
symmetryS S

Article

An Approach for Studying Asymptotic Properties of
Solutions of Neutral Differential Equations

Omar Bazighifan 1,2

1 Department of Mathematics, Faculty of Science, Hadhramout University, Hadhramout 50512, Yemen;
o.bazighifan@gmail.com

2 Department of Mathematics, Faculty of Education, Seiyun University, Hadhramout 50512, Yemen

Received: 11 February 2020; Accepted: 16 March 2020; Published: 4 April 2020
����������
�������

Abstract: The paper is devoted to the study of oscillation of even-order neutral differential equations.
New Kamenev-type oscillation criteria are established, and they essentially improve and complement
some the well-known results reported in the literature. Ideas of symmetry help us determine the
correct ways to study these topics and show us the correct direction, because they are often invisible.
To illustrate the main results, some examples are mentioned.
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1. Introduction

The objective of this paper is to investigate the oscillation of solutions to the following equation:(
a (υ) u(n−1) (υ)

)′
+ q (υ) φ (y (δ (υ))) = 0, υ ≥ υ0, (1)

where n is an even natural number, n ≥ 2, β ≥ 1 is a constant and

u (υ) := yβ (υ) + ϑ (υ) y (ς (υ)) . (2)

We assume throughout that the following conditions are satisfied:

(P1) a, ϑ, q ∈ C ([υ0, ∞) , [0, ∞)) , a (υ) > 0, a′ (υ) ≥ 0, 0 ≤ ϑ (υ) < 1 and∫ ∞

υ0

1
a (s)

ds = ∞; (3)

(P2) φ ∈ C (R,R) , φ (y) ≥ yβ for y 6= 0;
(P3) ς ∈ C ([υ0, ∞) , (0, ∞)) , ς (υ) ≤ υ and limυ→∞ ς (υ) = ∞; δ ∈ C ([υ0, ∞) ,R) , δ (υ) ≤ υ, δ′ (υ) >

0 and limυ→∞ δ (υ) = ∞.

We consider only those solutions x of Equation (1) which satisfy sup{|y (υ)| : υ ≥ L} > 0, for
all L > Ly. We consider only those solutions y of (1) which satisfy sup{|y (υ)| : υ ≥ L} > 0, for all
L > Ly. We assume that (1) possesses such a solution. Differential equations have many applications
in this life, it is related to biology, physics, dynamica, and so on. In particular, the oscillatory behavior
of ordinary differential equations plays a crucial role in this applications, so there was an interest of
many authors in studying the qualitative behavior of differential equations see [1–28].

For instance, Zhang et al. [25] examined the oscillation of even-order neutral differential equations

u(n) (υ) + q (υ) f (y (δ (υ))) = 0
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and established the criteria for the solution to be oscillatory when 0 ≤ p (υ) < 1.
Xing et al. [21] proved that the equation(

r (υ)
(

u(n−1) (υ)
)α)′

+ q (υ) yα (δ (υ)) = 0,

is oscillatory if (
δ−1 (υ)

)′
≥ δ0 > 0, ς′ (υ) ≥ ς0 > 0, ς−1 (δ (υ)) < υ

and

lim inf
υ→∞

∫ υ

ς−1(δ(υ))

q̂ (s)
r (s)

(
sn−1

)α
ds >

(
1
δ0

+
pα

0
δ0ς0

)
((n− 1)!)α

e
,

where α is a quotient of odd positive integers and q̂ (υ) := min
{

q
(
δ−1 (υ)

)
, q
(
δ−1 (ς (υ))

)}
.

In this article, using the technique of Riccati and comparison with first-order differential equations,
we establish new Kamenev-type oscillation criteria of an even-order neutral differential equation.
To illustrate the main results, some examples are mentioned.

Notation 1. For convenience, we use the following notations:

ϕ (υ) := q (υ) (1− ϑ (δ (υ)))

and

ϕ̃ (υ) :=
µδn−1 (υ)

(n− 1)!a (δ (υ))
Q (υ) .

2. Some Auxiliary Lemmas

We shall employ the following lemmas:

Lemma 1 ([9]). Let γ be a ratio of two odd numbers, V > 0 and U are constants. Then

Uy−Vy(γ+1)/γ ≤ γγ

(γ + 1)γ+1
Uγ+1

Vγ
.

Lemma 2 ([17]). Let u ∈ Cn ([υ0, ∞) , (0, ∞)) . If u(n) (υ) is eventually of one sign for all large υ, then there
exist a υy > υ1 for some υ1 > υ0 and an integer m, 0 ≤ m ≤ n with n + m even for u(n) (υ) ≥ 0 or
n + m odd for u(n) (υ) ≤ 0 such that m > 0 implies that u(k) (υ) > 0 for υ > υy, k = 0, 1, ..., m− 1 and
m ≤ n− 1 implies that (−1)m+k u(k) (υ) > 0 for υ > υy, k = m, m + 1, ..., n− 1.

Lemma 3 ([18]). Let u ∈ Cn ([υ0, ∞) , (0, ∞)) . If u(n−1) (υ) u(n) (υ) ≤ 0 for υ ≥ υ0, then for every
λ ∈ (0, 1) there exists a constant k > 0 such that

|y (λυ)| ≥ kυn−1
∣∣∣y(n−1) (υ)

∣∣∣ ,

for all υ large enough.

Lemma 4 ([19]). Let u ∈ Cn ([υ0, ∞) , (0, ∞)) . Assume that u(n) (υ) is of a fixed sign, on [υ0, ∞), u(n) (υ)

not identically zero and that there exists a υ1 ≥ υ0 such that, for all υ ≥ υ1,

u(n−1) (υ) u(n) (υ) ≤ 0.
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If we have limυ→∞ u (υ) 6= 0, then there exists υλ ≥ υ0 such that

u (υ) ≥ λ

(n− 1)!
υn−1

∣∣∣u(n−1) (υ)
∣∣∣ ,

for every λ ∈ (0, 1) and υ ≥ υλ.

We define the generalized Riccati substitutions

ϕ (υ) := π (υ)
a (υ) u(n−1) (υ)

u (λδ (υ))
. (4)

Lemma 5. Assume that y (υ) is an eventually positive solution of Equation (1). Then

u (υ) > 0, u′ (υ) > 0, u(n−1) (υ) ≥ 0 and u(n) (υ) ≤ 0, (5)

for υ ≥ υ2.

Proof. Suppose y (υ) is an eventually positive solution of (1). Then, we can assume that y (υ) > 0,
y (ς (υ)) > 0 and y (δ (υ)) > 0 for υ ≥ υ1. Hence, we deduce u (υ) > 0 for υ ≥ υ1 and(

a (υ) u(n−1) (υ)
)′

= −q (υ) φ (y (δ (υ))) ≤ 0. (6)

This means that a (υ) u(n−1) (υ) is decreasing and u(n−1) (υ) is eventually of one sign. We claim that
u(n−1) (υ) ≥ 0. Otherwise, if there exists a υ2 ≥ υ1 such that u(n−1) (υ) < 0 for υ ≥ υ2, and(

a (υ) u(n−1) (υ)
)
≤
(

a (υ2) u(n−1) (υ2)
)
(υ2) = −L,

where L > 0. Integrating the above inequality from υ2 to υ we get

u(n−2) (υ) ≤ u(n−2) (υ2)− L
∫ υ

υ2

1
a (s)

ds.

Letting υ → ∞, we have limυ→∞ u(n−2) (υ) = −∞, which contradicts the fact that u (υ) is a positive
solution by Lemma 2. Hence, we have that u(n−1) (υ) ≥ 0 for υ ≥ υ1. Furthermore, from Equation (1)
and (P1) , we have(

a (υ) u(n) (υ)
)
= −

(
a′ (υ) u(n−1) (υ)

)
(υ)− q (υ) φ (y (δ (υ))) ≤ 0,

this implies that u(n) (υ) ≤ 0, υ ≥ υ1. From Lemma 2, we obtain that (5) are satisfied. This completes
the proof of the lemma.

3. Oscillation Criterion

In this section, we study the results of oscillation for (1) by using the technique of comparison
with first order delay equations.

Theorem 1. If for some constant µ ∈ (0, 1), the differential equation

y′ (υ) + ϕ̃ (υ) y (δ (υ)) = 0 (7)

is oscillatory, then every solution of (1) is oscillatory.



Symmetry 2020, 12, 555 4 of 8

Proof. Suppose that Equation (1) has a nonoscillatory solution in [υ0, ∞). Without loss of generality, in
our proof we only need to be concerned with positive solutions of Equation (1). Using Lemma 5, we
get that (5) holds. From definition (2), we get

yβ (υ) = u (υ)− ϑ (υ) y (ς (υ)) ≥ u (υ)− ϑ (υ) u (ς (υ)) ≥ u (υ)− ϑ (υ) u (υ)

≥ (1− ϑ (υ)) u (υ)

and so
yβ (δ (υ)) ≥ u (δ (υ)) (1− ϑ (δ (υ))) . (8)

From (P2) and (8), we find

φ (y (δ (υ))) ≥ u (δ (υ)) (1− ϑ (δ (υ))) . (9)

Combining (1) and (9), we obtain(
a (υ) u(n−1) (υ)

)′
≤ −q (υ) u (δ (υ)) (1− ϑ (δ (υ)))

≤ −u (δ (υ)) q (υ) (1− ϑ (δ (υ)))

= −ϕ (υ) u (δ (υ)) . (10)

In view of Lemma 4, we find
u (υ) ≥ µ

(n− 1)!
υn−1u(n−1) (υ) ,

for all υ ≥ υ2 ≥ max
{

υ1, υµ

}
. Thus, by using (10), we obtain

(
a (υ) u(n−1) (υ)

)′
+

µδn−1 (υ) ϕ (υ)

(n− 1)!a (δ (υ))

(
a (δ (υ)) u(n−1) (δ (υ))

)
≤ 0.

Therefore, we see that y (υ) := a (υ) u(n−1) (υ) is a positive solution of the differential inequality

y′ (υ) + ϕ̃ (υ) y (δ (υ)) ≤ 0.

From ([19], Corollary 1), we have that the associated differential Equation (7) also has a positive
solution, which yields a contradiction. This completes the proof.

By using Theorem 2.1.1 in [20], we get the following corollary.

Corollary 1. If

lim inf
υ→∞

∫ υ

δ(υ)

δn−1 (s)
a (δ (s))

ϕ (s)ds >
(n− 1)!

µe
,

for some constant µ ∈ (0, 1) , then every solution of (1) is oscillatory.

Lemma 6. Assume that y be an eventually positive solution of (1) and (5) holds. If we have the function
ς ∈ C1[υ, ∞) defined as (4), where π ∈ C1 ([υ0, ∞) , (0, ∞)) and constants λ ∈ (0, 1) , k > 0, then

ς′ (υ) ≤ π′ (υ)

π (υ)
ς (υ)− π (υ) ϕ (υ)− λ

η (υ)
ς2 (υ) , (11)

for all υ > υ1, where υ1 large enough.

Proof. Let y is an eventually positive solution of (1) and (5) holds. As in the proof of Theorem 1, we
arrive at (10).
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Now, by using Lemma 3 with y = u′, there exists k > 0 such that

u′ (λδ (υ)) ≥ k (δ (υ))n−2 u(n−1) (δ (υ))

≥ k (δ (υ))n−2 u(n−1) (υ) . (12)

From (4), we see that ς (υ) > 0 for υ ≥ υ1, and

ς′ (υ) =
π′ (υ)

π (υ)
ς (υ) + π (υ)

(
a (υ) u(n−1) (υ)

)′
u (λδ (υ))

− λπ (υ)
a (υ) u(n−1) (υ) u′ (λδ (υ)) δ′ (υ)

(u (λδ (υ)))2 .

From (10), we obtain

ς′ (υ) ≤ π′ (υ)

π (υ)
ς (υ)− π (υ) ϕ (υ)− λ

u′ (δ (υ)) δ′ (υ)

u (λδ (υ))
ς (υ) .

By using (12), we have

ς′ (υ) ≤ π′ (υ)

π (υ)
ς (υ)− π (υ) ϕ (υ)− λ

k (δ (υ))n−2 u(n−1) (υ) δ′ (υ)

u (λδ (υ))
ς (υ) ,

which yields

ς′ (υ) ≤ π′ (υ)

π (υ)
ς (υ)− π (υ) ϕ (υ)− λ

η (υ)
ς2 (υ) .

The proof is complete.

In this theorem, we establish new Kamenev-type oscillation criteria for (1).

Theorem 2. If there exist a function π ∈ C1 ([υ0, ∞) ,R+) and constants λ ∈ (0, 1) , k > 0, m ∈ N such that

lim sup
υ→∞

1
υm

∫ υ

υ0

(υ− s)m

(
π (s) ϕ (s)− 1

4λ

(
π′ (s)
π (s)

)2 a (s)π (s)
k (δ (s))n−2 δ′ (s)

)
ds = ∞, (13)

then every solution of (1) is oscillatory.

Proof. Suppose that Equation (1) has a nonoscillatory solution in [υ0, ∞). Without loss of generality, in
our proof we only need to be concerned with positive solutions of Equation (1). From Lemma 1, we set
U = π′/π, V = λkδn−2 (υ) δ′ (υ) / (a (υ)π (υ)) and y = ς (υ), thus, we have

ς′ (υ) ≤ −π (υ) ϕ (υ) +
1

4λ

(
π′ (υ)

π (υ)

)2 a (υ)π (υ)

k (δ (υ))n−2 δ′ (υ)
.

Thus, we have

−
∫ υ

υ0

(υ− s)m ς′ (s) (s)ds ≥
∫ υ

υ0

(υ− s)m

(
π (s) ϕ (s)− 1

4λ

(
π′ (s)
π (s)

)2 a (s)π (s)
k (δ (s))n−2 δ′ (s)

)
ds.

Since ∫ υ

υ0

(υ− s)m ς′ (s)ds = m
∫ υ

υ0

(υ− s)m−1 ς (s)ds− (υ− υ0)
m ς (υ0) . (14)
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Thus, we get (
υ− υ0

υ

)m
ς (υ0)−

m
υm

∫ υ

υ0

(υ− s)m−1 ς (s)ds

≥ 1
υm

∫ υ

υ0

(υ− s)m

(
π (s) ϕ (s)− 1

4λ

(
π′ (s)
π (s)

)2 a (s)π (s)
k (δ (s))n−2 δ′ (s)

)
ds.

Hence,

1
υm

∫ υ

υ0

(υ− s)m

(
π (s) ϕ (s)− 1

4λ

(
π′ (s)
π (s)

)2 a (s)π (s)
k (δ (s))n−2 δ′ (s)

)
ds ≤

(
υ− υ0

υ

)m
ς (υ0) ,

and so

lim sup
υ→∞

1
υm

∫ υ

υ0

(υ− s)m

(
π (s) ϕ (s)− 1

4λ

(
π′ (s)
π (s)

)2 a (s)π (s)
k (δ (s))n−2 δ′ (s)

)
ds→ ς (υ0) ,

which contradicts (13) and this completes the proof.

Example 1. For υ ≥ 1, consider the equation

(
υ

(
y (υ) +

1
2

y
(υ

3

)))′′
+

q0

υ
y
(υ

2

)
= 0, (15)

where q0 > 0 is a constant. Note that β = 1, n = m = 2, a (υ) = υ, ϑ (υ) = 1/2, q (υ) = q0/υ, δ (υ) =

υ/2 and ς (υ) = υ/3. If we set π (υ) = υ, k = 1, then∫ ∞

υ0

1
a (s)

ds =
∫ ∞

υ0

1
s

ds = ∞

and
ϕ (υ) := q (υ) (1− ϑ (δ (υ))) =

q0

2υ
.

Thus, we get

lim sup
υ→∞

1
υm

∫ υ

υ0

(υ− s)m

(
π (s) ϕ (s)− 1

4λ

(
π′ (s)
π (s)

)2 a (s)π (s)
k (δ (s))n−2 δ′ (s)

)
ds

= lim sup
υ→∞

1
υ2

∫ υ

υ0

(υ− s)2 (q0 − 1)ds = ∞ .

Therefore, by Theorem 2, all solution of (15) is oscillatory if q0 > 1.

Example 2. For υ ≥ 1, consider the equation

(
υ

(
y (υ) +

1
3

y
(υ

2

)))′′
+

c
υ

y
(υ

3

)
= 0, (16)

where c > 0 is a constant. Note that β = 1, n = m = 2, a (υ) = υ, ϑ (υ) = 1/3, q (υ) = q0/υ, δ (υ) = υ/3
and ς (υ) = υ/2. If we set π (υ) = υ, k = 1, then∫ ∞

υ0

1
a (s)

ds =
∫ ∞

υ0

1
s

ds = ∞
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and
ϕ (υ) := q (υ) (1− ϑ (δ (υ))) =

2c
3υ

.

By using Corollary 1, we find

lim inf
υ→∞

∫ υ

δ(υ)

δn−1 (s)
a (δ (s))

ϕ (s)ds

lim inf
υ→∞

2q0

3

∫ υ

δ(υ)

1
s

ds.

Thus, all solution of (16) is oscillatory if c > 0.5.

4. Conclusions

In this paper, a class of even-order neutral differential equations is studied. We establish a
new Kamenev-type oscillation criterion using the Riccati transformation and theory of comparison.
Furthermore, in future work, we can to get some Hille and Nehari types and Philos type oscillation
criteria of (1).
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