.8)}, {(e1, 0.3, 0.7), (e4, 0.1, 0.7), (e5, 0.2, 0.9)}, {(e1, 0.3, 0.7),
(e4, 0.1, 0.7), (e6, 0.3, 0.8)}, {(e2, 0.3, 0.7), (e3, 0.4, 0.8), (e4, 0.1, 0.7)}, {(e2, 0.3, 0.7), (e3, 0.4, 0.8),
(e5, 0.2, 0.9)}, {(e2, 0.3, 0.7), (e3, 0.4, 0.8), (e6, 0.3, 0.8)}, {(e2, 0.3, 0.7), (e4, 0.1, 0.7), (e5, 0.2, 0.9)},
{(e2, 0.3, 0.7), (e4, 0.1, 0.7), (e6, 0.3, 0.8)}, {(e3, 0.4, 0.8), (e4, 0.1, 0.7), (e5, 0.2, 0.9)}, {(e3, 0.4, 0.8),
(e5, 0.2, 0.9), (e6, 0.3, 0.8)}, {(e4, 0.1, 0.7), (e5, 0.2, 0.9), (e6, 0.3, 0.8)}}.
For ξ = {(e3, 0.4, 0.6), (e4, 0.7, 0.1), (e5, 0.2, 0.3)}, µr(ξ) = (1.3, 1.0).

2. A very basic example for which we have is,

A = {ξ ∈ P(X) :| supp(ξ) |≤ k}.

and for any positive integer k with k ≤ n and | X |= n, the matroid is denoted by U k
n and called Pythagorean

fuzzy uniform matroid. The Pythagorean fuzzy circuits of U k
n are all PFSs of X with size k + 1 and bases

are exactly the sets of size k.



Symmetry 2020, 12, 423 9 of 18

For this, we consider the following Pythagorean fuzzy uniform matroid PM = U k
n with the set X =

{a1, a2, a3, a4} and A = {ξ ∈ P(X) :| supp(ξ) |≤ 2}. For all y ∈ X and for any ξ ∈ P(X), define
ξ(y) = λ(y) as,

λ(y) =


(0.3, 0.2), y = a1,
(0.4, 0.6) , y = a2,
(0.1, 0.3), y = a3,
(0.6, 0.3), y = a4.

A = {∅, {(a1, 0.3, 0.2)}, {(a2, 0.4, 0.6)}, {(a3, 0.1, 0.3)}, {(a4, 0.6, 0.3)}, {(a1, 0.3, 0.2), (a2, 0.4, 0.6)},
{(a1, 0.3, 0.4), (a3, 0.1, 0.3)}, {(a1, 0.3, 0.2), (a4, 0.6, 0.3)}, {(a2, 0.4, 0.6), (a3, 0.1, 0.3)}, {(a2, 0.4, 0.6),
(a4, 0.6, 0.3)}, {(a3, 0.1, 0.3), (a4, 0.6, 0.3)}}.
The family of all Pythagorean fuzzy circuits is,
Ar(PM) = {{(a1, 0.3, 0.2), (a2, 0.4, 0.6), (a3, 0.1, 0.3)}, {(a1, 0.3, 0.2), (a2, 0.4, 0.6), (a4, 0.6, 0.3)},
{(a1, 0.3, 0.2), (a3, 0.1, 0.3), (a4, 0.6, 0.3)}, {(a2, 0.4, 0.6), (a3, 0.1, 0.3), (a4, 0.6, 0.3)}}.
B(PM) = {{(a1, 0.3, 0.2), (a2, 0.4, 0.6)}, {(a1, 0.3, 0.4), (a3, 0.1, 0.3)}, {(a1, 0.3, 0.2), (a4, 0.6, 0.3)},
{(a2, 0.4, 0.6), (a3, 0.1, 0.3)}, {(a2, 0.4, 0.6), (a4, 0.6, 0.3)}, {(a3, 0.1, 0.3), (a4, 0.6, 0.3)}}.
For ξ = {(a1, 0.3, 0.2), (a2, 0.4, 0.6)}, µr(ξ) = (0.7, 0.8).

Proposition 4. If PM(G′) is a Pythagorean fuzzy cycle matroid andAr is the collection of Pythagorean fuzzy
edge subsets whose support is exactly the edge set of any cycle in G′. Then Ar is the collection of Pythagorean
fuzzy circuits of PM(G′).

Proof. This result is the direct consequence of Example 3 (Part 1).

Definition 20. Let l1 = (l′1, s′1), l2 = (l′2, s′2), . . . , ln = (l′n, s′n) be ‘n’ PFNs with order l′1 ≤ l′2 ≤′3≤ ... ≤ l′n
and s′1 ≥ s′2 ≥ s′3 ≥ ... ≥ s′n. Then for each 1 ≤ i ≤ n, the pair li = (l′i , s′i) satisfies the following condition,

li ≤ li+1 ⇐⇒ l′i ≤ l′i+1 and s′i ≥ s′i+1.

In this work, sometimes we use l instead of l = (l′, s′) and 0 ≤ l ≤ 1, where 0 = (0, 1) and 1 = (1, 0)
with S(0) = 0 and S(1) = 1 respectively.

Definition 21. If 0 < l ≤ 1, then l − cut for PFS ξ ∈ P(X) is defined as,

Al(ξ) = {x ∈ X : ξP(x) ≥ l′ and ξN(x) ≤ s′}.

Theorem 1. Let PM = (X,A) be a PFM, and for each 0 < l ≤ 1, define Al = {Al(ξ) | ξ ∈ A}. Then
Ml = (X,Al) is a matroid on X.

Proof. The first condition of Definition 1 is obvious. To prove condition 2, for any ξ1 ∈ A, assume that
Al(ξ1) ∈ Al and γ ⊆ Al(ξ1). Let ξ2 ∈ P(X) be a PFS, we define,

ξ2(y) =

{
(l′, s′) y ∈ γ,
(0, 1) otherwise.

where 0 < (l′)2 + (s′)2 ≤ 1 with S(l′, s′) > 0. This implies that ξ2 ⊆ ξ1, ξ2 ∈ A and Al(ξ2) =

γ, that givesγ ∈ Al . To prove condition 3, for any ξ1, ξ2 ∈ A, letAl(ξ1),Al(ξ2) ∈ Al with | Al(ξ1) |<|
Al(ξ2) |. Define ξ̂1 and ξ̂2 by,

ξ̂1(y) =

{
(l′, s′) y ∈ Al(ξ1),
(0, 1) otherwise.
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ξ̂2(y) =

{
(l′, s′) y ∈ Al(ξ2),
(0, 1) otherwise.

where 0 < (l′)2 + (s′)2 ≤ 1 with S(l′, s′) > 0. It is observed that | supp(ξ̂1) |<| supp(ξ̂2) |. Since
PM is a PFM and ξ̂1, ξ̂2 ∈ A, then there exists ω ∈ A such that ξ̂1 ⊂ ω ⊆ ξ̂1 ∪ ξ̂2 and m(ω) ≥
min{m( ˆ̂ξ1), m(ξ̂2)}. Since,

(ξ̂1 ∪ ξ̂2)(y) =

{
(l′, s′) y ∈ Al(ξ1) ∪Al(ξ2),
(0, 1) otherwise.

where 0 ≤ (l′)2 + (s′)2 ≤ 1 with S(l′, s′) > 0. Then there is a set Al(ξ3) with Al(ξ1) ⊂ Al(ξ3) ⊆
Al(ξ1) ∪Al(ξ2), and ω is defined as,

ω(y) =

{
(l′, s′) y ∈ Al(ξ3),
(0, 1) otherwise.

where 0 < (l′)2 + (s′)2 ≤ 1 with S(l′, s′) > 0. Since Al(ξ3) ∈ Al , henceMl is a matroid on X.

Example 4. From Example 3 (Part 2), consider a Pythagorean fuzzy uniform matroid PM = U k
n with the

collection of independent sets A.
Take l′ = 0.1 and s′ = 0.4 and we write l = (0.1, 0.4) then,

Al = {φ, {a1}, {a3}, {a4}, {a1, e3}, {a1, e4}, {a3, a4}}.

Clearly, the pair (X,Al) is a crisp matroid and follows that the pair (X,Al) is a crisp matroid for every
0 < l ≤ 1.

Corollary 1. Let PM = (X,A) be a PFM and let for each 0 < l ≤ 1,Ml = (X,Al) be the matroid on X
(Theorem 1). Since X is finite, therefore for finite number of matroids, we have a finite sequence 0 < l1 < l2 <

. . . < ln such that,

1. l0 = 0, ln ≤ 1,
2. Aα 6= φ i f 0 < α ≤ ln and Aα = φ i f α > ln,
3. If li < q, r < li+1, then Aq = Ar, 0 ≤ i ≤ n− 1,
4. If li < q < li+1 < r < li+2, then Aq ⊃ Ar, 0 ≤ i ≤ n− 2.

The sequence l0 = 0, l1, l2, . . . , ln is known as a fundamental sequence of PM. From observation 4
of Corollary 1, let l̄i = 1

2 (li−1 + li) f or 1 ≤ i ≤ n, thenMl̄1 ⊃Ml̄2 ⊃ . . . ⊃Ml̄n is called aM-induced
matroid sequence.

Theorem 2. Let (X,Al1), (X,Al2), . . . , (X,Aln) be a sequence of crisp matroids with finite sequence
0 = l0 < l1 < l2 < . . . < ln ≤ 1 . We assume that for each l, Al = Ali and Al = φ i f ln < l ≤ 1, where
li−1 < l ≤ li (i = 1, 2, ..., n), define,

Â = {ξ ∈ P(X) | Al(ξ) ∈ Al , 0 < l ≤ 1}.

Then (X, Â) is a PFM.

Proof. It is clear that φ ∈ Â. To prove the second condition of Definition 16, let ξ1 ∈ Â, ξ2 ∈
P(X), and ξ2 ⊆ ξ1. As seen from definition of Â, we have Al(ξ1) ∈ Al , for each l, Al(ξ2) ⊆ Al(ξ1)

and given that (X,Al) is a crisp matroid, so Al(ξ2) ∈ Al and gives ξ2 ∈ Â.
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Now, to prove condition 3 of Definition 16, for ξ1, ξ2 ∈ Âwith | supp(ξ2) |<| supp(ξ1) |we define
a PFN,

ζ = min{m(ξ1), m(ξ2)}, where m(ξi) = inf{ξi(x) : x ∈ supp(ξi)}.

Observe that supp(ξ1), supp(ξ2) ∈ Aζ . As Aζ is a collection of independent sets, then there is a subset
W ∈ Aζ , which is also independent, with supp(ξ2) ⊂W ⊆ supp(ξ1) ∪ supp(ξ2).

Let,

ξ3(y) =


ξ2(y) y ∈ supp(ξ2),
ζ y ∈W − {supp(ξ2)},
(0, 1) otherwise.

Then it is clear from Definition 16, PFS ξ3 satisfies third condition, and hence (X, Â) is a PFM.

Theorem 3. Let PM = (X,A) be a PFM and for each 0 < l ≤ 1, Ml = (X,Al) be a matroid (Theorem 1).
Let Â = {ξ ∈ P(X) | Al(ξ) ∈ Al , 0 < l ≤ 1}. Then A = Â.

Proof. It is easily seen that A ⊆ Â. To prove the other side Â ⊆ A, we establish the following steps.
Consider a non-zero Pythagorean fuzzy range {σ1, σ2, . . . , σr} of ξ ∈ Â, where σi = (σ∗i , σ′i ) and with
order σ1 > σ2 > . . . > σr > 0 (see Definition 20). For each 1 ≤ i ≤ r,Aσi (ξ) ∈ Aσi and from Corollary 1,
for 1 ≤ i ≤ r− 1,Aσi (ξ) ⊂ Aσi+1(ξ). Define φi ∈ P(X) for each 1 ≤ i ≤ r as

φi(y) =

{
(σ∗i , σ′i ) i f y ∈ Aσi (ξ),
(0, 1) otherwise.

where 0 < (σ∗i )
2 + (σ′i )

2 ≤ 1. As we have Aσi (ξ) ∈ Aσi , which implies that φi ∈ A with ∪r
i=1φi = ξ.

We use an induction method to prove ξ ∈ A and for each 1 ≤ i ≤ r, supp(φi) = {y1, y2, ..., yni}, assume
that supp(ξ) = {y1, y2, . . . , ynr}. Since φ1 ∈ A therefore, it is adequate to show that if for k− 1 < r,
∪k−1

i=1 φi ∈ A, then ∪k
i=1φi ∈ A, for each k < r. Define a set,

ψ1(y) =

{
(σ∗k , σ′k) i f y ∈ {y1, y2, ..., ynk−1+1},
(0, 1) otherwise.

It can be seen that for each 1 < i < k− 1, σk < σi therefore, ψ1 ⊂ φk which gives that ψ1 ∈ A. Define
Ψ1 ∈ P(X) by,

Ψ1(y) =

{
ξ(ynk−1+1) = (σ∗k , σ′k) i f y = ynk−1+1,

(0, 1) otherwise.

Since by induction method ∪k−1
i=1 φi ∈ A and supp(∪k−1

i=1 φi) = {y1, y2, ..., ynk−1}, m(∪k−1
i=1 φi) > σk

therefore, condition 3 of Definition 16 implies that ∪k−1
i=1 φi ∪Ψ1 ∈ A. If nk−1 + 1 = nk , then ∪k

i=1 φi ∈ A
and we are done. But on the other hand, if nk−1 + 1 < nk then define,

ψ2(y) =

{
(σ∗k , σ′k) i f y ∈ {y1, y2, ..., ynk−1+1, ynk−1+2},
(0, 1) otherwise.

Since for each 1 < i < k− 1, we have (σ∗k , σ′k) < (σ∗i , σ′i ) (see Definition 20), therefore ψ2 ⊂ φk which
implies that ψ2 ∈ A. Now define Ψ2 ∈ P(X) by,

Ψ2(y) =

{
ξ(ynk−1+2) = (σ∗k , σ′k) i f y = ynk−1+2,

(0, 1) otherwise.
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Since supp(∪k−1
i=1 φi ∪ Ψ1) = {y1, y2, ..., ynk−1+1}, m(∪k−1

i=1 φi ∪ Ψ1) > σk, therefore from Definition 16,
∪k−1

i=1 φi ∪Ψ1 ∪Ψ2 ∈ A. If nk−1 + 2 = nk then ∪k
i=1 φi ∈ A and it is finished. If nk−1 + 2 < nk then we

proceed with the induction procedure and get a PFS τj = ∪k−1
i=1 φi ∪Ψ1 ∪Ψ2∪, ...∪Ψn with τj = ∪k

i=1φi
which completes the proof.

Definition 22. Let l0, l1, . . . , ln be the fundamental sequence of a PFM. For any Pythagorean fuzzy pair
l, 0 < l ≤ 1, de f ine Āl = Al̄i where , li−1 < l ≤ li and l̄i = 1

2 (li−1 + li). If l > ln take Āl = Al . Define,

Ā = {ξ ∈ P(X) | Al(ξ) ∈ Āl , f or each 0 < l ≤ 1}.

Then PM = (X, Ā) is called closure of PM = (X,A).

It can be observed directly from Theorem 2 that PM is also PFM.

Definition 23. Let PM = (X,A) be a PFM with fundamental sequence l0 < l1 < l2 < . . . < ln ≤ 1 and
PM is called closed a matroid if, for li < l ≤ li+1(i = 1, 2, 3, .., n− 1) we have Al = Ali+1

.

Example 5. Let X = {1, 2, 3, 4} and assume that,

A1 = {φ, {1}, {2}, {4}, {2, 4}},
A 2

3
= {φ, {1}, {2}, {3}, {4}, {1, 4}, {2, 4}}, and

A 1
2
= {φ, {1}, {2}, {3}, {4}, {1, 4}, {2, 3}, {2, 4}}.

Then (X,A1), (X,A 2
3
), and (X,A 1

2
) are matroids respectively, such that A1 ⊂ A 2

3
⊂ A 1

2
. For each

l = (l′, s′) with 0 ≤ (l′)2 + (s′)2 ≤ 1 we define,

Al =

A 1
2

if (0, 1) < l ≤ ( 1
2 , 0),

A 2
3

if ( 1
2 , 1) < l ≤ ( 2

3 , 0),

A1 if ( 2
3 , 1) < l ≤ (1, 0).

and
A = {ξ ∈ P(X) | Al(ξ) ∈ Al , 0 < l ≤ 1}.

Hence the pair (X,A) is closed PFM having fundamental sequence l0 = (0, 1), l1 = ( 1
2 , 0), l2 = ( 2

3 , 0), l3 =

(1, 0).

Lemma 1. Let µr and µ̄r be Pythagorean fuzzy rank functions of PM and its closure PM respectively. Then
µ̄r = µr.

Proof. It follows from Definition 22 that A ⊆ Ā and for each ξ ∈ P(X), µr(ξ) ≤ µ̄r(ξ). To prove
µ̄r(ξ) ≤ µr(ξ), suppose that ξi ⊆ ξ, where ξi ∈ Ā. Consider a Pythagorean fuzzy range 0 < σ1 < σ2 <

. . . < σr of ξi. Let δ > 0 and define,

δ′ = min
{

δ, min
1≤j≤r−1

{1
2
(σj + σj+1)}

}
.

Let {l0, l1, . . . , ln} be the set of fundamental sequence of PM. We define,

ξi
′(x) =

{
ξi(x) i f ξi(x) /∈ {l0, l1, . . . , ln},
ξi(x)/δ′ i f ξi(x) ∈ {l0, l1, . . . , ln}.
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It is easy to see that ξi
′ ∈ A and from Definition 19, | ξ ′i |≤| ξi |≤| ξ ′i | +δ. Now, let {ξik} ⊆ Ā such

that for each k, ξik ⊆ ξ with limk→∞ | ξik |= µ̄r(ξ). So, there exists ξ ′ik ∈ A with | ξik |<| ξ ′ik | +δ. Then
we have,

µr(ξ) < sup{ξ ′ik}+ δ.

As δ > 0 is an arbitrary Pythagorean fuzzy number and hence, we have µ̄r(ξ) ≤ µr(ξ).

Suppose µr is a rank function for PM = (X,A) with fundamental sequence l0, l1, . . . , ln. We define
a new function µ̂r : P(X) → [0, ∞)2 which is submodular. This function helps to show that µr is
submodular. Here, we need a useful construction to define this new function.

For any ξ ∈ P(X), assume a Pythagorean fuzzy range 0 < σ1 < σ2 < . . . < σr. Consider a
common refinement γ1 < γ2 < . . . < γs of l′i s and σ′j s i.e.,

{γ1, γ2, . . . , γs} = {σ1, σ2, . . . , σr} ∪ {l1, l2, . . . , ln}.

Since, for each 0 ≤ i ≤ n,Mli = (X,Ali ) is a crisp matroid with the rank functionRi. There exists an
integer i for each k with li−1 ≤ γk−1 < γk ≤ li. We define for each correspondence pair (i, k),

ηk(ξ) =

{
(γk − γk−i)Ri(Aγk (ξ)) i f γk ≤ ln,
(0, 1) i f γk > ln.

In addition, for each 1 ≤ k ≤ s, and γk−1 ≤ ν ≤ γk we have Aν(ξ) = Aγk (ξ). Then a new mapping
µ̂r : P(X)→ [0, ∞)2 defined as,

µ̂r =
s

∑
k=1

ηk(ξ). (1)

Lemma 2. Let {γ1, γ2, . . . , γs} ⊆ {θ1, θ2, . . . , θp} with 0 < θ1 < θ2 < . . . < θp. The pair (i, t) is the
correspondence pair, for each 1 ≤ i ≤ n, if li−1 ≤ θt−1 < θt ≤ li. Let us define a function η∗t : P(X) → R2,
for each correspondence pair (i, t), as,

η∗t (ξ) =

{
(θt − θt−i)Ri(Aθt(ξ)) i f θt ≤ ln,
(0, 1) i f θt > ln.

Then ∑s
k=1 ηk(ξ) = ∑

p
t=1 η∗t (ξ).

Proof. The proof is straightforward from the construction of Equation (1).

Theorem 4. LetPM = (X,A) be a PFM with fundamental sequence l0, l1, . . . , ln and µ̂r defined by Equation (1).
The µ̂r is submodular.

Proof. Let ξ1 and ξ2 be two PFSs in P(X). Consider {σ1, σ2, . . . , σs} and {γ1, γ2, . . . , γt} be the non-zero
Pythagorean fuzzy ranges of ξ1 and ξ2, respectively. Take a common refinement as above,

{θ1, θ2, . . . , θu} = {σ1, σ2, . . . , σs} ∪ {γ1, γ2, . . . , γt} ∪ {l0, l1, . . . , ln}.
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From Lemma 2 we have µ̂r = ∑u
k=1 η∗k (ξ). Since for each k, θk−1 < θk which means θk − θk−1 > 0 and

from submodularity of the crisp rank function Ri,

u

∑
k=1

(θk − θk−1)Ri(Aθk (ξ1)) +
u

∑
k=1

(θk − θk−1)Ri(Aγk (ξ2))

≥
u

∑
k=1

(θk − θk−1)Ri(Aγk (ξ1) ∪ Aγk (ξ2))

+
u

∑
k=1

(θk − θk−1)Ri(Aγk (ξ1) ∩ Aγk (ξ)).

(2)

Which gives that µ̂r(ξ1) + µ̂r(ξ2) ≥ µ̂r(ξ1 ∪ ξ2) + µ̂r(ξ1 ∩ ξ2).

Theorem 5. Let PM = (X,A) be PFM, then µr = µ̂r.

Proof. Assume that PM is closed, then from Lemma 1, µr = µ̄r and µr(ξ1) 6= (0, 0) for some ξ1 ∈
P(X). Let ξ2 ∈ A with ξ2 ⊆ ξ1 such that µr(ξ1) =| ξ2 |. We need to show that µ̂r(ξ1) = µr(ξ1).

Assume a non-zero Pythagorean fuzzy range 0 < σ1 < σ2 < . . . < σr. Consider a common
refinement γ1 < γ2 < . . . < γs of l′i s and σ′j s i.e.,

{γ1, γ2, . . . , γs} = {σ1, σ2, . . . , σr} ∪ {l1, l2, . . . , ln}.

where l0 < l1 < . . . < ln is the fundamental sequence of PM and γij = lj, 1 ≤ j ≤ n. For each
0 < α ≤ 1, let,

Aξ1
α = {A ∈ Aα : A ⊆ Aα(ξ1)}, and α∗ = sup{α : Aξ1

α 6= φ}.

From Remark 1 and definition of refinement, for some i∗ = 1, 2, . . . , s we have α∗ = γi∗ , then the
following properties holds:

1. If γi∗ ≤ ln, µ̂r(ξ1) = ∑i∗
i=1 ηi(ξ1);

2. {ξ2(y) | y ∈ supp(ξ2), ξ2 ∈ A}, where 0 < ξ2(y) ≤ γi∗ .

Let | Aγi |= Ri(Aγi (ξ1)) where, for each i ≤ i∗ with Aγi ∈ A
ξ1
γ and li−1 ≤ γj−1 < γj ≤ li, Ri is

the rank ofMli = (X,Ali ). It can be seen easily that | Aγi∗ |<| Aγi∗−1 |< ... <| Aγ1 | . We define a
sequence Sγi∗ ⊆ Sγi∗−1 ⊆ .... ⊆ Sγ1 with Sγi∗ = Aγi∗ where,

Sγi∗−1 =
Sγi∗ if | Sγi∗ |=| Aγi∗−1 |,
A′γi∗−1

if | Sγi∗ |<| Aγi∗−1 | .

where A′γi∗−1
is defined as an independent set in (X,Aξ1

γi∗−1
) with | A′γi∗−1

|=| Aγi∗−1 | and Sγi∗ ⊆ A′γi∗−1
(Definition 16 (Part 3)). Continuing along this way we get sequence Sγi∗ ⊆ Sγi∗−1 ⊆ .... ⊆ Sγ1 with
following properties,

1. Sγi is maximal in (X,Aξ
γi ),

2. | Sγi |= Rj(Aγi (ξ1)).

Define ξ2i for 1 ≤ i ≤ i∗, as PFS with supp (ξ2i) = Sγi having non-zero Pythagorean fuzzy range {γi} .
Let ξ2 =

⋃i∗
i=1 ξ2i. From our assumption ξ2 ⊆ ξ1 and ξ2 ∈ Â and also from Theorem 3 we have,

|ξ2| =
i∗

∑
i=1

(γi − γi−1) |Sγi | .

It follows that µr (ξ1) = µ̂r (ξ1) .
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4. Application

The matroids have numerous applications in graph theory and combinatorics. We use PFMs as a
new tool to deal with vague information having a membership and non-membership grades. Here, we
present an algorithm about a salesman problem, which delineates our work for the PFM, particularly
the Pythagorean fuzzy cycle matroid.

Salesman Problem: A significant application is to take care of the salesman problem. An organization
director asked one of his salesmen to disperse his products in four different cities. The director gives
him a task to visit each city once but can choose any city as a starting point. Moreover, he can pass
through the way once while moving from one city to the next and to minimize the time and cost.

Consider n number of cities have a direct connection with each other. The procedure to choose a
visit of all the cities according to the given conditions is explained by the Algorithm 1.

Algorithm 1: Selection of an appropriate path

1. Input:
i. A finite set of given cities {C1, C2, ..., Cn} and a city represents a node of the graph.
ii. Edges between the cities according to the given Pythagorean fuzzy information, that is,
for each 1 ≤ i ≤ n(n−1)

2 , ei(ξ
P
i , ξN

i ) represents an edge between two cities.
2. Calculate the score function S(ei) =

1
2
(
1 + (ξP

i )
2 − (ξN

i )2).
3. Determine B =

{
αk = {eji}

n−1
i=1 | αk is maximal independent

}
, where

1 ≤ j ≤ n(n−1)
2 and k = 1, 2, .., nn−2.

4. Find B′ = B − {αk} such that αk
′s are not spanning paths and | B′ |= n!

2 .

5. Compute T =
{

ᾱk = ∑{S(eji )}
n−1
i=1

}|B′ |
k=1

where {eji}
n−1
i=1 ∈ B

′ and 1 ≤ j ≤ n(n−1)
2 .

6. Find min(T ).
Output: In the step 6, the path having minimum value is more convenient to visit all
the cities.

The set of four cities A = {Faisalabad, Lahore, Multan, Narowal} such that all the cities have a
direct connection between each other. Consider the Pythagorean fuzzy information given in Table 1.
The membership parts ξP

i of the Pythagorean fuzzy values represents the time taken and cost to go
from one city to another and non-membership parts ξN

i represents the chances of failure to retain the
time and cost due to various affected constraints. To start the procedure, we construct a Pythagorean
fuzzy graph in Figure 2 by using the information given in Table 1. The main point is to find a path such
that the salesman can visit all the cities once under the condition, which is the minimum time and cost.
Secondly, calculate the score function of each Pythagorean fuzzy information to the corresponding
edges as shown in Table 1. Then from Figure 2, we observe that the salesman needs at least three edges
p to visit all the cities once. So, the total number of possibilities with three edges are 20. But four edge
sets with length three are cycles that are not suitable and the remaining sixteen edge sets with length
three are maximal independent sets. We denote the set of maximal independent edge sets by B i.e., B =

{{e1, e2, e3}, {e1, e2, e4}, {e1, e2, e5}, {e1, e3, e4}, {e1, e3, e5}, {e1, e3, e6}, {e1, e4, e6}, {e1, e5, e6}, {e2, e3, e4},
{e2, e3, e6}, {e2, e4, e5}, {e2, e4, e6}, {e2, e5, e6}, {e3, e4, e5}, {e3, e5, e6}, {e4, e5, e6}}.
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Table 1. Pythagorean fuzzy information of connections between cities and their score functions.

Serial No. Connections ei(ξP
i , ξN

i ) S(ei) =
1
2 (1 + (ξP

i )
2− (ξN

i )2)

1 F ↔ L (0.3, 0.4) 0.465
2 F ↔ M (0.7, 0.5) 0.62
3 M↔ N (0.6, 0.7) 0.435
4 N ↔ L (0.8, 0.2) 0.8
5 F ↔ N (0.6, 0.2) 0.66
6 L↔ M (0.5, 0.7) 0.38

L F

MN

e1(0.3, 0.4)

e
2
(0

.7
, 

0
.5

)

e3(0.6, 0.7)

e
4
(0

.8
, 

0
.2

)
e5(0.6, 0.2)

e6(0
.5

, 0
.7

)

Figure 2. Pythagorean fuzzy graph.

Now, we delete four maximal independent edge sets from B which are not spanning paths
i.e., {e1, e2, e5}, {e1, e4, e6}, {e2, e3, e6}, and {e5, e4, e5}. We obtain a new set B′ of all spanning paths
with | B′ |= 12, we have, B′ = {{e1, e2, e3}, {e1, e2, e4}, {e1, e3, e4}, {e1, e3, e5}, {e1, e3, e6}, {e1, e5, e6},
{e2, e3, e4}, {e2, e4, e5}, {e2, e4, e6}, {e2, e5, e6}, {e3, e5, e6}, {e4, e5, e6}}.

Finally, we add the score functions of entries of the remaining 12 maximal independent sets and
select a minimum value i.e., 1.28 as shown in Table 2. The most convenient path to visit all the cities is
{F → L→ M→ N} or {N → M→ L→ F}.

Table 2. Spanning paths and sum of the score functions of their entries.

Serial No. αk = {eji}
n−1
i=1 ∑{S(eji)}

n−1
i=1 ᾱk

1 {e1, e2, e3} {0.465 + 0.62 + 0.435} 1.52
2 {e1, e2, e4} {0.465 + 0.62 + 0.8} 1.885
3 {e1, e3, e4} {0.465 + 0.435 + 0.8} 1.7
4 {e1, e3, e5} {0.465 + 0.435 + 0.66} 1.56
5 {e1, e3, e6} {0.465 + 0.435 + 0.38} 1.28
6 {e1, e5, e6} {0.465 + 0.66 + 0.38} 1.505
7 {e2, e3, e4} {0.62 + 0.435 + 0.8} 1.855
8 {e2, e4, e5} {0.62 + 0.8 + 0.66} 2.08
9 {e2, e4, e6} {0.62 + 0.8 + 0.38} 1.8

10 {e2, e5, e6} {0.62 + 0.66 + 0.38} 1.66
11 {e3, e5, e6} {0.435 + 0.66 + 0.38} 1.475
12 {e4, e5, e6} {0.8 + 0.66 + 0.38} 1.84

5. Comparison

In this section, to validate the practicality of PFMs, a comparative study is proposed with some
decision-making methods, including fuzzy matroids, intuitionistic fuzzy matroids, and m-polar
fuzzy matroids.

1. The PFMs are the generalization of intuitionistic fuzzy matroids. Thus, every IFS is a PFS but the
opposite is not true;

2. The Pythagorean fuzzy approach is a flexible approach relative to IFSs. Therefore, scope’s applicability
of different decision-making methods based on Pythagorean information is greater as compared
to intuitionistic fuzzy data;
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3. In the literature, the salesman problem has been discussed many times in crisp and fuzzy environments
but has not been solved using Pythagorean fuzzy data, which is an extended structure as compared
to intuitionistic fuzzy data;

4. The proposed algorithm is a new way to solve Pythagorean fuzzy information by using score
values and a concept of maximal independent sets. Also, this algorithm is generalized for any
number of nodes connecting to each others with the help of graph theory techniques.

6. Conclusions and Future Directions

The Pythagorean fuzzy data successfully deals with vague and inconsistent information. It also
offers more precise and compatible results when the data set is given in terms of membership and
non-membership grades. Herein, we have mainly defined the concept of PFVSs, PFMs, along with some
basic properties such as circuits, basis, dimensions, rank function, and closure of a PFMs. We have also
applied this idea in graph theory and combinatorics with examples including Pythagorean fuzzy cycle
matroid and Pythagorean fuzzy uniform matroid. Finally, we have presented a real life application
of the Pythagorean fuzzy cycle matroid regarding decision-making. In future, we plan to extend our
study to (1) q-rung orthopair fuzzy matroids, and (2) q-rung orthopair fuzzy soft matroids. This work
will result in generalized matroids based on successful concepts drawn form recent studies.
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