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Abstract: The main objective of this article is to propose a new method that would extend Popov’s
extragradient method by changing two natural projections with two convex optimization problems.
We also show the weak convergence of our designed method by taking mild assumptions on a cost
bifunction. The method is evaluating only one value of the bifunction per iteration and it is uses an
explicit formula for identifying the appropriate stepsize parameter for each iteration. The variable
stepsize is going to be effective for enhancing iterative algorithm performance. The variable stepsize is
updating for each iteration based on the previous iterations. After numerical examples, we conclude
that the effect of the inertial term and variable stepsize has a significant improvement over the
processing time and number of iterations.

Keywords: subgradient extragradient method; equilibrium problem; pseudomonotone equilibrium
problems; lipschitz-type conditions; weak convergence; variational inequality problems

1. Introduction

Let C to be a nonempty convex, closed subset of a Hilbert space E and f : E× E → R be a
bifunction with f (u, u) = 0 for each u ∈ C. The equilibrium problem for f upon C is defined as follows:

Find p∗ ∈ C such that f (p∗, y) ≥ 0, ∀ y ∈ C. (1)
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The equilibrium problem (EP) has many mathematical problems as a particular case, for example,
the fixed point problems, complementarity problems, the variational inequality problems (VIP),
the minimization problems, Nash equilibrium of noncooperative games, saddle point problems and
problem of vector minimization (see [1–4]). The unique formulation of an equilibrium problem was
specifically defined in 1992 by Muu and Oettli [5] and further developed by Blum and Oettli [1].
An equilibrium problem is also known as the Ky Fan inequality problem. Fan [6] presents a review and
gives specific conditions on a bifunction for the existence of an equilibrium point. Many researchers
have provided and generalized many results corresponding to the existence of a solution for the
equilibrium problem (see [7–10]). A considerable number of methods are the earliest set up over the
last few years concentrating on the different equilibrium problem classes and other particular forms of
an equilibrium problem in abstract spaces (see [11–29]).

The Korpelevich and Antipin's extragradient method [30,31] are efficient two-step methods.
Flam [12,20] employed the auxiliary problem principle to set up the extragradient method for the
monotone equilibrium problems. The consideration on the extragradient method is to figure out two
natural projections on C to achieve the next iteration. If the computing of a projection on a feasible set C
is hard to compute, it is a challenge to solve two minimal distance problems for the next iteration, which
may have an effect on method′s performance and efficiency. In order to overcome it, Censor initiated
a subgradient extragradient method [32] where the second projection is replaced by a half-plane
projection that can be computed effectively. Iterative sequences set up with the above-mentioned
extragradient-like methods need to make use of a certain stepsize constant based on the Lipschitz-type
constants of a cost bifunction. The prior knowledge about these constant imposes some restrictions on
developing an iterative sequence because these Lipschitz-type constants are normally not known or
hard to compute.

In 2016, Lyashko et al. [33] developed an extragradient method for solving pseudomonotone
equilibrium problems in a real Hilbert space. It is required to solve two optimization problems
on a closed convex set for each next iteration, with a reasonable fixed stepsize depends upon on
the Lipschitz-type constants. The superiority of the Lyashko et al. [33] method compared to the
Tran et al. [20] extragradient method is that the value of the bifunction f is to determine only once for
each iteration. Inertial-type methods are based on the discrete variant of a second-order dissipative
dynamical system. In order to handle numerically smooth convex minimization problem, Polyak [34]
proposed an iterative scheme that would require inertial extrapolation as a boost ingredient to improve
the convergence rate of the iterative sequence. The inertial method is commonly a two-step iterative
scheme and the next iteration is computed by use of previous two iterations and may be pointed out
to as a method of pacing up the iterative sequence (see [34,35]). In the case of equilibrium problems,
Moudafi established the second-order differential proximal method [36]. These inertial methods are
employed to accelerate the iterative process for the desired solution. Numerical studies indicate that
inertial effects generally enhance the performance of the method in terms of the number of iterations
and execution time in this context. There are many methods established for the different classes of
variational inequality problems (for more details see [37–41]).

In this study, we considered Lyashko et al. [33] and Liu et al. [42] extragradient methods and
present its improvement by employing an inertial scheme. We also improved the stepsize to its
second step. The stepsize was not fixed in our proposed method, but the stepsize was set up by an
explicit formula based on some previous iterations. We formulated a weak convergence theorem for our
proposed method for dealing with the problems of equilibriums involving pseudomonotone bifunction
within specific conditions. We also examined how our results are linked to variational inequality
problems. Apart from this, we considered the well-known Nash–Cournot equilibrium model as a test
problem to support the validity of our results. Some applications for variational inequality problems
were considered and other numerical examples were explained to back the appropriateness of our
designed results.
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The rest of the article is set up as follows: In Section 2 we give a few definitions and significant
results to be utilized in this paper. Section 3 includes our first algorithm involving pseudomonotone
bifunction, and gives the weak convergence result. Section 4 illustrates some application of our
results in variational inequality problems. Section 5 sets out numerical examinations to describe
numerical performance.

2. Preliminaries

In this part we cover some relevant lemmas, definitions and other notions that will be employed
throughout the convergence analysis and numerical part. The notion 〈., .〉 and ‖.‖ presents for the inner
product and norm on the Hilbert space E. Let G : E→ E be a well-defined operator and VI(G, C) is
the solution set of a variational inequality problem corresponding operator G over the set C. Moreover
EP( f , C) stands for the solution set of an equilibrium problem over the set C and p∗ is any arbitrary
element of EP( f , C) or VI(G, C).

Let g : C → R be a convex function with subdifferential of g at u ∈ C defined as:

∂g(u) = {z ∈ E : g(v)− g(u) ≥ 〈z, v− u〉, ∀ v ∈ C}.

A normal cone of C at u ∈ C is given as

NC(u) = {z ∈ E : 〈z, v− u〉 ≤ 0, ∀ v ∈ C}.

We consider various conceptions of a bifunction monotonicity (see [1,43] for details).

Definition 1. The bifunction f : E×E→ R on C for γ > 0 is

(i) strongly monotone if f (u, v) + f (v, u) ≤ −γ‖u− v‖2, ∀ u, v ∈ C;
(ii) monotone if f (u, v) + f (v, u) ≤ 0, ∀ u, v ∈ C;
(iii) strongly pseudomonotone if f (u, v) ≥ 0 =⇒ f (v, u) ≤ −γ‖u− v‖2, ∀ u, v ∈ C;
(iv) pseudomonotone if f (u, v) ≥ 0 =⇒ f (v, u) ≤ 0, ∀ u, v ∈ C;
(v) satisfying the Lipschitz-type condition on C if there are two real numbers c1, c2 > 0 such that

f (u, w) ≤ f (u, v) + f (v, w) + c1‖u− v‖2 + c2‖v− w‖2, ∀ u, v, w ∈ C,

holds.

Definition 2. [44] A metric projection PC(u) of u onto a closed, convex subset C of E is defined as follows:

PC(u) = arg min
v∈C

{‖v− u‖}

Lemma 1. [45] Let PC : E→ C be metric projection from E upon C. Thus

(i) For each u ∈ C, v ∈ E,
‖u− PC(v)‖2 + ‖PC(v)− v‖2 ≤ ‖u− v‖2.

(ii) w = PC(u) if and only if
〈u− w, v− w〉 ≤ 0, ∀ v ∈ C.

This portion concludes with a few crucial lemmas which are advantageous in investigating the
convergence of our proposed results.

Lemma 2. [46] Let C be a nonempty, closed and convex subset of a real Hilbert space E and h : C → R be
a convex, subdifferentiable and lower semi-continuous function on C. Moreover, x ∈ C is a minimizer of a
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function h if and only if 0 ∈ ∂h(x) + NC(x) where ∂h(x) and NC(x) stands for the subdifferential of h at x
and the normal cone of C at x respectively.

Lemma 3 ([47], Page 31). For every a, b ∈ E and ξ ∈ R the following relation is true:

‖ξa + (1− ξ)b‖2 = ξ‖a‖2 + (1− ξ)‖b‖2 − ξ(1− ξ)‖a− b‖2.

Lemma 4. [48] If αn, βn and γn are sequences in [0,+∞),

αn+1 ≤ αn + βn(αn − αn−1) + γn, ∀ n ≥ 1, with
+∞

∑
n=1

γn < +∞

holds with β > 0 such that 0 ≤ βn ≤ β < 1, ∀ n ∈ N. The following items are true.

(i)
+∞

∑
n=1

[αn − αn−1]+ < +∞, with [p]+ := max{p, 0};

(ii) limn→+∞ αn = α∗ ∈ [0, ∞).

Lemma 5. [49] Let {ηn} be a sequence in E and C ⊂ E such that

(i) For each η ∈ C, limn→∞ ‖ηn − η‖ exists;
(ii) All sequentially weak cluster point of {ηn} lies in C;

Then {ηn} weakly converges to a element of C.

Lemma 6. [50] Assume {an}, {bn} are real sequences such that an ≤ bn ∀ n ∈ N. Take $, σ ∈ (0, 1) and
µ ∈ (0, σ). Then there is a sequence λn in a manner that λnan ≤ µbn and λn ∈ ($µ, σ).

Due to Lipschitz-like condition on a bifunction f through above lemma, we have the
following inequality.

Corollary 1. Assume that bifunction f satisfy the Lipschitz-type condition on C through positive constants c1

and c2. Let $ ∈ (0, 1), σ < min
{

1−3θ
(1−θ)2+4c1(θ+θ2)

, 1
2c2+4c1(1+θ)

}
where θ ∈ [0, 1

3 ) and µ ∈ (0, σ). Then there
exits a positive real number λ such that

λ
(

f (u, w)− f (u, v)− c1‖u− v‖2 − c2‖v− w‖2) ≤ µ f (v, w)

and $µ < λ < σ where u, v, w ∈ C.

Assumption 1. Let a bifunction f : E×E→ R satisfies

f1. f (v, v) = 0 for all v ∈ C and f is pseudomonotone on feasible set C.
f2. f satisfy the Lipschitz-type condition on E with constants c1 and c2.
f3. lim sup

n→∞
f (xn, v) ≤ f (x∗, v) for all v ∈ C and {xn} ⊂ C satisfy xn ⇀ x∗.

f4. f (u, .) need to be convex and subdifferentiable over E for all fixed u ∈ E.

Since f (u, .) is convex and subdifferentiable on E for each fixed u ∈ E and subdifferential of f (u, .)
at x ∈ E defined as:

∂2 f (u, .)(x) = ∂2 f (u, x) = {z ∈ E : f (u, v)− f (u, x) ≥ 〈z, v− x〉, ∀ v ∈ E}.

3. An Algorithm and Its Convergence Analysis

We develop a method and provide a weak convergence result for it. We consider bifunction f that
satisfies the conditions of Assumption 1 and EP( f , C) 6= ∅. The detailed method is written below.
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Lemma 7. If a sequence {un} is set up by Algorithm 1. Then the following relationship holds.

µλn f (vn, y)− µλn f (vn, un+1) ≥ 〈wn − un+1, y− un+1〉, ∀ y ∈ En.

Proof. By definition of un+1 we have

un+1 = arg min
y∈En

{µλn f (vn, y) +
1
2
‖wn − y‖2}.

By using Lemma 2, we obtain

0 ∈ ∂2

{
µλn f (vn, y) +

1
2
‖wn − y‖2

}
(un+1) + NEn(un+1).

From the above expression there is a ω ∈ ∂2 f (vn, un+1) and ω ∈ NEn(un+1) such that

µλnω + un+1 − wn + ω = 0.

Thus, we have

〈wn − un+1, y− un+1〉 = µλn〈ω, y− un+1〉+ 〈ω, y− un+1〉, ∀ y ∈ En.

Since ω ∈ NEn(un+1) then 〈ω, y− un+1〉 ≤ 0, for all y ∈ En. Thus, we have

µλn〈ω, y− un+1〉 ≥ 〈wn − un+1, y− un+1〉, ∀ y ∈ En. (2)

Since ω ∈ ∂2 f (vn, un+1) we obtain

f (vn, y)− f (vn, un+1) ≥ 〈ω, y− un+1〉, ∀ y ∈ E. (3)

Combining the expressions of Equations (2) and (3) we get

µλn f (vn, y)− µλn f (vn, un+1) ≥ 〈wn − un+1, y− un+1〉, ∀ y ∈ En.

Lemma 8. Let sequence {vn} be generated by Algorithm 1. Then the following inequality holds.

λn+1 f (vn, y)− λn+1 f (vn, vn+1) ≥ 〈wn+1 − vn+1, y− vn+1〉, ∀ y ∈ C.

Proof. By definition of vn+1, we have

0 ∈ ∂2

{
λn+1 f (vn, y) +

1
2
‖wn+1 − y‖2

}
(vn+1) + NC(vn+1).

Thus, there is a ω ∈ ∂2 f (vn, vn+1) and ω ∈ NC(vn+1) such that

λn+1ω + vn+1 − wn+1 + ω = 0.

The above expression implies that

〈wn+1 − vn+1, y− vn+1〉 = λn+1〈ω, y− vn+1〉+ 〈ω, y− vn+1〉, ∀ y ∈ C.

Since ω ∈ NC(vn+1) then 〈ω, y− vn+1〉 ≤ 0, for all y ∈ C. This implies that

λn+1〈ω, y− vn+1〉 ≥ 〈wn+1 − vn+1, y− vn+1〉, ∀ y ∈ C. (4)
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By ω ∈ ∂2 f (vn, vn+1), we can obtain

f (vn, y)− f (vn, vn+1) ≥ 〈ω, y− vn+1〉, ∀ y ∈ E. (5)

Combining the expressions in Equations (4) and (5) we get

λn+1 f (vn, y)− λn+1 f (vn, vn+1) ≥ 〈wn+1 − vn+1, y− vn+1〉, ∀ y ∈ C.

Algorithm 1 (The Modified Popov's subgradient extragradient method for pseudomonotone EP)

Initialization: Choose u−1, v−1, u0, v0 ∈ E, $ ∈ (0, 1), σ < min
{

1−3θ
(1−θ)2+4c1(θ+θ2)

, 1
2c2+4c1(1+θ)

}
for

a nondecreasing sequence θn such that 0 ≤ θn ≤ θ < 1
3 and λ0 > 0.

Iterative steps: Let un−1, vn−1, un and vn are known for n ≥ 0. Construct a half-space

En = {z ∈ E : 〈wn − λnωn−1 − vn, z− vn〉 ≤ 0},

where ωn−1 ∈ ∂2 f (vn−1, vn) and wn = un + θn(un − un−1).
Step 1: Compute

un+1 = arg min
y∈En

{µλn f (vn, y) +
1
2
‖wn − y‖2}.

Step 2: Revised the stepsize as follows

λn+1 =min
{

σ,
µ f (vn, un+1)

f (vn−1, un+1)− f (vn−1, vn)− c1‖vn−1 − vn‖2 − c2‖un+1 − vn‖2 + 1

}
(6)

and compute

vn+1 = arg min
y∈C

{λn+1 f (vn, y) +
1
2
‖wn+1 − y‖2},

where wn+1 = un+1 + θn+1(un+1 − un).
Step 3: If vn = vn−1 and un+1 = wn, then stop. Else, take n := n + 1 and return back to
Iterative steps.

Lemma 9. Let {un} and {vn} are sequences generated by Algorithm 1. Then the following inequality is true.

λn
{

f (vn−1, un+1)− f (vn−1, vn)
}
≥ 〈wn − vn, un+1 − vn〉.

Proof. Since un+1 ∈ En then by the definition of En gives that

〈wn − λnωn−1 − vn, un+1 − vn〉 ≤ 0.

The above implies that

λn〈ωn−1, un+1 − vn〉 ≥ 〈wn − vn, un+1 − vn〉. (7)

By ωn−1 ∈ ∂ f (vn−1, vn) with y = un+1, we reach the following

f (vn−1, un+1)− f (vn−1, vn) ≥ 〈ωn−1, un+1 − vn〉, ∀y ∈ E. (8)

By combining Equations (7) and (8), we obtain

λn
{

f (vn−1, un+1)− f (vn−1, vn)
}
≥ 〈wn − vn, un+1 − vn〉.
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Lemma 10. If un+1 = wn and vn = vn−1 in Algorithm 1. Then, vn is the solution of Equation (1).

Proof. Setting un+1 = wn and vn = vn−1 in Lemma 9, we get

λn f (vn, un+1) ≥ 0. (9)

By the means of un+1 = wn in Lemma 7, we get

µλn f (vn, y) ≥ µλn f (vn, un+1) ≥ 0, ∀ y ∈ En. (10)

Since µ ∈ (0, 1) and λn ∈ (0, ∞) then f (vn, y) > 0, for all y ∈ C ⊂ En.

Remark 1. (i). If un+1 = vn = wn in Algorithm 1, then vn ∈ EP( f , C). It is obvious from Lemma 7.
(ii). If wn+1 = vn+1 = vn in Algorithm 1, then vn ∈ EP( f , C). It is obvious from Lemma 8.

Lemma 11. Let a bifunction f : E × E → R is satisfying the assumptions ( f1– f4). Thus, for each
p∗ ∈ EP( f , C) 6= ∅, we have

‖un+1 − p∗‖2 ≤ ‖wn − p∗‖2 − (1− λn+1)‖un+1 − wn‖2 + 4c1λn+1λn‖wn − vn−1‖2

− λn+1(1− 4c1λn)‖wn − vn‖2 − λn+1(1− 2c2λn)‖un+1 − vn‖2.

Proof. By substituting y = p∗ into Lemma 7, we get

µλn f (vn, p∗)− µλn f (vn, un+1) ≥ 〈wn − un+1, p∗ − un+1〉, ∀ y ∈ En. (11)

By make use of p∗ ∈ EP( f , C) implies that f (p∗, vn) ≥ 0. Due to the pseudomonotonicity of a
bifunction f we get f (vn, p∗) ≤ 0. Therefore, from Equation (11) we get

〈wn − un+1, un+1 − p∗〉 ≥ µλn f (vn, un+1). (12)

Corollary 1 implies that λn+1 in Equation (6) is well-defined and

µ f (vn, un+1)

≥ λn+1
(

f (vn−1, un+1)− f (vn−1, vn)− c1‖vn−1 − vn‖2 − c2‖vn − un+1‖2). (13)

The expressions in Equations (12) and (13) imply that

〈wn − un+1, un+1 − p∗〉 ≥ λn+1

[
λn
{

f (vn−1, un+1)− f (vn−1, vn)
}

− c1λn‖vn−1 − vn‖2 − c2λn‖un+1 − vn‖2
]
.

(14)

Since un+1 ∈ En and using Lemma 9, we have

λn
{

f (vn−1, un+1)− f (vn−1, vn)
}
≥ 〈wn − vn, un+1 − vn〉. (15)

Combining the expressions in Equations (14) and (15) we get

〈wn − un+1, un+1 − p∗〉 ≥ λn+1

[
〈wn − vn, un+1 − vn〉

− c1λn‖vn−1 − vn‖2 − c2λn‖un+1 − vn‖2
]
.

(16)
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By vector algebra we have the following facts:

2〈wn − un+1, un+1 − p∗〉 = ‖wn − p∗‖2 − ‖un+1 − wn‖2 − ‖un+1 − p∗‖2.

2〈wn − vn, un+1 − vn〉 = ‖wn − vn‖2 + ‖un+1 − vn‖2 − ‖wn − un+1‖2.

From the above last two inequalities and Equation (16) we obtain

‖un+1 − p∗‖2 ≤ ‖wn − p∗‖2 − (1− λn+1)‖un+1 − wn‖2 − λn+1(1− 2c2λn)‖un+1 − vn‖2

− λn+1‖wn − vn‖2 + λn+1(2c1λn)‖vn−1 − vn‖2

By triangle inequality and elementary algebra gives the following inequality

‖vn−1 − vn‖2 ≤
(
‖vn−1 − wn‖+ ‖wn − vn‖

)2 ≤ 2‖vn−1 − wn‖2 + 2‖wn − vn‖2.

From the above two inequalities we have the desired result

‖un+1 − p∗‖2 ≤ ‖wn − p∗‖2 − (1− λn+1)‖un+1 − wn‖2 + 4c1λnλn+1‖wn − vn−1‖2

− λn+1(1− 4c1λn)‖wn − vn‖2 − λn+1(1− 2c2λn)‖un+1 − vn‖2.

Theorem 1. Suppose a bifunction f : E × E → R is satisfying the Assumption 1. Then for all
p∗ ∈ EP( f , C) 6= ∅, the sequences {wn}, {un} and {vn} are generated by Algorithm 1 weakly converge
to p∗ ∈ EP( f , C).

Proof. From Lemma 11 we have

‖un+1 − p∗‖2 ≤ ‖wn − p∗‖2 − (1− λn+1)‖un+1 − wn‖2 + 4c1λnλn+1‖wn − vn−1‖2

− λn+1(1− 4c1λn)‖wn − vn‖2 − λn+1(1− 2c2λn)‖un+1 − vn‖2. (17)

By definition of wn in the Algorithm 1 we may write

‖wn − vn−1‖2 = ‖un + θn(un − un−1)− vn−1‖2

= ‖(1 + θn)(un − vn−1)− θn(un−1 − vn−1)‖2

= (1 + θn)‖un − vn−1‖2 − θn‖un−1 − vn−1‖2 + θn(1 + θn)‖un − un−1‖2

≤ (1 + θ)‖un − vn−1‖2 + θ(1 + θ)‖un − un−1‖2. (18)

Adding the value 4c1σλn+1(1 + θ)‖un+1 − vn‖2 on both sides of expression in Equation (17) and
for each n ≥ 1, we obtain
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‖un+1 − p∗‖2 + 4c1σλn+1(1 + θ)‖un+1 − vn‖2

≤ ‖wn − p∗‖2 − (1− σ)‖un+1 − wn‖2 + 4c1σλn+1(1 + θ)‖un+1 − vn‖2

+ 4c1σλn

[
(1 + θ)‖un − vn−1‖2 + θ(1 + θ)‖un − un−1‖2

]
− λn+1(1− 4c1σ)‖wn − vn‖2 − λn+1(1− 2c2σ)‖un+1 − vn‖2 (19)

≤ ‖wn − p∗‖2 − (1− σ)‖un+1 − wn‖2 + 4c1σλn(1 + θ)‖un − vn−1‖2

+ 4c1σ(θ + θ2)‖un − un−1‖2 − λn+1(1− 4c1σ)‖wn − vn‖2

− λn+1(1− 2c2σ− 4c1σ(1 + θ))‖un+1 − vn‖2 (20)

≤ ‖wn − p∗‖2 − (1− σ)‖un+1 − wn‖2 + 4c1σλn(1 + θ)‖un − vn−1‖2

+ 4c1σ(θ + θ2)‖un − un−1‖2

− λn+1

2
(1− 2c2σ− 4c1σ(1 + θ))

[
2‖un+1 − vn‖2 + 2‖wn − vn‖2

]
(21)

≤ ‖wn − p∗‖2 − (1− σ)‖un+1 − wn‖2 + 4c1σλn(1 + θ)‖un − vn−1‖2

+ 4c1σ(θ + θ2)‖un − un−1‖2

− λn+1

2
(1− 2c2σ− 4c1σ(1 + θ))‖un+1 − wn‖2. (22)

By Algorithm 1, 0 < λn ≤ σ < 1
2c2+4c1(1+θ)

and the above inequality ensures

‖un+1 − p∗‖2 + 4c1σλn+1(1 + θ)‖un+1 − vn‖2

≤ ‖wn − p∗‖2 − (1− σ)‖un+1 − wn‖2 + 4c1σλn(1 + θ)‖un − vn−1‖2 + 4c1σ(θ + θ2)‖un − un−1‖2. (23)

From definition of wn in Algorithm 1 we obtain

‖wn − p∗‖2 = ‖un + θn(un − un−1)− p∗‖2

= ‖(1 + θn)(un − p∗)− θn(un−1 − p∗)‖2

= (1 + θn)‖un − p∗‖2 − θn‖un−1 − p∗‖2 + θn(1 + θn)‖un − un−1‖2. (24)

By definition of wn+1 and through Cauchy inequality, we achieve

‖un+1 − wn‖2 = ‖un+1 − un − θn(un − un−1)‖2

= ‖un+1 − un‖2 + θ2
n‖un − un−1‖2 − 2θn〈un+1 − un, un − un−1〉 (25)

≥ ‖un+1 − un‖2 + θ2
n‖un − un−1‖2 − 2θn‖un+1 − un‖‖un − un−1‖

≥ ‖un+1 − un‖2 + θ2
n‖un − un−1‖2 − θn‖un+1 − un‖2 − θn‖un − un−1‖2

= (1− θn)‖un+1 − un‖2 + (θ2
n − θn)‖un − un−1‖2. (26)

By combining the expressions of Equations (23), (24) and (26) we have
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‖un+1 − p∗‖2 + 4c1σλn+1(1 + θ)‖un+1 − vn‖2

≤ (1 + θn)‖un − p∗‖2 − θn‖un−1 − p∗‖2 + θn(1 + θn)‖un − un−1‖2

− (1− σ)
[
(1− θn)‖un+1 − un‖2 + (θ2

n − θn)‖un − un−1‖2
]

+ 4c1σλn(1 + θ)‖un − vn−1‖2 + 4c1σ(θ + θ2)‖un − un−1‖2 (27)

≤ (1 + θn)‖un − p∗‖2 − θn‖un−1 − p∗‖2 + 4c1σλn(1 + θ)‖un − vn−1‖2

+
[
θ(1 + θ)− (1− σ)(θ2

n − θn) + 4c1σ(θ + θ2)
]
‖un − un−1‖2

− (1− σ)(1− θn)‖un+1 − un‖2 (28)

≤ (1 + θn)‖un − p∗‖2 − θn‖un−1 − p∗‖2 + 4c1σλn(1 + θ)‖un − vn−1‖2

+ φn‖un − un−1‖2 − ψn‖un+1 − un‖2, (29)

where
φn =

[
θ(1 + θ)− (1− σ)(θ2

n − θn) + 4c1σ(θ + θ2)
]
;

ψn = (1− σ)(1− θn).

Suppose that
Ψn = Φn + φn‖un − un−1‖2

where Φn = ‖un − p∗‖2 − θn‖un−1 − p∗‖2 + 4c1σλn(1 + θ)‖un − vn−1‖2. We compute the following
by expression in Equation (29) we obtain

Ψn+1 −Ψn

= ‖un+1 − p∗‖2 − θn+1‖un − p∗‖2 + 4c1σλn+1(1 + θ)‖un+1 − vn‖2 + φn+1‖un+1 − un‖2

− ‖un − p∗‖2 + θn‖un−1 − p∗‖2 − 4c1σλn(1 + θ)‖un − vn−1‖2 − φn‖un − un−1‖2

≤ ‖un+1 − p∗‖2 − (1 + θn)‖un − p∗‖2 + θn‖un−1 − p∗‖2 + 4c1σλn+1(1 + θ)‖un+1 − vn‖2

+ φn+1‖un+1 − un‖2 − 4c1σλn(1 + θ)‖un − vn−1‖2 − φn‖un − un−1‖2

≤ −(ψn − φn+1)‖un+1 − un‖2. (30)

Next, we are going to compute

(ψn − φn+1) = (1− σ)(1− θn)− θ(1 + θ) + (1− σ)(θ2
n+1 − θn+1)− 4c1σ(θ + θ2)

≥ (1− σ)(1− θ)2 − θ(1 + θ)− 4c1σ(θ + θ2)

= (1− θ)2 − θ(1 + θ)− σ(1− θ)2 − 4c1σ(θ + θ2)

= 1− 3θ − σ
(
(1− θ)2 + 4c1(θ + θ2)

)
≥ 0. (31)

Equations (30) and (31) with some δ ≥ 0, imply that

Ψn+1 −Ψn ≤ −(ψn − φn+1)‖un+1 − un‖2 ≤ −δ‖un+1 − un‖2 ≤ 0. (32)

The relationship in Equation (32) implies that the sequence {Ψn} is nonincreasing. Furthermore,
by definition of Ψn+1 we have

Ψn+1 = ‖un+1 − p∗‖2 − θn+1‖un − p∗‖2 + φn+1‖un+1 − un‖2 + 4c1σλn+1(1 + θ)‖un+1 − vn‖2

≥ −θn+1‖un − p∗‖2.
(33)
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Additionally, by definition of Ψn we have

‖un − p∗‖2 ≤ Ψn + θn‖un−1 − p∗‖2

≤ Ψ1 + θ‖un−1 − p∗‖2

≤ · · · ≤ Ψ1(θ
n−1 + · · ·+ 1) + θn‖u0 − p∗‖2

≤ Ψ1

1− θ
+ θn‖u0 − p∗‖2. (34)

On the basis of Equations (33) and (34) we have

−Ψn+1 ≤ θn+1‖un − p∗‖2

≤ θ‖un − p∗‖2

≤ θ
Ψ1

1− θ
+ θn+1‖u0 − p∗‖2. (35)

It follows from expressions in Equations (32) and (35) we have

δ
k

∑
n=1
‖un+1 − un‖2 ≤ Ψ1 −Ψk+1

≤ Ψ1 + θ
Ψ1

1− θ
+ θk+1‖u0 − p∗‖2

≤ Ψ1

1− θ
+ ‖u0 − p∗‖2, (36)

letting k→ ∞ in Equation (36) we have

∞

∑
n=1
‖un+1 − un‖2 < +∞ implies lim

n→∞
‖un+1 − un‖ = 0. (37)

By the relationship in Equations (25) with (37) we have

‖un+1 − wn‖ → 0 as n→ ∞. (38)

The expression in Equation (35) implies that

−Φn+1 ≤ θ
Ψ1

1− θ
+ θn+1‖u0 − p∗‖2 + φn+1‖un+1 − un‖2. (39)

By Equation (21) we have

λn+1(1− 2c2σ− 4c1σ(1 + θ))
[
‖un+1 − vn‖2 + ‖wn − vn‖2

]
≤ Φn −Φn+1 + θ(1 + θ)‖un − un−1‖2 + 4c1σθ(1 + θ)‖un+1 − un‖2.

(40)

Fix k ∈ N and use above equation for n = 1, 2, · · · , k. Summing up, we get
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λn+1(1− 2c2σ− 4c1σ(1 + θ))
k

∑
n=1

[
‖un+1 − vn‖2 + ‖wn − vn‖2

]
≤ Φ0 −Φk+1 + θ(1 + θ)

k

∑
n=1
‖un − un−1‖2 + 4c1σθ(1 + θ)

k

∑
n=1
‖un − un−1‖2

≤ Φ0 + θ
Ψ1

1− θ
+ θk+1‖u0 − p∗‖2 + φk+1‖uk+1 − uk‖2

+ θ(1 + θ)
k

∑
n=1
‖un − un−1‖2 + 4c1σθ(1 + θ)

k

∑
n=1
‖un+1 − un‖2, (41)

letting k→ ∞ in above expression we have

∑
n
‖un+1 − vn‖2 < +∞ and ∑

n
‖wn − vn‖2 < +∞ (42)

and
lim

n→∞
‖un+1 − vn‖ = lim

n→∞
‖wn − vn‖ = 0. (43)

By using the triangular inequality we can easily derive the following from the
above-mentioned expressions

lim
n→∞

‖un − vn‖ = lim
n→∞

‖un − wn‖ = lim
n→∞

‖vn−1 − vn‖ = 0. (44)

Moreover, we follow the relationship in Equation (27) such that

‖un+1 − p∗‖2 ≤ (1 + θn)‖un − p∗‖2 − θn‖un−1 − p∗‖2 + θ(1 + θ)‖un − un−1‖2

+ 4c1σ(1 + θ)‖un − vn−1‖2 + 4c1σ(θ + θ2)‖un − un−1‖2. (45)

The above expression with Equations (37) and (42) and Lemma 4 suggest that limits of ‖un − p∗‖,
‖wn − p∗‖ and ‖vn − p∗‖ exist for each p∗ ∈ EP( f , C) and imply that the sequences {un}, {wn} and
{vn} are bounded. We require to establish that every weak sequential limit point of the sequence {un}
lies in EP( f , C). Take z to be any sequential weak cluster point of the sequence {un}, i.e., if there exists
a weak convergent subsequence {unk} of {un} that converges to z, it implies that {vnk} also weakly
converge to z. Our purpose is to prove z ∈ EP( f , C). Using Lemma 7 with Equations (13) and (15)
we obtain

µλn f (vnk , y) ≥ µλn f (vnk , unk+1) + 〈wnk − unk+1, y− unk+1〉
≥ λnλn+1 f (vnk−1, unk+1)− λnλn+1 f (vnk−1, vnk )− c1λnλn+1‖vnk−1 − vnk‖

2

− c2λnλn+1‖vnk − unk+1‖2 + 〈wnk − unk+1, y− unk+1〉
≥ λn+1〈wnk − vnk , unk+1 − vnk 〉 − c1λnλn+1‖vnk−1 − vnk‖

2

− c2λnλn+1‖vnk − unk+1‖2 + 〈wnk − unk+1, y− unk+1〉 (46)

for any member y in C ⊂ En. The expressions in Equations (38), (43) and (44) as well as the boundedness
of the sequence {un}mean the right side of the above-mentioned inequality is zero. Taking µ, λn > 0,
condition ( f3) in (Assumption 1) and vnk ⇀ z, we obtain

0 ≤ lim sup
k→∞

f (vnk , y) ≤ f (z, y), ∀ y ∈ En. (47)

Then z ∈ C implies that f (z, y) ≥ 0 for all y ∈ C ⊂ En. This determines that z ∈ EP( f , C). By
Lemma 5, the sequences {un}, {vn} and {wn} weakly converges to p∗ ∈ EP( f , C).
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We make θn = 0 in the Algorithm 1 and by following Theorem 1 we have an improved variant of
Liu et al. [42] extragradient method in terms of stepsize.

Corollary 2. Let a bifunction f : E× E → R satisfies Assumption 1. For every p∗ ∈ EP( f , C) 6= ∅, the
sequence {un} and {vn} are set up in the subsequent manner:

Initialization: Given u0, v−1, v0 ∈ E, $ ∈ (0, 1), σ < min
{

1, 1
2c2+4c1

}
, µ ∈ (0, σ) and λ0 > 0.

Iterative steps: For given un, vn−1 and vn, construct a half-space

En = {z ∈ E : 〈un − λnωn−1 − vn, z− vn〉 ≤ 0},

where ωn−1 ∈ ∂2 f (vn−1, vn).
Step 1: Compute

un+1 = arg min
y∈En

{µλn f (vn, y) +
1
2
‖un − y‖2}.

Step 2: Update the stepsize as follows

λn+1 =min
{

σ,
µ f (vn, un+1)

f (vn−1, un+1)− f (vn−1, vn)− c1‖vn−1 − vn‖2 − c2‖un+1 − vn‖2 + 1

}
and compute

vn+1 = arg min
y∈C

{λn+1 f (vn, y) +
1
2
‖un+1 − y‖2}.

Then {un} and {vn} weakly converge to the solution p∗ ∈ EP( f , C).

4. Solving Variational Inequality Problems with New Self-Adaptive Methods

We consider the application of our above-mentioned results to solve variational inequality
problems involving pseudomonotone and Lipschitz-type continuous operator. The variational
inequality problem is written in the following way:

find p∗ ∈ C so that
〈

G(p∗), v− p∗
〉
≥ 0, ∀ v ∈ C.

An operator G : E→ E is

(i). monotone on C if
〈

G(u)− G(v), u− v
〉
≥ 0, ∀ u, v ∈ C;

(ii). L-Lipschitz continuous on C if ‖G(u)− G(v)‖ ≤ L‖u− v‖, ∀ u, v ∈ C;
(iii). pseudomonotone on C if

〈
G(u), v− u

〉
≥ 0⇒

〈
G(v), u− v

〉
≤ 0, ∀ u, v ∈ C.

Note: If we choose the bifunction f (u, v) :=
〈

G(u), v− u
〉

for all u, v ∈ C then the equilibrium problem
transforms into the above variational inequality problem with L = 2c1 = 2c2. This means that from the
definitions of vn+1 in the Algorithm 1 and according to the above definition of bifunction f we have
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vn+1 = arg min
y∈C

{
λn+1 f (vn, y) +

1
2
‖wn+1 − y‖2

}
= arg min

y∈C

{
λn+1〈G(vn), y− vn〉+

1
2
‖wn+1 − y‖2

}
= arg min

y∈C

{
λn+1〈G(vn), y− wn+1〉+

1
2
‖wn+1 − y‖2 + λn+1〈G(vn), wn+1 − vn〉

}
= arg min

y∈C

{1
2
‖y− (wn+1 − λn+1G(vn)‖2

}
−

λ2
n+1
2
‖G(vn)‖2

= PC(wn+1 − λn+1G(vn)). (48)

Similarly to the expression in Equation (48) the value un+1 from Algorithm 1 converts into

un+1 = PEn(wn − µλnG(vn)).

Due to ωn−1 ∈ ∂2 f (vn−1, vn) and by subdifferential definition we obtain

〈ωn−1, z− vn〉 ≤ 〈G(vn−1), z− vn−1〉 − 〈G(vn−1), vn − vn−1〉, ∀z ∈ E
= 〈G(vn−1), z− vn〉, ∀ z ∈ E (49)

and consequently 0 ≤ 〈G(vn−1)−ωn−1, z− vn〉 for all z ∈ E. This implies that

〈wn − λnG(vn−1)− vn, z− vn〉
≤ 〈wn − λnG(vn−1)− vn, z− vn〉+ λn〈G(vn−1)−ωn−1, z− vn〉
= 〈wn − λnωn−1 − vn, z− vn〉. (50)

Assumption 2. We assume that G is satisfying the following assumptions:

G∗1 . G is monotone on C and VI(G, C) is nonempty;
G1. G is pseudomonotone on C and VI(G, C) is nonempty;
G2. G is L-Lipschitz continuous on C through positive parameter L > 0;
G3. lim sup

n→∞
〈G(un), v− un〉 ≤ 〈G(x∗), v− x∗〉 for every v ∈ C and {un} ⊂ C satisfying un ⇀ x∗.

We have reduced the following results from our main results applicable to solve variational
inequality problems.

Corollary 3. Assume that G : C → E is satisfying (G1, G2, G3) in Assumption 2. Let {wn}, {un} and {vn}
be the sequences obtained as follows:

Initialization: Choose u−1, v−1, u0, v0 ∈ E, $ ∈ (0, 1), σ < min
{

1−3θ
(1−θ)2+2L(θ+θ2)

, 1
3L+2θL)

}
for a

nondecreasing sequence θn such that 0 ≤ θn ≤ θ < 1
3 and λ0 > 0.

Iterative steps: For given un−1, vn−1, un and vn, construct a half space

En = {z ∈ E : 〈wn − λnGvn−1 − vn, z− vn〉 ≤ 0}

where wn = un + θn(un − un−1).
Step 1: Compute

un+1 = PEn(wn − µλnG(vn)).
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Step 2: The stepsize λn+1 is updated as follows

λn+1 =min
{

σ,
µ〈Gvn, un+1 − vn〉

〈Gvn−1, un+1 − vn〉 − L
2 ‖vn−1 − vn‖2 − L

2 ‖un+1 − vn‖2 + 1

}
and compute

vn+1 = PC(wn+1 − λn+1G(vn)) where wn+1 = un+1 + θn+1(un+1 − un).

Then the sequence {wn}, {un} and {vn} weakly converge to p∗ of VI(G, C).

Corollary 4. Assume that G : C → E is satisfying (G1, G2, G3) in Assumption 2. Let {un} and {vn} be the
sequences obtained as follows:

Initialization: Choose v−1, u0, v0 ∈ E, $ ∈ (0, 1), σ < min
{

1, 1
3L
}

and λ0 > 0.
Iterative steps: For given vn−1, un and vn, construct a half space

En = {z ∈ E : 〈un − λnGvn−1 − vn, z− vn〉 ≤ 0}.

Step 1: Compute
un+1 = PEn(un − µλnG(vn)).

Step 2: The stepsize λn+1 is updated as follows

λn+1 =min
{

σ,
µ〈Gvn, un+1 − vn〉

〈Gvn−1, un+1 − vn〉 − L
2 ‖vn−1 − vn‖2 − L

2 ‖un+1 − vn‖2 + 1

}
and compute

vn+1 = PC(un+1 − λn+1G(vn)).

Thus {un} and {vn} converge weakly to the solution p∗ of VI(G, C).

We examine that if G is monotone then condition (G3) can be removed. The assumption (G3) is
required to specify f (u, v) = 〈G(u), v− u〉 complies with the condition ( f3). In addition, condition ( f3)
is required to show z ∈ EP( f , C) after the inequality in Equation (47). This implies that the condition
(G3) is used to prove z ∈ VI(G, C). Now we will prove that z ∈ VI(G, C) by using the monotonicity of
operator G. Since G is monotone, we have

〈G(y), y− vn〉 ≥ 〈G(vn), y− vn〉, ∀ y ∈ E. (51)

By f (u, v) = 〈G(u), v− u〉 and Equation (46) we have

lim sup
k→∞

〈G(vnk ), y− vnk 〉 ≥ 0, y ∈ En. (52)

Combining Equations (51) with (52), we deduce that

lim sup
k→∞

〈G(y), y− vnk 〉 ≥ 0, y ∈ En. (53)

Since vnk ⇀ z ∈ C and 〈G(y), y− z〉 ≥ 0 for all y ∈ C. Let vt = (1− t)z + ty for all t ∈ [0, 1].
Due to convexity of C the value vt ∈ C for each t ∈ (0, 1). We obtain

0 ≤ 〈G(vt), vt − z〉 = t〈G(vt), y− z〉 (54)
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That is 〈G(vt), y− z〉 ≥ 0 for all t ∈ (0, 1). By vt → z as t → 0 and the continuity of G gives
〈G(z), y− z〉 ≥ 0 for each y ∈ C, which implies that z ∈ VI(G, C).

Corollary 5. Assume that G : C → E is satisfying (G∗1 , G2) in Assumption 2. Let {wn}, {un} and {vn} be
the sequences obtained as follows:

Initialization: Choose u−1, v−1, u0, v0 ∈ E, $ ∈ (0, 1), σ < min
{

1−3θ
(1−θ)2+2L(θ+θ2)

, 1
3L+2θL)

}
for a

nondecreasing sequence θn such that 0 ≤ θn ≤ θ < 1
3 and λ0 > 0.

Iterative steps: For given un−1, vn−1, un and vn, construct a half space

En = {z ∈ E : 〈wn − λnGvn−1 − vn, z− vn〉 ≤ 0}

where wn = un + θn(un − un−1).
Step 1:

un+1 = PEn(wn − µλnG(vn)).

Step 2: The stepsize λn+1 is updated as follows

λn+1 =min
{

σ,
µ〈Gvn, un+1 − vn〉

〈Gvn−1, un+1 − vn〉 − L
2 ‖vn−1 − vn‖2 − L

2 ‖un+1 − vn‖2 + 1

}
and compute

vn+1 = PC(wn+1 − λn+1G(vn)) where wn+1 = un+1 + θn+1(un+1 − un).

Then the sequences {wn}, {un} and {vn} converges weakly to p∗ of VI(G, C).

Corollary 6. Assume that G : C → E is satisfying (G∗1 , G2) in Assumption 2. Let {un} and {vn} be the
sequences obtained as follows:

Initialization: Choose v−1, u0, v0 ∈ E, $ ∈ (0, 1), σ < min
{

1, 1
3L
}

and λ0 > 0.
Iterative steps: For given vn−1, un and vn, construct a half space

En = {z ∈ E : 〈un − λnGvn−1 − vn, z− vn〉 ≤ 0}.

Step 1:
un+1 = PEn(un − µλnG(vn)).

Step 2: The stepsize λn+1 is updated as follows

λn+1 =min
{

σ,
µ〈Gvn, un+1 − vn〉

〈Gvn−1, un+1 − vn〉 − L
2 ‖vn−1 − vn‖2 − L

2 ‖un+1 − vn‖2 + 1

}
and compute

vn+1 = PC(un+1 − λn+1G(vn)).

Then {un} and {vn} converge weakly to p∗ of VI(G, C).

5. Computational Experiment

Numerical results produced in this section show the performance of our proposed methods.
The MATLAB codes were running in MATLAB version 9.5 (R2018b) on a PC Intel(R) Core(TM)i5-6200
CPU @ 2.30GHz 2.40GHz, RAM 8.00 GB. In these examples, the x-axis indicates the number of iterations
or the execution time (in seconds) and y-axes represents the values Dn = ‖un+1 − un‖. We present the
comparison of Algorithm 1 (Algo3) with the Lyashko et al. [33] (Algo1) and Liu et al. [42] (Algo2).
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Example 1. Suppose that f : C× C → R is defined by

f (u, v) = 〈Au + Bv + d, v− u〉,

where d ∈ Rn and A, B are matrices of order n where B an symmetric positive semidefinite and B − A is
symmetric negative definite with Lipschitz constants are c1 = c2 = 1

2‖A − B‖ (for more details see [20]).
During Example 1, matrices A, B are randomly produced (Two matrices are randomly generated E and F with
entries from [−1, 1]. The matrix B = ETE, S = FT F and A = S + B.) and entries of d randomly belongs to
[−1, 1]. The constraint set C ⊂ Rn as

C := {u ∈ Rn : −10 ≤ ui ≤ 10}.

The numerical findings are shown in Figures 1–6 and Table 1 with v−1 = (4, · · · , 4), u−1 = (3, · · · , 3),
u0 = (1, · · · , 1), v0 = (2, · · · , 2), λ = 1

12c1
, σ = 5

42c1
, µ = 5

44c1
, θn = 0.12 and λ0 = 1

4c1
.
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Figure 1. Example 1 when n = 5.
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Figure 2. Example 1 when n = 5.
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Figure 3. Example 1 when n = 10.
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Figure 4. Example 1 when n = 10.
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Figure 5. Example 1 when n = 20.
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Figure 6. Example 1 when n = 20.

Table 1. Example 1: The numerical results for Figures 1–6.

Algo1 Algo2 Algo3

n Iter. Exeu.time Iter. Exeu.time Iter. Exeu.time

5 287 5.9342 281 3.5302 12 0.1204

10 727 19.8789 960 12.8186 16 0.1584

20 2997 72.7622 3510 3510 14 0.1624

Example 2. Let f : C× C → R be defined as

f (u, v) = (u1 + u2 − 1)(v1 − u1) + (u1 + u2 − 1)(v2 − u2)

where C = [−2, 5]× [−2, 5]. We see that

f (u, v) + f (v, u) = −(u1 − v1 + u2 − v2)
2 ≤ 0

which gives that bifunction f is monotone. The numerical findings are shown in Figures 7–14 and Table 2 with
v−1 = u−1 = u0 = (−1, 1), λ = 0.03, σ = 0.476, µ = 0.455, θn = 0.15 and λ0 = 0.1.

Table 2. Example 2: The numerical results for Figures 7–14.

Algo1 Algo2 Algo3

v0 Iter. Exeu.time Iter. Exeu.time Iter. Exeu.time

(−1.0, 2.0) 180 1.7844 172 0.7740 20 0.1025
(1.5, 1.7) 187 2.1016 181 0.8069 23 0.1125
(2.7, 4.6) 190 1.9044 184 0.7979 17 0.0881
(2.0, 3.0) 188 1.8635 182 0.7792 20 0.1063
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Figure 7. Example 2 when v0 = (−1.0, 2.0).
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Figure 8. Example 2 when v0 = (−1.0, 2.0).
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Figure 9. Example 2 when v0 = (1.5, 1.7).
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Figure 10. Example 2 when v0 = (1.5, 1.7).
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Figure 11. Example 2 when v0 = (2.7, 4.6).
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Figure 12. Example 2 when v0 = (2.7, 4.6).
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Figure 13. Example 2 when v0 = (2.0, 3.0).
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Figure 14. Example 2 when v0 = (2.0, 3.0).

Example 3. Let G : R2 → R2 be defined by

G(u) =

(
0.5u1u2 − 2u2 − 107

−4u1 − 0.1u2
2 − 107

)

and let C = {u ∈ R2 : (u1 − 2)2 + (u2 − 2)2 ≤ 1}. The operator G is Lipschitz continuous with L = 5
and pseudomonotone. During this experiment we use u−1 = (1, 1), v−1 = (2, 2), u0 = (3, 4)T with stepsize
λ = 10−8 according Lyashko et al. [33] and Liu et al. [42]. We take λ0 = 0.1, σ = 0.0392 and µ = 0.0377. The
experimental results are shown in Table 3 and Figures 15–18.
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Figure 15. Example 3 when u0 = (1.5, 1.7).
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Figure 16. Example 3 when u0 = (2.0, 3.0).
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Figure 17. Example 3 when u0 = (1.0, 2.0).
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Figure 18. Example 3 when u0 = (2.7, 2.6).

Table 3. Example 3: The numerical results for Figures 15–18.

Algo1 Algo2 Algo3

v0 Iter. Exeu.time Iter. Exeu.time Iter. Exeu.time

(1.5, 1.7) 82 2.6525 81 1.3557 47 0.9015
(2.0, 3.0) 82 2.7698 81 1.3698 50 1.4948
(1.0, 2.0) 85 2.9042 84 1.4026 43 1.2657
(2.7, 2.6) 86 2.8937 81 1.3990 48 1.4540

Example 4. Take G : Rn → Rn to be defined through

G(u) = Au + B(u)

where A is a n× n symmetric semidefinite matrix and B(u) is the proximal mapping through the function
h(u) = 1

4‖u‖4 such that

B(u) = arg min
v∈Rn

{
‖v‖4

4
+

1
2
‖v− u‖2

}
The property of A and the proximal mapping B implies that G is monotone upon C [45]. The following is a

feasible set
C := {u ∈ R5 : −2 ≤ ui ≤ 5}.

The numerical results are shown in Table 4 and Figures 19.

Table 4. Example 4: The numerical results for Figure 19.

Algo1 Algo3

n Iter. Exeu.time Iter. Exeu.time

5 338 12.6364 112 8.8393
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Figure 19. Example 4 when n = 5.

6. Conclusions

We have developed extragradient-like methods to solve pseudomonotone equilibrium problems
and different classes of variational inequality problems in real Hilbert space. The advantage of our
method is in designing an explicit formula for step size evaluation. For each iteration the stepsize
formula is updated based on the previous iterations. Numerical results were reported to demonstrate
numerical effectiveness of our results relative to other methods. These numerical studies suggest that
inertial effects in this sense also generally improve the effectiveness of the iterative sequence.
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