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Abstract: The aim of this paper is to derive an equation for the temperature distribution in journal
bearing oil film, in order to predict the thermal load of a bearing. This is very important for the
prevention of critical regimes in a bearing operation. To achieve the goal, a partial differential
equation of the temperature field was first derived, starting from the energy equation coupled with
the Reynolds equation of hydrodynamic lubrication for a short bearing of symmetric geometry. Then,
by solving the equation analytically, the function of temperature distribution in the bearing oil film
has been obtained. The solution is applied to the journal bearing, for which the experimental data are
available in the references. Finally, the obtained results have been compared to the corresponding
experimental values for two operating regimes, and a good level of agreement was achieved.

Keywords: hydrodynamic journal bearing; temperature distribution; energy equation; Reynolds
equation

1. Introduction

Journal bearings are some of the oldest and most relevant machine elements. When it comes
to the design, the concept of these bearings did not significantly change over the course of history,
retaining its original simplicity and functionality. However, as the needs of mankind grew, machines
were becoming more and more complex, and they were working in increasingly difficult conditions.
To keep the bearing operation reliable even in such conditions, the materials of the bearings and their
lubricants were improved over time. The bearing materials were changed in terms of improving
their slip properties and embeddability, and the lubricants were changed in terms of improving their
rheological properties. These improvements are the result of the studies of many researchers.

The most significant discoveries in the field of journal bearings were made by three researchers:
N. P. Petrov, B. Tower and O. Reynolds [1], who recognized and formulated the phenomenon of
hydrodynamic lubrication independently of each other. In the hydrodynamic lubrication regime of a
journal bearing, the journal and its housing are separated by a thin layer of oil, and the friction and
wear are minimized. Viscous friction of the oil causes heat generation, which in certain conditions
can significantly worsen the performance of the bearing. A higher temperature of the oil film reduces
the load carrying capacity of the bearing due to decrease of the oil film stiffness. In extreme cases,
this can lead to a seizure of the bearing due to the rupture of the oil film, when "welding" takes place
at the contact points of micro-irregularities. For this reason, the need for knowing the distribution
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of temperature in the lubricant is imposed as an imperative, in order to prevent the aforementioned
negative phenomena. Furthermore, knowing the temperature of the oil film can also be helpful when
selecting the journal and bearing materials.

The first research on thermal effects in journal bearings was conducted by American engineer
Albert Kingsbury and his study of lubrication (1933). In the study, he showed that there were significant
differences between theoretical and experimental results regarding the load carrying capacity of the
hydrodynamic bearing. The differences appeared since the heat generated by viscous friction was
neglected in the previous theoretical research [2]. According to some researchers, the generated heat
can reduce the load carrying capacity up to two times [3,4].

To describe the thermal phenomena in hydrodynamic lubrication theory, different methods have
been developed. Due to their simplicity and efficiency, adiabatic methods [5] occupy a significant place
among these methods, and according to adiabatic methods there is no thermal interaction between the
oil film and the surrounding bearing structure. In other words, all the heat generated in the oil film is
transported away by convection, i.e., together with the oil flowing out of the bearing sides.

One of the simplest adiabatic methods is the effective viscosity method [2,3,5–9], which yields
acceptable results in a limited range of the bearing operation regime [2,6,7]. According to this method,
the concept of effective viscosity, which corresponds to an average temperature value in the oil
film (effective temperature), is introduced. The average temperature is calculated in an iterative
manner based on the equations of global energy balance for the oil film, using the appropriate
viscosity-temperature functional dependence. The oil film temperature determined in this way is a
measure of thermal load of the bearing.

A more general and more complex adiabatic method is Cope’s adiabatic method [2,5,10], in
which the central place is occupied by Cope’s adiabatic energy equation and Reynolds equation of
hydrodynamic lubrication. Cope’s adiabatic energy equation describes temperature field in the oil film
of the journal bearing. The equation is a special case of a general energy equation, which neglected
solid body heat conduction. The Reynolds equation describes the pressure field in the oil film of the
journal bearing. In these equations, the temperature and pressure variations across the film thickness
are neglected, so the system of equations becomes two-dimensional. Neither the energy equation
nor Reynolds equations can be solved in analytical form. Therefore, they must be transformed into
appropriate forms, in order to find their solution.

Solving the energy and Reynolds equations can be simplified using Couette method [5]. According
to this method, the pressure gradients in the modified energy equation are neglected, and a simpler
energy equation is obtained so that it can be easily integrated.

Many researchers dealt with various problems related to the operation of journal bearings
under thermo-hydrodynamic lubrication conditions, using different forms of energy and Reynolds
equations. Stokes and Ettles [11] determined the temperature field in the oil and bearing material by
simultaneously solving the Reynolds and energy equations in the oil film, the Laplace equation in the
bearing material and the oil-mixing conditions at inlet, using the numerical finite difference method.
The same equations are numerically solved by Fillon and Bouyer [12], who investigated the influence
of journal bearing wear on its thermo-hydrodynamic performance in terms of hydrodynamic pressure,
temperature distributions at the film/bush interface, oil flow rate, power losses and thickness of the oil
film. Sehgal et al. [13] also used the finite difference method while solving the Reynolds and energy
equations simultaneously for the purpose of a comparative theoretical analysis of thermal behaviour
of three different types of journal bearing configurations: circular, axial groove and off-set halves.
Banwait and Chandrawatt [14] solved the Reynolds, energy and heat conduction equations for fluid,
journal and bush temperatures using numerical methods (Finite Element Method and Finite Difference
Method) with the aim to investigate the influence of different boundary conditions on the accuracy of
the obtained solutions, comparing them with temperatures measured on the inner surface of the bush.
In reference [15], the numerical solution of Reynolds equation and energy equation has been carried out
for an elliptic bore journal bearing to outline the temperature profile, with the energy equation solved
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adiabatically. A comparison is then made with the circular case to analyse the effect of this irregularity.
Moreno et al. [16] transformed Reynolds equation, the energy equation, and the diffusion equation
for the bearing into the corresponding finite difference equations. In order to solve these equations,
they developed their own model based on an analogy with the electrical circuit. Pierre et al. [17]
carried out a thermo-hydrodynamic analysis of a misaligned journal bearing to predict the size of the
misalignment, pressure and temperature under steady-state conditions. The analysis is based on the
numerical solution of Reynolds equation, the energy equation, and Laplace heat conduction equation
for the bush material. Chauhan et al. [18] conducted a thermo-hydrodynamic analysis of an elliptical
journal bearing for three different grade oils in order to determine which of them is most resistant to
thermal degradation. The parameters for evaluating this degradation were oil pressure, oil temperature
and load carrying capacity of the bearing. These parameters were determined by solving the Reynolds
equation, the energy equation, and Laplace heat conduction equation for the bush material numerically.
The reference [19] presents a model for pressure and temperature calculations in a journal bearing both
for the steady and the time-dependent case, taking into account shaft and bushing thermal exchange
with the external environment. While solving the problem, different numerical methods were used:
the finite element method, the finite difference method, and the boundary elements method. Kornaev
et al. developed a computational model of a plain fluid-film bearing with means to create artificial
thermal and viscosity wedge effect. The model is based on the generalized Reynolds equation and
the energy equation that are solved simultaneously using finite difference method combined with the
iteration procedure [20]. Babin et al. investigated the possibility of controlled lubrication principles
application and presented a complex mathematical model of an active thrust fluid-film bearing with
a central feeding orifice. The model incorporates the Reynolds equation and the adiabatic energy
equation, which are solved numerically using finite difference method [21]. Li et al. investigated the
characteristics of water-lubricated conical hydrodynamic and hybrid bearings numerically solving the
generalized Reynolds’ equation and energy equation with enthalpy, and considered the effects of the
gas–liquid two phases turbulence temperature, and axial flow [22].

In all the above-mentioned studies, the thermo-hydrodynamic lubrication equations are solved
using different numerical methods, which can be time consuming and very demanding in terms of
computer resources engagement. This can be a serious disadvantage if the real-time monitoring of a
machine is necessary for diagnostic reasons. In such situations, it would be convenient to have an
analytical solution for the temperature field in the oil film of the journal bearing, which could help faster
diagnosis of the bearing condition. This motivated the authors of the paper to give their contribution
in solving the problem. To that end, they derived an analytic expression for a two-dimensional
temperature field in a journal bearing, solving simultaneously the adiabatic energy equation with a
simplified Reynolds equation for a short bearing. As a criterion for assessing whether a bearing is long
or short, the slenderness ratio (bearing length / bearing diameter) is used. If the ratio is greater than 2,
the bearing is long, and if it is less than 1, the bearing is short [23,24]. Reynolds equation for a short
bearing is a good approximation of the two-dimensional Reynolds equation if the slenderness ratio is
less than 1. Since the slenderness ratio of modern bearings generally lies in the range between 0.5 and
1 [23,24], the temperature distribution equation for a short bearing would be applicable to most of the
bearings currently used.

In order for the oil film temperature distribution equation to be derived analytically, it was
necessary to simplify the problem by introducing a number of assumptions. For the sake of the reader,
all the assumptions are listed below:

• The oil is an incompressible Newtonian fluid.
• There is no slip of the oil at the boundaries.
• The oil film thickness is small compared with the other dimensions.
• Pressure and temperature are constant through the thickness of the oil film.
• Circumferential pressure gradient in the oil film is neglected.
• The oil viscosity and specific heat are constant.



Symmetry 2020, 12, 539 4 of 19

• There is no thermal interaction between the oil film and the surrounding bearing structure.
• The bearing is operating under steady-state conditions (journal speed and bearing load are

constant).
• The structural components of the bearing are rigid and smooth.
• There is no misalignment in the bearing structure.
• The oil supply is not taken into account.
• No asperity contacts between the journal and the bearing.
• The bearing geometry is symmetric.
• The oil flow is laminar.

The rest of the paper is structured as follows. In Section 2, the initial equations are given for
solving the temperature field problem in a journal bearing. Section 3 describes the procedure of how
to derive and solve the differential equation of the temperature field for a short bearing. Section 4
contains the presentation and discussion of the results obtained after the derived equation is applied
on a particular journal bearing. The conclusions of the research are given in Section 5.

2. Governing Equations

In a bearing bush with the length L and the radius R, a journal of the radius r performs rotational
movement with the constant angular velocity ω under hydrodynamic lubrication conditions, as shown
in Figure 1.
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Figure 1. Schematics of plain journal bearing with basic parameters.

Hydrodynamic lubrication in steady-state conditions for an incompressible fluid, is described by
Reynolds equation of form [5,8].

∂
∂x

(
h3

η

∂p
∂x

)
+
∂
∂z

(
h3

η

∂p
∂z

)
= 6U

dh
dx

, (1)

where

x—streamwise coordinate direction,
θ—angular coordinate,
z—axial coordinate direction,
p—pressure in an arbitrary point (x,z),
η—oil viscosity,
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U = Rω—sliding velocity,
h = c(1 + ε · cosθ)—oil film thickness,
c—radial clearance,
ε = e/c—eccentricity ratio,

Φ = arctan · (π · (1− ε2)
1/2/4ε)—attitude angle

e—eccentricity (e = ObO j)

Energy balance of oil film in the bearing, assuming there is no heat exchange with the mating
surfaces, is described by the adiabatic energy equation of the form [5]

ρcp

(
u
∂T
∂x

+ w
∂T
∂z

)
= η

(∂u
∂y

)2

+

(
∂w
∂y

)2, (2)

where

ρ—density of oil
cp—specific heat at constant pressure
T—oil film temperature
u—circumferential velocity
w—axial velocity
y—cross-film coordinate direction.

In order to determine the temperature field in the oil film, it is convenient to transform the
Equation (2) to a form containing pressure gradients, i.e.,

6Uρcph
[(

1−
h2

6ηU
∂p
∂x

)(
∂T
∂x

)
−

h2

6ηU
∂p
∂z

(
∂T
∂z

)]
=

12ηU2

h

1 +
h4

12η2U2

(∂p
∂x

)2

+

(
∂p
∂z

)2
, (3)

the derivation procedure of which is provided in Appendix A.
In order to solve Equations (1) and (3), they need to be converted into a dimensionless form. For

that purpose, the appropriate dimensionless variables θ, z∗, λ, h∗, p∗ and T∗ are introduced according
to the expressions:

θ =
x
R

, z∗ =
2z
L

, λ =
L

2R
, h∗ =

h
c

, p∗ = p
(c/R)2

6 ηω
, T∗ = T

ρ cp

ηω
. (4)

Bearing in mind the dimensionless variables from the Equation (4), the Equations (1) and (3) become

∂
∂θ

(
(h∗)3 ∂p∗

∂θ

)
+

1
λ2

∂
∂z∗

(
(h∗)3 ∂p∗

∂z∗

)
=

dh∗

dθ
, (5)

(
1− (h∗)2 ∂p∗

∂θ

)
∂T∗

∂θ
−
(h∗)2

λ 2

∂p∗

∂z∗
∂T∗

∂z∗
= 2

(R/c)2

(h∗)2 + 6(R/c)2(h∗)2
(∂p∗

∂θ

)2

+
1
λ 2

(
∂p∗

∂z∗

)2, (6)

respectively.
The dimensionless parameter λ, defined in the Equation (4), is called the slenderness ratio and is

the criterion for estimating the length of the journal bearing. If it is greater than 2, then the bearing
is long, and if it is less than 1, the bearing is short [23,24]. As most journal bearings in engineering
applications belong to short bearings, the focus will be directed to such bearings only. In the case of
a short bearing, the circumferential pressure gradient can be neglected in comparison with the axial
pressure gradient. This assumption enables the coupled Equations (5) and (6) to be solved for a short
bearing, in order to determine the temperature field in the bearing oil film.
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For a better understanding of the entire work, a block diagram of the solution algorithm is given
in Figure 2.Symmetry 2020, 12, x FOR PEER REVIEW 6 of 19 
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3. Solution Procedure

Since the circumferential pressure gradient is neglected in short bearings, the Reynolds and the
energy equations have the following form

1
λ2

∂
∂z∗

(
(h∗)3 ∂p∗

∂z∗

)
=

dh∗

dθ
, (7)

∂T∗

∂θ
−
(h∗)2

λ 2

∂p∗

∂z∗
∂T∗

∂z∗
= 2

(R/c)2

(h∗)2 + 6(R/c)2(h∗)2 1
λ 2

(
∂p∗

∂z∗

)2

. (8)

By solving the Equation (7), the expression for the axial pressure gradient is obtained

∂p∗

∂z∗
=

dh∗

dθ
λ2

(h∗)3 · z
∗. (9)
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Introducing the Equation (9) into the Equation (8) it becomes

∂T∗

∂θ
−
(h∗)2

λ 2
dh∗

dθ
λ2

(h∗)3 · z
∗
·
∂T∗

∂z∗
= 2

(R/c)2

(h∗)2 + 6(R/c)2(h∗)2 1
λ 2

dh∗

dθ
λ2

(h∗)3 z∗
2

(10)

or
∂T∗

∂θ
−

dh∗

dθ
1
h∗
· z∗ ·

∂T∗

∂z∗
= 2

(R/c)2

(h∗)2 + 6λ2(R/c)2
(

dh∗

dθ

)2 (z∗)2

(h∗)4
. (11)

The solution of the Equation (11) is assumed in the form

T∗(θ, z∗) = f (θ) · (z∗)2 + g(θ), (12)

where f (θ) and g(θ) are the functions to be determined.
Finding partial derivatives of the Equation (12) for θ and z∗

∂T∗

∂θ
= f ′(θ) · (z∗)2 + g′(θ), (13)

∂T∗

∂z∗
= 2 f (θ) · z∗, (14)

and substituting them into the Equation (11) it gives

f ′(θ) · (z∗)2 + g′(θ)+ 2
ε sinθ

(1 + ε cosθ)
f (θ) · (z∗)2 =

2 (R/c)2

(1 + ε cosθ)2 + 6λ2 (R/c)2ε 2 sin2 θ

(1 + ε cosθ)4
· (z∗)2. (15)

By grouping the terms containing (z∗)2 and the terms that are functions only of θ into two separate
groups, the following equations are obtained

f ′(θ) · (z∗)2 + 2
ε sinθ

(1 + ε cosθ)
f (θ) · (z∗)2 = 6λ2 (R/c)2ε 2 sin2 θ

(1 + ε cosθ)4
· (z∗)2, (16)

g′(θ) =
2 (R/c)2

(1 + ε cosθ)2 . (17)

After dividing the Equation (16) with (z∗)2, we get

f ′(θ) + 2
ε sinθ

(1 + ε cosθ)
f (θ) = 6λ2 (R/c)2ε 2 sin2 θ

(1 + ε cosθ)4
. (18)

The Equation (18) is a linear, non-homogeneous equation, solved by the constant variation method.
For this purpose, only the homogeneous part of the differential equation is observed and it has the form

f ′(θ) + 2
ε sinθ

(1 + ε cosθ)
f (θ) = 0. (19)

The newly obtained homogeneous differential equation is separable, i.e.,

d f
f

= −2
ε sinθ

(1 + ε cosθ)
dθ. (20)

After introducing the substitution

u = 1 + ε cosθ, (21)
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the Equation (20) becomes
d f
f

= 2
du
u

. (22)

Integrating the Equation (22) gives

ln( f ) = ln
(
C · u2

)
, (23)

i.e.,
f = C · (1 + ε cosθ)2, (24)

where C is an integration constant for the homogeneous differential equation. As the non-homogeneous
differential equation is solved here, then C is actually a function of θ. In order to determine C(θ), the
Equation (24) should be introduced into the Equation (18), which gives a new differential equation

dC
dθ · (1 + ε cosθ)2

− 2C · (1 + ε cosθ) · ε sinθ+ 2 ε sinθ
(1+ε cosθ) ·C · (1 + ε cosθ)2 =

= 6λ2 (R/c)2ε 2 sin2 θ

(1+ε cosθ)4 .
(25)

i.e.,
dC
dθ
· (1 + ε cosθ)2 = 6λ2 (R/c)2ε 2 sin2 θ

(1 + ε cosθ)4
(26)

or

dC = 6λ2 (R/c)2ε 2 sin2 θ

(1 + ε cosθ)6 dθ. (27)

The solution of the Equation (27) may be written in the general form

C(θ) = 6(R/c)2λ2 ε 2
· I2 0

6 , (28)

where

I2 0
6 =

∫
(sinθ)2

(1 + ε cosθ)6 dθ. (29)

The integral from the Equation (29) is of the type

Il m
n =

∫
sinl θ · cosm θ

(1 + ε cosθ)n dθ, (30)

and its solving is shown in Appendix B. The solution is

I2 0
6 =

(
1− ε2

)
−9/2
·

(
1
2 + 3

8ε
2
)
· arccos

(
ε+cosθ

1+ε cosθ

)
− ε

(
1− ε2

)
−4
·

(
3
4 + 1

8ε
2
)
·

sinθ
1+ε cosθ−

−
1
2

(
1− ε2

)−4
·

sinθ·(ε+cosθ)
(1+ε cosθ)2 + ε

(
1− ε2

)−4
·

(
3
4 + 1

16ε
2
)
·

sinθ·(ε+cosθ)2

(1+ε cosθ)3 −

−ε
(
1− ε2

)−3
·

(
1
4 + 1

48ε
2
)
·

sin3 θ
(1+ε cosθ)3−

−
3
8ε

2
((

1− ε2
)−4 sinθ·(ε+cosθ)3

(1+ε cosθ)4 −

(
1− ε2

)−3
·

sin3 θ·(ε+cosθ)
(1+ε cosθ)4

)
+

+ 1
80ε

3
(
5
(
1− ε2

)−4 sinθ·(ε+cosθ)4

(1+ε cosθ)5 − 10
(
1− ε2

)−3
·

sin3 θ·(ε+cosθ)2

(1+ε cosθ)5

)
+

+ 1
80ε

3
((

1− ε2
)−2
·

sin5 θ
(1+ε cosθ)5

)
+ D′2.

(31)

After substituting the Equation (31) in the Equation (28), it can be written

C(θ) = 6(R/c)2λ2 ε 2
· I2 0

6 + D2, (32)
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where D2 is a new integration constant.
The Equation (24) now becomes

f (θ) =
(
6(R/c)2λ2 ε 2

· I2 0
6 + D2

)
· (1 + ε cosθ)2. (33)

After determining the function f (θ), the function g(θ) is determined by solving the Equation (17).
With respect to the Equation (30), the function g(θ) may be written in the form

g(θ) = 2 (R/c)2
· I0 0

2 . (34)

The solving of integral I0 0
2 is described in Appendix B and the solution is

I0 0
2 =

1

(1− ε2) 3/2
·

(
arccos

(
ε+ cosθ

1 + ε cosθ

)
− ε ·

(
1− ε2

) 1/2
·

sinθ
1 + ε cosθ

)
+ D′3. (35)

Now it is

g(θ) =
2 (R/c)2

( 1− ε2)

 1

( 1− ε2)1/2
arccos

(
ε+ cosθ

1 + ε cosθ

)
−

ε sinθ
( 1 + ε cosθ )

+ D3, (36)

where D3 is a new integration constant.
Taking into account the Equations (33) and (36), the Equation (12) becomes

T∗(θ, z∗) =
[
6
(

R
c

)2
λ2 ε 2

· I2 0
6 + D2

]
· (1 + ε cosθ)2(z∗)2+

+2
(

R
c

)2 1
( 1−ε2)

[
1

( 1−ε2)1/2 arccos
(
ε+cosθ

1+ε cosθ

)
−

ε sinθ
( 1+ε cosθ )

]
+ D3.

(37)

The constants D2 and D3 are determined from the boundary condition T∗(0, z∗) = T0
∗, where

T0
∗ is the dimensionless temperature of the oil at θ = 0. The boundary condition is based on the

assumption that the oil temperature does not change in the area between the oil inlet (vertical plane)
and the attitude plane defined by the angle Φ (Figure 1). Hence, Equation (37) becomes

T∗(0, z∗) = D2 · (1 + ε )2(z∗)2 + D3 = T0
∗. (38)

Also, it is assumed that the temperature T0
∗ is constant along the axis of the bearing. In other

words, it is independent of the coordinate z∗, so it must be D2 = 0. Therefore, D3 = T0
∗ and the

Equation (38) becomes

T∗(θ, z∗) = 6
(

R
c

)2
λ2 ε 2

· I2 0
6 · (1 + ε cosθ)2(z∗)2+

+2
(

R
c

)2 1
( 1−ε2)

[
1

( 1−ε2)1/2 arccos
(
ε+cosθ

1+ε cosθ

)
−

ε sinθ
( 1+ε cosθ )

]
+ T0

∗.
(39)

By using the expression for the dimensionless temperature from the Equation (4), the Equation (39)
can be transformed into the form

T(θ, z∗) ·
ρ cp
ηω = 6

(
R
c

)2
λ2 ε 2

· I2 0
6 · (1 + ε cosθ)2(z∗)2+

+2
(

R
c

)2 1
( 1−ε2)

[
1

( 1−ε2)1/2 arccos
(
ε+cosθ

1+ε cosθ

)
−

ε sinθ
( 1+ε cosθ )

]
+ T0 ·

ρ cp
ηω ,

(40)

i.e.,

T(θ, z∗) = 6 ηωρ cp
·

(
R
c

)2
λ2 ε 2

· I2 0
6 · (1 + ε cosθ)2(z∗)2+

+2 ηωρ cp

(
R
c

)2 1
( 1−ε2)

[
1

( 1−ε2)1/2 arccos
(
ε+cosθ

1+ε cosθ

)
−

ε sinθ
( 1+ε cosθ )

]
+ T0.

(41)
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The Equation (41) is the final analytic form of the temperature distribution in the oil film of short
journal bearing.

While deriving this equation, it is assumed that the viscosity of oil is not changed with the
temperature, which is also one of the assumptions that the Reynolds equation derivation is based on.
This is justified to some extent, since journal bearings are dominantly used in internal combustion
engines, where they are lubricated by so-called multi grade oils, characterized by their viscosity
resistance to temperature change. On the other hand, by introducing this assumption, a considerably
simpler theoretical model of temperature distribution in the oil film is derived, on the basis of which
satisfactory results can be obtained quite quickly.

4. Results and Discussion

In order to validate the mathematical model of temperature distribution in a journal bearing oil
film (Equation (41)), the experimental results given in the reference [25] were used. In that sense, the
bearing parameters were also taken from the reference [25] and are presented in Table 1.

Table 1. Basic parameters of the journal bearing.

Parameter Unit Value

Journal radius, R m 0.05
Bearing length, L m 0.08

Clearance ratio, c/R - 0.0029
Lubricant viscosity at 40 oC, η Pa s 0.0277
Lubricant density at 40 oC, ρ kg/m3 860

Lubricant specific heat, cp J/(kg o C) 2000
Inlet lubricant temperature, T0

oC 40
Journal speed (lower value), n rpm 2000
Journal speed (higher value), n rpm 4000
Bearing load (lower value), F N 4000
Bearing load (higher value), F N 6000

The operating point of the bearing is defined by the force F and journal speed n and the two
parameters significantly affect the eccentricity ratio ε. In order to apply the temperature distribution
Equation (41) to the data in Table 1, it is necessary to relate the parameters F, n and ε to each other. The
parameters are related by the equation of the load capacity that is given in the form [8]

F =
η ·ω ·R · L3

4 · c2 ·
ε

(1− ε2)2 ·
(
16 · ε2 + π2

· (1− ε2)
)1/2

. (42)

By introducing the data from Table 1 into the Equation (42) and applying the “trial and error”
method to the Equation (42) it is found that the value ε = 0.44 corresponds to the operating point
(F = 4000 N, n = 2000 rpm), and the value ε = 0.38 corresponds to the operating point (F = 6000 N,
n = 4000 rpm). The corresponding values of attitude angle Φ are 58.04◦ and 62.39◦, respectively.
Furthermore, by substituting the data from Table 1 and the corresponding ε values into the Equation (41),
the theoretical oil film temperature distribution in the midplane cross-section of the bearing has been
obtained at the two operating points.

The first operating point is defined by the journal speed of n = 2000 rpm and the load of F = 4000 N.
The theoretical temperature distribution corresponding to that operating point is represented by the
blue line in Figure 3. In Figure 3, the oil temperature values measured under the same operation
conditions are also plotted and marked by the red circles. Similarly, Figure 4 shows the theoretical
temperature distribution and the corresponding experimental values [25], at n = 4000 rpm and
F = 6000 N.



Symmetry 2020, 12, 539 11 of 19

Symmetry 2020, 12, x FOR PEER REVIEW 11 of 19 

 

The first operating point is defined by the journal speed of n = 2000 rpm and the load of F = 
4000 N. The theoretical temperature distribution corresponding to that operating point is 
represented by the blue line in Figure 3. In Figure 3, the oil temperature values measured under the 
same operation conditions are also plotted and marked by the red circles. Similarly, Figure 4 shows 
the theoretical temperature distribution and the corresponding experimental values [25], at n = 4000 
rpm and F = 6000 N. 

 
Figure 3. Oil film temperature distribution at n  = 2000 rpm and F  = 4000 N. 

 
Figure 4. Oil film temperature distribution at n  = 4000 rpm and F = 6000 N. 

Looking at the both diagrams, one can notice that in the area where the bearing angle is less 
thanΦ , the measured oil temperature is slightly higher than at the oil inlet. That is the result of 
mixing the oil that enters the bearing with the oil that is already inside the bearing. This 
phenomenon is not taken into account while deriving the temperature distribution equation, hence 
the deviation of about 1–2 °C in relation to the previous assumption about the temperature 
constancy in the bearing area between the oil supply and the attitude plane. However, this 

Figure 3. Oil film temperature distribution at n = 2000 rpm and F = 4000 N.

Symmetry 2020, 12, x FOR PEER REVIEW 11 of 19 

 

The first operating point is defined by the journal speed of n = 2000 rpm and the load of F = 
4000 N. The theoretical temperature distribution corresponding to that operating point is 
represented by the blue line in Figure 3. In Figure 3, the oil temperature values measured under the 
same operation conditions are also plotted and marked by the red circles. Similarly, Figure 4 shows 
the theoretical temperature distribution and the corresponding experimental values [25], at n = 4000 
rpm and F = 6000 N. 

 
Figure 3. Oil film temperature distribution at n  = 2000 rpm and F  = 4000 N. 

 
Figure 4. Oil film temperature distribution at n  = 4000 rpm and F = 6000 N. 

Looking at the both diagrams, one can notice that in the area where the bearing angle is less 
thanΦ , the measured oil temperature is slightly higher than at the oil inlet. That is the result of 
mixing the oil that enters the bearing with the oil that is already inside the bearing. This 
phenomenon is not taken into account while deriving the temperature distribution equation, hence 
the deviation of about 1–2 °C in relation to the previous assumption about the temperature 
constancy in the bearing area between the oil supply and the attitude plane. However, this 

Figure 4. Oil film temperature distribution at n = 4000 rpm and F = 6000 N.

Looking at the both diagrams, one can notice that in the area where the bearing angle is less than
Φ, the measured oil temperature is slightly higher than at the oil inlet. That is the result of mixing
the oil that enters the bearing with the oil that is already inside the bearing. This phenomenon is not
taken into account while deriving the temperature distribution equation, hence the deviation of about
1–2 ◦C in relation to the previous assumption about the temperature constancy in the bearing area
between the oil supply and the attitude plane. However, this assumption is justified by the fact that
the experimental data show a slight change in temperature in the mentioned area.

In the area of temperature rise (the area between the angle Φ and Φ + 180), there is a very good
agreement between the experimental and theoretical values with a deviation of up to 2 ◦C, at both
operating points considered. Furthermore, the maximum oil temperature calculated is slightly higher
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than the maximum temperature measured, which can be useful if one wants to predict critical operating
points of the bearing.

In the area between the bearing angle corresponding to the maximum temperature and the
bearing angle corresponding to the oil inlet, temperature decreases. A fairly good agreement between
theoretical and experimental results is clearly seen when the bearing operates under light-duty
conditions (Figure 3). However, for heavier operating conditions (Figure 4), the deviation is slightly
higher (up to about 3 ◦C).

A more complete view of temperature distribution in the oil film of the bearing is enabled by a
3D-diagram showing the temperature change along both the bearing circumference and length. Such
a diagram for the bearing considered at n = 4000 rpm and F = 6000 N, is shown in Figure 5. It is
noted that the temperature variation along the axis of the bearing has a slightly parabolic shape that
is symmetrical in relation to the bearing midplane (z∗ = 0). Furthermore, the temperature decreases
from the side planes to the midplane of the bearing. A similar temperature distribution was obtained
experimentally by Mitsui et al. [26].
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The good agreement of the derived equation with the experimental data is encouraging when
it comes to the possibility of its application. The authors hope that such an equation could serve to
estimate the temperature of the oil film quickly, which may be useful in a diagnostic tool designed
to monitor the bearing conditions in real time. A detailed analysis of the possibility of applying the
derived equation in a diagnostic tool, as well as its potential implementation, could be a topic for
future research. In the text to follow, only a hint is given of how this equation could work in real time.

Most of the input data in Equation (41) are constants, while the others depend on operating
parameters of the bearing. The constants are:

— characteristics of the oil used (density ρ, viscosity η and specific heat at constant pressure cp) and
— geometric parameters of the bearing (bearing radius R, radial clearance c and bearing length L).

These constants do not affect the real time monitoring concept and their values are stored in the
computer’s memory.

On the other hand, the operating parameters (oil inlet temperature T0, journal speed n and bearing
load F) are measured using appropriate sensors. On the basis of the measured values, the angular
velocity ω and eccentricity ratio ε are calculated.
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Such a scenario could be possible for steady-state conditions of the bearing operation. After
each transition from one steady-state condition to another, the temperature distribution should
be recalculated.

5. Conclusions

In this paper, the equation of temperature field in the oil film of short journal bearing is derived
analytically. The results of applying this equation to a journal bearing have been compared to the
corresponding experimental results of other researchers for the same bearing, showing a small deviation.
The good agreement of the derived equation with experimental data, as well as its explicit analytical
form, allows for temperature distribution in the oil film to be determined quickly, with satisfactory
accuracy but without demanding computer resources. This indicates that the derived equation might
be useful in a computer diagnostic tool as a part of a more complex procedure for the real time
monitoring of the bearing condition.

Another contribution of this research is that the energy equation is transformed into a form, which
allows it to be coupled with the Reynolds equation for short journal bearing. As a result, a partial
differential equation of the temperature field for a short bearing is obtained, which is in the form that
allows it to be solved analytically and, as far as the authors are aware, it is not encountered in any
previous literature.
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Appendix A. Conversion of the Energy Equation into the Form Containing Pressure Gradients

The initial form of the energy equation is [5]

ρcp

(
u
∂T
∂x

+ w
∂T
∂z

)
= η

(∂u
∂y

)2

+

(
∂w
∂y

)2. (A1)

In order for this equation to be coupled with the Reynolds equation, it is necessary to express flow
velocities u and w through the pressure gradients ∂p

∂x and ∂p
∂z . All these quantities are contained in the

Navier–Stokes equations (from which Reynolds equation is derived), and it is these equations that are
used to establish the relationship between the energy equation and the Reynolds equation. By applying
the Navier–Stokes equations to the oil flow in the journal bearing, their simplified form is obtained

−
∂p
∂x

+ η
∂2u
∂y2 = 0, (A2)

∂p
∂y

= 0, (A3)

−
∂p
∂z

+ η
∂2w
∂y2 = 0. (A4)

By integrating the Equation (A2) using the boundary conditions u(0) = 0 and u(h) = U, we get

u =
1

2η
∂p
∂x

(
y2
− yh

)
+

y
h

U. (A5)
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The Equation (A3) shows that the pressure does not change along the oil thickness, i.e., p = const.
By integrating the Equation (A4) using the boundary conditions u(0) = 0 and u(h) = U, we get

w =
1

2η
∂p
∂z

(
y2
− yh

)
. (A6)

Due to the low thickness of the oil film, it makes sense to use mean values of the velocities u and
w, i.e., us and ws. These values can be calculated as follows

us =
1
h

h∫
0

u(y) dy (A7)

and

ws =
1
h

h∫
0

w(y) dy, (A8)

so

us =
1
2

U −
1

12η
∂p
∂x

h2, (A9)

ws = −
1

12η
∂p
∂z

h2. (A10)

If the values u and w in the left-hand side (LHS) of the Equation (A1) are substituted by us and ws,
it yields

LHS = ρcp
1
2

U
((

1−
1
6

h2 1
ηU

∂p
∂x

)
∂T
∂x
−

1
6

h2 1
ηU

∂p
∂z
∂T
∂z

)
. (A11)

In order to transform the right-hand side (RHS) of the Equation (A1) to a more suitable form, it is
necessary to differentiate the velocities u and w with respect to y,

du
dy

=
1

2η
∂p
∂x

(2y− h) +
U
h

, (A12)

dw
dy

=
1

2η
∂p
∂z

(2y− h). (A13)

For simplicity, the following substitutions are introduced

a =
1

2η
∂p
∂x

(A14)

and

b =
1

2η
∂p
∂z

, (A15)

so the Equations (A12) and (A13) become

du
dy

= a(2y− h) +
U
h

, (A16)

dw
dy

= b(2y− h). (A17)
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These derivatives should be calculated for those values of y (yus and yws) where the velocities u and
w have the values us and ws, respectively. The values yus and yws are determined from the equations

u(y) = us, (A18)

w(y) = ws. (A19)

By combining the Equations (A5) and (A9), the Equation (A18) becomes

a
(
y2
− yh

)
+

y
h

U =
(1

2
U −

1
6

ah2
)
. (A20)

The solutions of the quadratic equation are

y1 = yus1 =
1

12ah

(
6ah2

− 6U − 2
√
(3a2h4 + 9U2)

)
(A21)

and

y2 = yus2 =
1

12ah

(
6ah2

− 6U + 2
√
(3a2h4 + 9U2)

)
. (A22)

After introducing these solutions into the Equation (A16) and arranging it, we get

du
dy

(y = yus1) = −

√
3

3h

√
(3U2 + a2h4) (A23)

and
du
dy

(y = yus2) =

√
3

3h

√
(3U2 + a2h4). (A24)

respectively.
By squaring the Equations (A23) and (A24), we get(

du
dy

) 2

=
U2

h2 +
1
3

a2h2. (A25)

The parameters related to the speed w are determined by a similar procedure. In that sense, the
Equations (A6), (A10) and (A19) are combined, where the Equation (A19) becomes

b
(
y2
− yh

)
= −

b
6

h2 (A26)

or

y2
− yh = −

h2

6
. (A27)

The solutions of the quadratic equation are

y1 = yws1 =
(1

2
−

1
6

√

3
)
· h (A28)

and
y2 = yws2 =

(1
2
+

1
6

√

3
)
· h. (A29)

After introducing the solutions into the Equation (A17) and arranging it, we get

dw
dy

(y = yws1) = −

√
3

3
bh, (A30)
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dw
dy

(y = yws2) =

√
3

3
bh, (A31)

respectively.
Squaring the Equations (A30) and (A31) results in(

dw
dy

) 2

=
1
3

b2h2. (A32)

If the Equations (A25) and (A32) are introduced into the right-hand side of the Equation (A1),
it yields

RHS = η

(
U2

h2 +
1
3

a2h2 +
1
3

b2h2
)
, (A33)

i.e.,

RHS = η

(
U2

h2 +
1
3

h2
(
a2 + b2

))
. (A34)

Taking into account the Equations (A14) and (A15), the Equation (A34) becomes

RHS = η

U2

h2 +
h2

12η2

( ∂p
∂x

) 2

+

(
∂p
∂z

) 2, (A35)

i.e.,

RHS =
ηU2

h2

1 +
h4

12η2

( ∂p
∂x

) 2

+

(
∂p
∂z

) 2. (A36)

Using the Equations (A11) and (A36), the initial energy Equation (A1) can be written in the form

ρcp
1
2

U
((

1−
1
6

h2 1
ηU

∂p
∂x

)
∂T
∂x
−

1
6

h2 1
ηU

∂p
∂z
∂T
∂z

)
=
ηU2

h2

1 +
h4

12η2U2

( ∂p
∂x

) 2

+

(
∂p
∂z

) 2 (A37)

or

6Uρcph
((

1−
h2

6ηU
∂p
∂x

) (
∂T
∂x

)
−

h2

6ηU
∂p
∂z

(
∂T
∂z

))
=

12ηU2

h

1 +
h4

12η2U2

( ∂p
∂x

) 2

+

(
∂p
∂z

) 2. (A38)

Appendix B. Solving the Integral Equation (30)

Integrals of the form Il m
n are solved by introducing the Sommerfeld substitution

1 + ε cosθ =
1− ε2

1− ε cosγ
, (A39)

after which solutions are obtained in the function of the γ angle. In order to get their solution in the
function of the angle θ, the following expressions, derived from the Equation (A39), are used

sinγ =
(1−ε2)

1/2
·sinθ

1+ε cosθ , cosγ = ε+cosθ
1+ε cosθ ,

γ = a cos
(
ε+cosθ

1+ε cosθ

)
, dθ =

(1−ε2)
1/2
·dγ

1−ε cosγ .
(A40)

While determining the temperature field in the oil film of short journal bearing, the integrals I0 0
2

and I2 0
6 must be solved.
(1) Solving the integral I0 0

2 =
∫

1
(1+ε cosθ) 2 dθ
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Taking into account the Equation (A39), the integral becomes

I0 0
2 =

1

(1− ε2) 3/2

∫
(1− ε cosγ) dγ, (A41)

i.e.,

I0 0
2 =

1

(1− ε2) 3/2
· (γ− ε sinγ). (A42)

Returning to the variable θ by using the Equation (A40), one obtains

I0 0
2 =

1

(1− ε2) 3/2
·

(
arccos

(
ε+ cosθ

1 + ε cosθ

)
− ε ·

(
1− ε2

) 1/2
·

sinθ
1 + ε cosθ

)
+ D′3, (A43)

where D′3 is an integration constant.

(2) Solving the integral I2 0
6 =

∫ (sinθ)2

(1+ε cosθ)6 dθ

Taking into account the Equation (A39), the integral is converted to a simpler form

I2 0
6 =

(
1− ε2

)
−9/2
·

∫
(1− ε cosγ)3

· (sinγ)2dγ. (A44)

Solving the integral term-by-term, it gives

I2 0
6 =

(
1− ε2

)
−9/2
·

(
1
2γ−

1
4 sin 2γ− 3

32ε
2 sin 4γ+ 1

48ε
3 sin 3γ+ 1

80ε
3 sin 5γ

)
+

+
(
1− ε2

)
−9/2
·

(
3
8ε

2γ− 3
4ε sinγ+ 1

4ε sin 3γ− 1
8ε

3 sinγ
)
.

(A45)

The expressions of the form sin iγ, i = {2, 3, 4, 5} can be expanded as

sin 2γ = 2 sinγ · cosγ. (A46a)

sin 3γ = 3 cos2 γ · sinγ− sin3 γ. (A46b)

sin 4γ = 4 cos3 γ · sinγ− 4 cosγ sin3 γ. (A46c)

sin 5γ = 5 cos4 γ · sinγ− 10 cos2 γ sin3 γ+ sin5 γ. (A46d)

Returning the expressions (A46a–A46d) to the old variable θ according to the Equation (A40),
one gets

sin 2γ = 2
(
1− ε2

)1/2
·

sinθ · (ε+ cosθ)

(1 + ε cosθ)2 , (A47a)

sin 3γ = 3
(
1− ε2

)1/2
·

sinθ · (ε+ cosθ)2

(1 + ε cosθ)3 −

(
1− ε2

)3/2
·

sin3 θ

(1 + ε cosθ)3 , (A47b)

sin 4γ = 4
(
1− ε2

)1/2 sinθ · (ε+ cosθ)3

(1 + ε cosθ)4
− 4

(
1− ε2

)3/2
·

sin3 θ · (ε+ cosθ)

(1 + ε cosθ)4
, (A47c)

sin 5γ = 5
(
1− ε2

)1/2 sinθ·(ε+cosθ)4

(1+ε cosθ)5 − 10
(
1− ε2

)3/2
·

sin3 θ·(ε+cosθ)2

(1+ε cosθ)5 +

+
(
1− ε2

)5/2
·

sin5 θ
(1+ε cosθ)5 .

(A47d)
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Introducing the expressions (A47a–A47d) and γ = arccos
(
ε+cosθ

1+ε cosθ

)
into the Equation

(A45), provides

I2 0
6 =

(
1− ε2

)
−9/2
·

(
1
2 + 3

8ε
2
)
· a cos

(
ε+cosθ

1+ε cosθ

)
− ε

(
1− ε2

)
−4
·

(
3
4 + 1

8ε
2
)
·

sinθ
1+ε cosθ−

−
1
2

(
1− ε2

)−4
·

sinθ·(ε+cosθ)
(1+ε cosθ) 2 + ε

(
1− ε2

)−4
·

(
3
4 + 1

16ε
2
)
·

sinθ·(ε+cosθ)2

(1+ε cosθ) 3 −

−ε
(
1− ε2

)−3
·

(
1
4 + 1

48ε
2
)
·

sin3 θ
(1+ε cosθ) 3−

−
3
8ε

2
((

1− ε2
)−4 sinθ·(ε+cosθ)3

(1+ε cosθ)4 −

(
1− ε2

)−3
·

sin3 θ·(ε+cosθ)
(1+ε cosθ)4

)
+

+ 1
80ε

3
(
5
(
1− ε2

)−4 sinθ·(ε+cosθ)4

(1+ε cosθ) 5 − 10
(
1− ε2

)−3
·

sin3 θ·(ε+cosθ) 2

(1+ε cosθ) 5

)
+

+ 1
80ε

3
((

1− ε2
)−2
·

sin5 θ
(1+ε cosθ) 5

)
+ D′2

(A48)

where D′2 is an integration constant.
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