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Abstract: In the real world, multi-objective optimization problems always change over time in most
projects. Once the environment changes, the distribution of the optimal solutions would also be
changed in decision space. Sometimes, such change may obey the law of symmetry, i.e., the minimum
of the objective function in such environment is its maximum in another environment. In such cases,
the optimal solutions keep unchanged or vibrate in a small range. However, in most cases, they
do not obey the law of symmetry. In order to continue the search that maintains previous search
advantages in the changed environment, some prediction strategy would be used to predict the
operation position of the Pareto set. Because of this, the segment and multi-directional prediction
is proposed in this paper, which consists of three mechanisms. First, by segmenting the optimal
solutions set, the prediction about the changes in the distribution of the Pareto front can be ensured.
Second, by introducing the cloud theory, the distance error of direction prediction can be offset
effectively. Third, by using extra angle search, the angle error of prediction caused by the Pareto set
nonlinear variation can also be offset effectively. Finally, eight benchmark problems were used to
verify the performance of the proposed algorithm and compared algorithms. The results indicate
that the algorithm proposed in this paper has good convergence and distribution, as well as a quick
response ability to the changed environment.

Keywords: dynamic multi-objective optimization; cloud theory; linear search; dynamic multi-objective;
segment prediction

1. Introduction

Dynamic multi-objective optimization problems (DMOOPs) belong to a kind of time-varying
multi-objective optimization problems that is frequently encountered in the disciplines of science and
engineering. These problems not only display the conflict in optimization targets and high dimension
in solution space, but also have the time-varying characteristics in optimization objective, constraints,
and decision space [1–7]. As a result, the high conditionality of traditional algorithms makes it difficult
to meet requirements about large-scale, high timeliness and complex non-deterministic polynomial
(NP) hard problems. Compared with traditional algorithms, evolution methods have low requirements
in problem model, high efficiency, as well as embarrassingly parallel self-organizing and self-adaption,
so they have been widely used in the modern industry and scientific research field [8–10].

The easiest way is to keep the diversity of the population in evolution methods used to solve
DMOOPs. For example, DNSGA-II (dynamic multi-objective optimization and decision-making using
the modified NSGA-II) proposed by Deb [11] uses partial random initialization or random variation
in order to enhance the flexibility of the population in the changed environment. Moreover, three
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immigration schemes proposed by Azevedo are used to initialize the population in the changed
environment [12], as well as the immune clonal algorithm proposed by Shang Rong-hua [13]. Because
of the unknown variation trend for the dynamic environment, those methods can be formulated into
an attempted exploration method, which could ensure the superiority individual could be reserved in
the changed environment. The upside for these methods is that they can adapt to a variety of changing
environments, while their downside is that advantages of search before environmental change would
be difficult to keep after change. Thus, the characteristics of this kind of methods are their powerful
environmental adaptability and poor prediction accuracy.

Compared with the early methods, by maintaining the diversity of the population, historical
information from multiple environmental changes is used to predict the position of the population in
the next environmental change. That is, it is a type of statistical method to study the non-dominate
solution set. There are two solutions for this, namely the memory strategy and the prediction strategy.

The memory strategy predicts the position of the population in the next environmental change
by rules, which stores a lot of information about non-dominate solution set. The memory strategy is
suited to solve the dynamic problem of “short periodicity”. Here, “Periodicity” could be described by
the historical information, and “short” indicates less storage [14–16].

However, this has several drawbacks, namely large memory consumption and incorrect predictions
to solve time-varying nonlinear problems or more frequent environmental changes.

The prediction strategy uses historical information by statistical analysis and predicts the possible
direction of population migration using prediction theory (for example, linear regression, autoregressive
model, etc.), relative to the memory strategy. The FPS (feed-forward prediction strategy) proposed
by Hatzakis [17] is used to predict the migration locations of the non-dominant solution set, which
is based on an autoregressive model. Because of the incomplete statistical analysis about historical
information, the FPS is weak and ineffective. The PPS (population prediction strategy) proposed by
Zhou [18] uses an autoregressive model to predict the central migration locations of the population,
and shape estimation to migrate the whole population. Compared with the FPS, the PPS has mainly
two characteristics: (1) further treatment of historical information, which is used to predict the central
locations of the population; and (2) shape estimation, which is better than estimation one by one. All
of these methods based on autoregressive model have a fundamental disadvantage, namely, a large
amount of statistical information is needed to construct the model. Moreover, if the prediction error is
increasing repeatedly, the prediction error will be amplified. As a result, it is difficult to adjust when
the change rule of the environment is changed.

In short, the autoregressive model is widely used to solve regular change problems, but has
the problems of slow response speed and large amounts of statistical data. To compensate, the
diversity-keeping strategy is widely used. The DSS (directed search strategy) proposed by Wu [19] is
used to solve the dynamic problem, which uses both central population prediction and cross search.
Moreover, the method of population center prediction is a linear prediction. Compared with MLR
(multiple linear regression), it needs less historical information and has a better adaptive capacity
to the environment. For DMOOPS, a method proposed by Rong [20] is used to predict the changes,
which uses a linear model based on segmentation of the optimal front. Furthermore, the linear model
used by Li [21] is based on the prediction of the autoregressive model. It predicts the key points of
the optimal front, such as the boundary point, inflection point, etc. Also, the linear model is used by
Ruan [22] to predict the position of the optimal front. In maintaining population diversity, the changes
in population are predicted based on the extreme point of the previous generation [20]. However, it is
worth noting that the prediction error should always exist in the linear model when solving dynamic
problems (progressive increase, progressive decrease, or more complex changes). Therefore, all the
literature above employs the diversity keeping scheme to redress prediction errors.

According to the problem of remedying the shortage of the linear model, the segmentation cloud
predict strategy (SCPS) is proposed in this paper to improve the precision of prediction. First, the
searched optimal front would be segmented to divide the population. Second, a new linear prediction
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analysis is applied to each part of the population, which would draw on the thoughts of the cloud
model. According to the notion of uncertain time in the cloud model, entropy (or super entropy) would
be used to redress the prediction errors. Moreover, for some abrupt nonlinear changes in dynamic
problems, the extra angle search strategy is used to ensure the diversity of the population during the
prediction process.

The rest of this paper is organized as follows. The problem of dynamic multi-objective is described
in Section 2. The segmentation cloud prediction strategy is proposed in Section 3. Benchmark problems
are applied in Section 4 to show the performance of the proposed method, together with related
experimental analysis. Conclusions are provided in the last section.

2. Description of Dynamic Multi-Objective Problem

Considering the symmetry between minimum and maximum under symmetric environments,
the optimization problem can be normalized to a unit form. Generally, the DMOP could be described
as follows, {

min F(x, t) = ( f1(x, t), . . . , fm(x, t))T

s.t. g(v, t) ≤ 0, h(v, t) = 0
(1)

where the decision variables are x = (x1, . . . , xn)
T
∈ Ω, Ω is the n dimension decision space, and the

time variable is t. g(v, t) is the equality constraint, while h(v, t) is the inequality constraint. The objective
function vector is y = ( f1, . . . , fm)

T
∈ Λ, and Λ is the m dimension decision space. The evaluation

function F(x, t) :Ω × T→ Λ would define the mapping from decision space to object space [23].

Definition 1. (Pareto domination). For some time t, if individual p, it can as p ≺ q. If and only if
∀ i = {1, 2, . . . , m}: fi(p, t) ≤ fi(q, t), ∃ j = {1, 2, . . . , m}: f j(p, t) < f j(q, t).

Definition 2. (Pareto optimal solution set, PS). Let x ∈ Ω, which is the decision variable. PS could be defined
as follows,

PS : =
{
x ∈ Ω

∣∣∣¬∃y ∈ Ω, y ≺ x
}

(2)

Definition 3. (Pareto optimal front, PF). Let x ∈ Ω, which is the decision variable. PF could be defined
as follows,

PF : =
{
y = F(x, t)|x ∈ PS} (3)

3. Segmentation Cloud Prediction Strategy

First, the optimal front is segmented into multiple fragments, and the segmentation result can be
used to divide the population in the decision space. Second, certain individuals are chosen to search
the change directions of the optimal front by extra angle search strategy. At last, some add search is
conducted to search for the possible offset position of the optimal front by extra angle search.

3.1. Population Segmentation

For the DMOOPs, the optimal front might be deflected or deformed. In order to predict the
variation of PF more accurately, the PF is segmented into multiple fragments, and each fragment is
used to make predictions. Compared with the linear prediction for the population center, this method
would have a more accurate predictive ability of PF deformation and nonlinear migration.

First, for PF, a boundary point is chosen as the first key point, and the distance between this point
and the others is calculated. Then, the point with the maximum distance is the second key point. In the
same manner of choosing second key point, the third key point would be the point with maximum
sum of distance between the two key points, and so on for m+1 key points of the m objective functions
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(y = ( f1, . . . , fm)
T). As a result, each individual would choose the key point with minimum distance to

constitute m+1 fragments. Thus, populations would be segmented according to m+1 key points.
This method has simple computational properties and low complexity. The time complexity for

choosing each key point is O(N), where N is the population size. The computation complexity of this
method is O(N(m+2)/2)=O(Nm), while the computation complexity of the clustering method is O(N2).
Therefore, the proposed method of segmentation is simpler for population segmentation and has lower
computation complexity.

3.2. Directional Cloud Prediction Strategy

Suppose the population size is N, and the ith population Popi contains Ki individuals. The center
of sub-population Popi could be described as follows,

Ci(t) =
1∣∣∣Popi

∣∣∣ ∑
x∈Popi

x (4)

where Popi = {xi
1, . . . , xi

Ki
} are all the individuals of the population, the kth individual is xi

k =

(xi
k1, . . . , xi

kn), Ci(t) is the center position of population at time t, and |·| is the cardinality of set.
The predicted migration vector of the population di(t) and the predicted error of two migrations

∆(t) at time t+1 could be calculated as follows, based on the predictions of center positions of
populations at time t and time t-1. {

di(t) =Ci(t) −Ci(t− 1)
∆(t) =di(t) − di(t− 1)

(5)

The prediction of the migration position of the population is based on the normal cloud model.
Suppose the moving direction of the population is expectation, the Euclidean distance of motion
vector di(t) is entropy, and the deviation ∆(t) between two moving direction of the population is
super entropy. The normal cloud generator could be built by expectation, entropy, and super entropy.
First, we generate normal random vectors En′ ∼ N

(
∆(t), ‖∆(t)‖2/n2 whose expectation is ∆(t) and

standard deviation is ‖∆(t)‖/n, where En′ = (En1′, . . . , Enn ′). Then, we generate normal random
vectors v1 ∼ N

(
di

(
t),En′2

)
, whose expectation is di(t) and standard deviation is En′. Therefore, the

optimal solution position of predicted sub-population could be shown as follows,

y = x + v1 (6)

where the individual position before change is x, the direction of prediction is v1, and the individual
position of prediction after change is y.

Figure 1 shows the schematic diagram of directional cloud search, where the direction of directional
prediction is d(t), and the possible direction of cloud prediction is d′(t). That is, the main search
direction of directional cloud prediction is based on d(t), and it could search at a certain probability to
predict the position for the last offset direction ∆(t).
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3.3. Extra Angle Search

Directional cloud prediction contains the error compensation of linear prediction. However, this
is only effective for gradual and regular changes. If the dynamic problem shows inverted reciprocating
or non-gradual changes, the direction of directional cloud prediction would be opposite or vertical to
the change direction of the dynamic problem. To deal with this problem, the extra angle search strategy
would be purposed. That is, based on some random chosen individuals, it would search all possible
directions in a stated angle. Figure 2 shows the schematic diagram of the extra angle search strategy.
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First, the random vectors are constructed, perpendicular to di(t). Based on the random vector
r= (r1, . . . , rn) within the scope of [−1, 1], the jth dimension of r would be assigned as Equation (7),

r j = −
n∑

i, j

di(t)ri(t) (7)

The direction vector of extra angle search would be calculated as follows,

ei(t) =di(t)+
r
‖r‖
‖di(t)‖cot(θ) (8)

where θ is deflection angel, which means the possible range of search and can be calculated as

θi =
di(t− 1) · di(t− 2)
‖di(t− 1)‖ · ‖di(t− 2)‖

(9)

When the direction vector of extra angle search is determined, we use the normal cloud model the
to search the angular deviation of in all individuals. The normal random vector En∗ ∼ N

(
di

(
t),∆(t)2

)
is generated, whose expectation is ei(t) and standard deviation is ∆(t) and En* = (En1*, . . . , Enn*).
Then, the normal random vector v2 ∼ N

(
ei
(
t),En∗2

)
can be generated, whose expectation is ei(t)

and standard deviation is En∗. The position of prediction from the angular deviation search can be
calculated as follow,

y∗ = x + v2 (10)

where the position of individuals before change is x, the direction of prediction is v2, and the position
of prediction after change is y*.

3.4. Environmental Detection

The sensitivity of the environment is very important for the algorithm. The computational
efficiency of DMOP will decrease if the sensitivity is excessive or insufficient. Moreover, each DMOP
might not change at the same time, and a different objective function would have different amplitude
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of variation. Therefore, the change in values of each objective function would be overall considered
and normalized. The environmental sensitivity can be calculated as follows

ε(t) =

H∑
j=1
‖F

(
x j, t

)
− F

(
x j, t− 1

)
‖

H max
1≤i≤H

‖F(xi, t) − F(xi, t− 1)‖
. (11)

where H is the number of individuals is randomly selected for the population. Random selection
mainly reduces the computing cost for environment detection. The vector of the objective function for
individual x j at time t is F

(
x j, t

)
. Generally, the proportion of the population selected for environment

detection is 5%.

3.5. SCPS Framework

The SCPS will iterate over the basic algorithm framework of the dynamic multi-objective
evolutionary algorithm (MOEA). The basic algorithm framework of the dynamic MOEA (DMOEA)
mainly includes two parts: dynamic prediction and static MOEA search. This paper mainly focused on
the prediction performance of DMOEA, so the classical NSGA–II [24] can be selected as static MOEA
search. The SCPS is described in detail as below.

Input: When enough historical information cannot be collected, the proportion of the population
in random initialization is ζ, the proportion of directional prediction population is L1, the population
size is N, and the final time of environmental change is Tmax, t:= 0, d(t − 1):= 0.

Output: PS.
Step 1: Randomly initialize the population.
Step 2: According to Equation (11), detect if the environment changes or not. If change, turn to

Step 3; otherwise, turn to Step 8.
Step 3: If the value of d(t − 1) is 0, turn to Step 4; otherwise turn to Step 5.
Step 4: Randomly select ζ × N individuals to evolve, let d(t − 1) = d(t).
Step 5: According to Section 1, segment the population into m + 1 parts. Calculate the center

of the population by Equation (4), and calculate the moving direction of population at time t. Then
select L1 × N individuals with the binary tournament selection model and predict the position with the
cloud model.

Step 6: Select N×(1 − L1) individuals with the binary tournament selection model and calculate
the search vector of extra angle search for these individuals using Equation (7) to Equation (9).

Step 7: Boundary detect for new individuals.
Step 8: Calculate the non-dominated sort and crowding distance. Hold the first n individuals.
Step 9: Termination conditional judgment. If meet, turn to Step 10. Otherwise turn to Step 2.
Step 10: End, output the population PS.
One-step prediction (Step 5) and search of deflection angle (Step 6) would randomly select K1 × N

and N × (1 − K1) individuals to predict, respectively. As the predicted individuals might be beyond
the decision space, the Step 7 is to boundary detect new individuals, and revise the ones beyond.

yi =


xi if ai ≤ xi ≤ bi
0.5(ai + xi) if yi < ai
0.5(bi + xi) if yi > bi

(12)

where the ith dimension of individual x before prediction is xi, the ith dimension predicted position of
individual is yi, i = {1, . . . , n}, and ai and bi are the upper and lower bound of the ith dimension of the
decision variable, respectively.
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4. Experimental Analysis

4.1. Benchmark Problems

In [25], a new dynamic benchmark problem (generator) was constructed. Many dynamic
benchmark problems grown from this generator are related to various practical engineering problems
such as the greenhouse system, hydraulic and hydroelectric engineering, and line scheduling.

4.2. Parameter Setting

In order to test the searching performance of the proposed algorithm in dynamic problems more
effectively, the environmental change degree and frequentness of 3 groups were set as benchmark
problems, and (n, τ) respectively were (5,10), (10,10), (10,20). Multi-objective evolutionary algorithms
based on decomposition (MOEA/D) [26], PPS [18], multi-direction prediction (MDP) [20], and SCPS
were chosen as the comparing algorithms in the test. The population sizes of all the comparing
algorithms were 200 (N = 200), and the evolution termination time Tmax = 10.

(1) MOEA/D: T = 20.
(2) PPS: retain number of population center M = 23, and the model is p linear regression model,

p = 3.
(3) SCPS: ζ = 0.2, and the chosen individual number of prediction models K1 = 0.5N.

4.3. Metrics

There are numerous metrics for dynamic MOEA. The inverted generational distance (IGD) is
chosen as the evaluative criteria of each iteration, and the modified IGD (MIGD) is used to evaluate
each algorithm running several times in each benchmark problem [18].

IGD(P(t),P∗(t)) =

∑
x∈P∗

d(x, P(t))∣∣∣P∗(t)∣∣∣ (13)

where the equally distributed ideal PF solution set at time t is P∗(t), and the result of the algorithm
is P(t). The distance between individual x and solution set P(t) is d(x, P(t)) = min

a∈P(t)
‖F(x, t)−F(a, t)‖,

and the cardinality of set P∗(t) is
∣∣∣P∗(t)∣∣∣. The mean IGD of the algorithm, which would run in the

benchmark problem for a period of time is evaluated by MIGD. MIGD is defined as follows,

MIGD =
1
|T|

∑
t∈T

IGD(P(t),P∗(t)) (14)

where a group of discrete points in time is T, and the potential of T is |T|.

4.4. Test and Analysis

Table 1 shows the mean MIGD results of SCPS and other compared methods running 20 times in
eight benchmark problems. The smaller the value of MIGD, the higher the average prediction accuracy.
The optimal values are highlighted in bold.
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Table 1. Results of all the compared algorithms regarding MIGD.

Function n, τ SCPS MDP PSS MOEAD
Mean Value Variance Mean Value Variance Mean Value Variance Mean Value Variance

JY1
5,10 1.75 × 10−2 3.99 × 10−4 4.87 × 10−2 1.18 × 10−3 2.03 × 10−2 4.79 × 10−3 5.16 × 10−2 2.06 × 10−3

10,10 7.55 × 10−3 1.31 × 10−4 1.64 × 10−2 3.86 × 10−4 3.17 × 10−2 9.98 × 10−3 3.43 × 10−2 1.16 × 10−3

10,20 4.28 × 10−3 6.01 × 10−5 8.50 × 10−3 1.30 × 10−4 8.73 × 10−3 1.53 × 10−3 2.34 × 10−2 1.77 × 10−3

JY2
5,10 4.76 × 10−2 2.15 × 10−4 6.17 × 10−2 7.78 × 10−4 5.09 × 10−2 9.68 × 10−4 7.15 × 10−2 1.27 × 10−3

10,10 7.39 × 10−3 5.10 × 10−5 1.66 × 10−2 3.06 × 10−4 3.09 × 10−2 1.38 × 10−2 3.30 × 10−2 6.96 × 10−4

10,20 4.13 × 10−3 3.05 × 10−5 8.30 × 10−3 1.28 × 10−4 8.47 × 10−3 1.27 × 10−3 2.48 × 10−2 1.83 × 10−3

JY3
5,10 9.17 × 10−3 4.36 × 10−4 1.75 × 10−2 3.46 × 10−4 1.52 × 10−1 1.33 × 10−1 2.12 × 10−1 1.86 × 10−1

10,10 9.11 × 10−3 6.18 × 10−4 1.74 × 10−2 3.07 × 10−4 2.91 × 10−1 2.38 × 10−1 1.87 × 10−1 1.78 × 10−1

10,20 5.09 × 10−3 7.72 × 10−5 1.34 × 10−2 1.74 × 10−4 1.26 × 10−2 1.60 × 10−3 1.02 × 10−1 1.30 × 10−1

JY4
5,10 4.07 × 10−2 1.05 × 10−3 8.55 × 10−2 1.57 × 10−3 3.85 × 10−2 5.97 × 10−3 5.66 × 10−2 2.03 × 10−3

10,10 2.52 × 10−2 5.52 × 10−4 5.36 × 10−2 5.52 × 10−4 5.25 × 10−2 7.97 × 10−3 3.72 × 10−2 1.15 × 10−3

10,20 3.41 × 10−3 6.64 × 10−5 5.43 × 10−3 6.43 × 10−5 7.47 × 10−3 1.01 × 10−3 1.07 × 10−2 4.64 × 10−4

JY5
5,10 2.42 × 10−3 5.83 × 10−6 1.13 × 10−2 2.38 × 10−4 1.82 × 10−2 9.69 × 10−3 3.48 × 10−2 6.36 × 10−4

10,10 2.42 × 10−3 3.29 × 10−6 1.10 × 10−2 2.06 × 10−4 2.11 × 10−2 1.31 × 10−2 2.46 × 10−2 1.03 × 10−3

10,20 2.41 × 10−3 7.04 × 10−6 6.03 × 10−3 5.48 × 10−5 7.41 × 10−3 2.17 × 10−3 2.06 × 10−2 1.52 × 10−4

JY6
5,10 2.11 6.81 × 10−2 5.90 1.65 × 10−1 2.97 1.96 × 10−1 3.35 1.18 × 10−1

10,10 1.61 6.26 × 10−2 3.34 6.99 × 10−2 3.23 3.76 × 10−1 2.04 1.25 × 10−1

10,20 3.88 × 10−1 1.34 × 10−2 1.18 3.45 × 10−2 7.97 × 10−1 8.59 × 10−2 5.36 × 10−1 1.49 × 10−2

JY7
5,10 1.42 1.26 × 10−1 16.6 1.68 89.8 64.7 20.51 3.76
10,10 2.06 × 10−1 9.54 × 10−2 4.33 × 10−1 5.27 × 10−2 83.9 67.6 8.38 × 10−1 5.71 × 10−1

10,20 8.55 × 10−2 4.93 × 10−3 2.40 × 10−1 2.10 × 10−2 5.80 7.09 3.35 × 10−1 8.29 × 10−2

JY8
5,10 3.34 × 10−3 4.25 × 10−5 1.12 × 10−2 2.12 × 10−4 1.93 × 10−2 1.38 × 10−2 6.31 × 10−2 3.93 × 10−3

10,10 3.17 × 10−3 3.45 × 10−5 1.13 × 10−2 2.23 × 10−4 2.86 × 10−2 1.44 × 10−2 6.34 × 10−2 1.92 × 10−2

10,20 2.77 × 10−3 2.06 × 10−5 6.72 × 10−3 1.19 × 10−4 7.57 × 10−3 1.93 × 10−3 4.21 × 10−2 1.47 × 10−3

SCPS has strong searching ability for the eight dynamic test problems. Only on the test problem
JY4 ((n, τ) = (5, 10) ), the PPS method is slightly better than the SCPS. For all the test problems, four
algorithms have strong searching ability on JY1-JY5 as well as JY8. Their MIGDs reached the 10−2

magnitude. That is, all these four algorithms have good ability to track the dynamic front.
JY6 is a Type III dynamic problem as shown in [25], where the multimodal PS and PD change

over time, and the distribution of the optimal solution would be also in a constant process of change.
Although the SCPS would be better than the other three algorithms on this problem, its MIGD
is unsatisfactory.

JY7 is also a multimodal problem, and its PF shape is in a constant process of change. As the
number of local optimum is fixed, JY7 is relatively simpler than JY6. Thus, the four algorithms running
in JY7 are better than that in JY6. According to the standard deviation of MIGD, SCPS has better
stability than the other 3 algorithms and a higher solution.

In order to analyze the dynamic searching ability of the four algorithms, eight group benchmark
problems were chosen, and under the condition that (n, τ) = (10, 20) , the time-varying characteristic
of IGD of algorithms was analyzed. Figure 3 shows the timely varying curves of IGD of the four
algorithms running in the benchmark problem. Each time the environment changes, the smaller the
IGD value is, and the more accurate the prediction of the algorithm.

It is indicted that the MOEA/D has a good searching performance in the static problem, but it
could not dynamically predict. Thus, MOEA/D has an inadequate capability to solve the dynamic
problem in bounded time. For the problems JY2 and JY5, PPS is better than MDP. However, for the
problems JY7 and JY8, MDP is better than PPS. Especially, for JY7, large errors of the prediction might
exist and keep increasing in PPS. In all eight benchmark problems, SCPS is better than the other
three algorithms.
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In order to further analyze the experimental results, the distribution of predicted results at five
moments was compared for JY4, JY5, JY7, and JY8. Figure 4 shows the distribution of predicted results
at five moments for the four algorithms running in four benchmark problems.
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Figure 4. Scatter distribution of prediction population.

The discrete area of JY4 is time-varying. And the concavity of PF in JY5 changes over time.
Although the PF changes of these two benchmark problems are different, they are both the unimodal
problem. Thus, their results have good distribution and convergence. The PF shape of JY7 and JY8
would be changed all the time, so optimization is rather difficult. The points shown in Figure 4 are the
non-dominant solution set of the population, and the number of these points reflects the performance
of the algorithm. MDP and PPS have good distribution and convergence at the first moment, but the
distribution of non-dominant solution set for these two algorithms is not satisfactory at the next four
moments. That is, some points are far from the true PF. In comparison to the other three algorithms,
SCPS performs particularly well in distribution and convergence. Moreover, in JY8, all four algorithms
have good distribution, but SCPS performs better than the others in convergence.

According to the scatter distribution, SCPS has better searching performance. Its population
segment provides an accurate shape change prediction. The cloud prediction strategy is the basic
prediction strategy, and extra angle search is the main prediction angle error compensation.

Depending on the results of the IGD mean, IGD change with iterations, and scatter prediction
results, the proposed algorithm is stable and has good predictive ability. Its prediction is more
reasonable and closer to the population in the last moment.
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5. Conclusions

The segment cloud prediction this paper proposed divides the population on the basis of the
distance of PF. According to the results of center linear prediction for each population, the center
position would be determined. Moreover, the population distribution is predicted by cloud theory.
The angle error caused by the linear prediction process is decreased considerably by using extra angle
search. The simulation results show that this algorithm has a better convergence and distribution, as
well as environmental suitability. However, it cannot be denied that PF segmentation and cloud theory
may not perform so well in the face of more difficult dynamic prediction problems, such as a mutation
mapping relation between PF and PS. The high-dimensional dynamic multi-objective optimization
problem is also an important research target, in which the effectiveness of Euclidean distance is also
worth discussing. Future work can focus on these aspects.

Author Contributions: Conceptualization, P.N. and J.G.; methodology, Y.S.; writing—original draft preparation,
W.Q.; writing—review and editing, Q.X. All authors have read and agreed to the published version of
the manuscript.
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