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Abstract: In automatic systems used in the control and monitoring of industrial processes, fieldbuses
with specific real-time requirements are used. Often, the sensors are connected to these fieldbuses
through embedded systems, which also have real-time features specific to the industrial environment
in which it operates. The embedded operating systems are very important in the design and
development of embedded systems. A distinct class of these operating systems is real-time operating
systems (RTOSs) that can be used to develop embedded systems, which have hard and/or soft
real-time requirements on small microcontrollers (MCUs). RTOSs offer the basic support for
developing embedded systems with applicability in a wide range of fields such as data acquisition,
internet of things, data compression, pattern recognition, diversity, similarity, symmetry, and so
on. The RTOSs provide basic services for multitasking applications with deterministic behavior on
MCUs. The services provided by the RTOSs are task management and inter-task synchronization and
communication. The selection of the RTOS is very important in the development of the embedded
system with real-time requirements and it must be based on the latency in the handling of the critical
operations triggered by internal or external events, predictability/determinism in the execution of the
RTOS primitives, license costs, and memory footprint. In this paper, we measured and compared
the timing performance for synchronization throughout an event, semaphore, and mailbox for the
following RTOSs: FreeRTOS 9.0.0, FreeRTOS 10.2.0, rt-thread, Keil RTX, uC/OS-II, and uC/OS-III.
For the experimental tests, we developed test applications for two MCUs: ARM Cortex™-M4 and
ARM Cortex™-M0+ based MCUs.

Keywords: real time systems; real time operating systems; task synchronization; microcontrollers

1. Introduction

In the automation systems designed and developed to monitor and control industrial processes,
it is very important that they comply with the real-time requirements of the industrial installations.
Typically, these systems contain industrial networks (fieldbuses) to which embedded devices are
connected. These devices can acquire data from the sensors and receive/send data through the
fieldbuses. The embedded systems used in the automation systems must have hard and/or soft
real-time features and they must react in the imposed deadline to the data/events received throughout
the fieldbuses or data acquired from the sensors connected to the embedded devices [1].

Usually, the design and development of the embedded systems, from the software point of
view, is based on an embedded operating system. The real time operating systems (RTOSs) are a
particular category of embedded operating systems that were designed to provide support in the
design and develop of embedded systems with real-time capabilities. These operating systems have
been developed especially for small microcontrollers (MCUs) on 8, 16, or 32 bits that are used to
design and develop embedded systems [2]. Examples of RTOSs include FreeRTOS, RT-Thread, eCOS,

Symmetry 2020, 12, 592; doi:10.3390/sym12040592 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-2840-5283
http://www.mdpi.com/2073-8994/12/4/592?type=check_update&version=1
http://dx.doi.org/10.3390/sym12040592
http://www.mdpi.com/journal/symmetry


Symmetry 2020, 12, 592 2 of 19

LynxOS, QNX, VxWorks, OSEK (Open Systems and their Interfaces for the Electronics in Motor
Vehicles), uC-OS/II, uC-OS/III, KEIL RTX, etc. [2]. These operating systems are designed to provide a
deterministic and predictable time in the handling of the internal or external events [3,4]. In addition,
RTOSs are widely used in the design and development of applications based on the Internet of Things
(IoT) and Industrial Internet of Things (IIoT) concepts [5].

RTOSs are part of a category of operating systems designed for embedded systems, especially for
systems with a small memory for code and data. Usually, these RTOSs are designed for MCUs that
do not use virtual memory [6]. Linux and Windows that use have real time characteristics but there
are variants for real time systems for these systems. For example, RTLinux is a patch for Linux with
real time capabilities where real time tasks do not use virtual memory and have direct access to the
hardware [7]. Windows Embedded Industry is the Windows based operating system for embedded
systems with real time capabilities. We will consider small MCUs, the MCUs that do not have virtual
memory and cannot use operating systems based on Linux, Windows, or Android (for example, these
operating systems can be used on ARM Cortex Ax MCUs). With these MCUs, specialized applications
with real-time capabilities can be developed.

This paper aims to make a comparison of RTOSs that are used on small MCUs, such as those
based on ARM Cortex Mx architectures. These MCUs use RTOSs with a small memory footprint and
without a memory management system such as virtual memory. Applications based RTOS for small
MCUs are used in domains such as automotive [8], industrial automation [9], telecommunications [10],
avionics [11], military systems [12], Internet of things, Industrial Internet of things [13], and so on.
An area of applicability is that of a symmetry concept by developing embedded systems for data
acquisition, data compression, pattern recognition, diversity, and sustainability. Usually, the software
applications for these domains are a combination of soft and hard real-time tasks [6].

Several features, services, and capabilities are used to compare RTOSs. The most important ones
are the maximum time for deactivation of the interrupts and the worst-case execution time (WCET)
for tasks and RTOS services such as the routines of service of the interruptions, the time of executing
the receipts, etc. [14,15]. Other features used in the comparison are modularity, scalability, memory
footprint, latency, response time, and jitter [6,14]. An RTOS provides the basic services for developing
multitasking software applications. The fundamental service provided by an RTOS is task management.
Each task has associated a priority and the task with the highest priority from the ready state will
enter in running state. There are two types of scheduling: preemptive and non-preemptive. At the
pre-emptive scheduling, a task from the running state can be preempted by a higher priority task
that enters in the ready state, while at the non-preemptive scheduling, the task from the running
state must voluntarily release the processor. Most RTOSs use pre-emptive scheduling because it
allows for achieving a shorter response time for critical operations. In addition, most RTOSs include
synchronization and inter-task communication services such as semaphores, events, mailboxes, and
message queues [6].

RTOSs can be compared from several perspectives, some of them are: the time for synchronization
and inter-task communication or the response time of the task with the highest priority after the
expected event occurs. In [14], we presented a first comparative test for the time of task context
switching where task switching is triggered by an event, semaphore, or mailbox. In this paper, we
measured, compared, and analyzed the timing performances for the following RTOSs: FreeRTOS
9.0.0, FreeRTOS 10.2.0, rt-thread, Keil RTX, uC/OS-II, and uC/OS-III. All of these RTOSs support
preemptive scheduling.

For testing, we used two MCUs: ARM Cortex™-M4 and ARM Cortex™-M0+ based MCUs.
The paper extends the experimental tests presented in [14]. In [14], there are measured and compared
timing performances for task context switching from a lower priority task to a higher priority task
triggered by an event, semaphore, and mailbox. In this paper, the tests are completed by measuring the
timing performances for the task context switching from a higher priority task to a lower priority task
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and the timing performance for the primitives (non-blocking) used to wait and send/signal an event,
semaphore, and mailbox. Furthermore, we use the newest compiler provided by the KEIL MDK-ARM.

The main contribution of this paper is that the experimental tests are performed in actual MCUs,
and not just simulations using software tools as found in related works. A test pin (an output GPIO
(general-purpose input/output) selected according to the MCU and board used) is used to signal the
beginning and the end of the operation for which we want to measure the time and the time is measured
with an oscilloscope on this test pin. This paper aims to compare the timing for synchronization of the
tasks for the most used RTOSs on small microcontrollers. To achieve this goal, RTOSs are executed on
the same hardware configuration.

This paper is structured as follows: Section 2 presents some performances tests presented in the
specialized literature and the motivation for the target RTOS’s selection, Section 3 describes the test
setup. Section 4 contains discussions related to the experimental results. The conclusions are drawn in
Section 5.

2. Related Works

Interesting studies related to the market for embedded systems are published by EETimes.com
and Embedded.com every year. Unfortunately, the last study was published in 2017 and it has not
updated [16]. In the last market study, they conclude that 68% of the ongoing embedded projects use
and embedded operating system, and of these, 41% use an open-source embedded operating system.
If we exclude the embedded system based on Linux or Windows, the most used RTOS are FreeRTOS
(20% of the ongoing embedded projects that use an operating systems), in house solution (19%), Texas
Instruments RTOS (5%), Texas Instruments DSP/BIOS (5%), Micrium uC-OS/III (5%), Keil RTX (4%),
Micrium uC-OS/II (4%), and Wind River VxWorks (4%). From embedded operating systems based on
Windows or Linux, the most used are Embedded Linux (22%), Debian (13%), Microsoft (Windows
Embedded 7/Standard) (8%), Microsoft (Windows 7 Compact or earlier) (5%), and Angstrom (3%).

There are also other studies for the RTOS market such as the one published by MarketWatch
Company in 2019 that presents the recent trends, size, growth, top manufacturers, and forecast to 2024
related to RTOS systems [17].

In [18], the authors present a Benchmark of Real Time Operating Systems. They focused ion
FreeRTOS, RTEMS, uC/OS-III, and Linux and they measured the overhead for semaphore and message
queue services in different scenarios on an MPCore Cortex A−7 900 MHz MCU. In this case, the best
performances (low overhead) are achieved by uC/OS-III and the weaker performances by Linux.

A comparison between a multicore RTOS and VxWorks is presented in [19]. The evaluation of
performances is performed in a simulator. The paper highlight the performances gain for a multicore
RTOS is. In [20], a performance evaluation of the RTOS for robotics is presented. Benchmarks and
comparisons of the RTOSs that use CMSIS-RTOS layer are presented in [21]. The tests are performed
for the RTX, X RT Kernel, FOSS Free and open-source software), and ChibiOS. The authors conclude
that the use of the CMSIS(Cortex Microcontroller Software Interface Standard)-RTOS layer do not
generate overhead for the RTOSs. In [21], the authors present an evaluation of the performances of
real time systems for vision based navigation. The tests are performed on a Rasberry Pi 2 model B
device on PREEMPT_RT and Xenomai kernels. The authors conclude that the best performances are
achieved by the Xenomai kernel. In [22], a comparison related performances of the FreeRTOS and
uC/OS-III is presented. The experimental tests are performed on Renesas RX63N MCU for the memory
footprint, latency, and service performances. In almost all of the tests, the uC/OS-III outperforms the
performances of the FreeRTOS. All of these comparisons are performed using simulators or different
software tools. In this paper, we wanted to compare the most used RTOS for small MCUs in actual and
modern MCUs using a GPIO output pin as a test pin to measure the time for different operations. By
this method, we can measure the real-time of the operations without other influences and as close as
possible to the real cases. RTOSs will be executed on the same hardware platform for a more accurate
comparison of performance.
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In this paper, we focused on four RTOSs for small MCUs: FreeRTOS, Micrium uC-OS/II and
Micrium uC-OS/III, Keil RTX, and rt-thread. FreeRTOS [23] is an open-source RTOS widely used in the
embedded systems project. Micro-Controller Operating Systems (uC-OS) is a commercial RTOS [24].
Keil RTX is a royalty-free RTOS included in the KEIL MDK-ARM tools [25]. rt-thread is an open source
RTOS [26].

We chose these RTOSs because they are at the top in the study [14], to which we added rt-thread
because we used it in previous projects. In addition, the targets of these RTOSs are small MCUs such
as those based on ARM Cortex M0, M3, and M4 architectures. Focusing on small microcontrollers,
no Linux or Windows-based operating systems were used because they target systems that are more
complex and, with small exceptions, cannot be executed on small MCUs. For example, Linux can be
executed on Arm Cortex M4 microcontrollers, but this variant is not used in practice for developing
dedicated devices with real-time capabilities. For the selected RTOSs, there are many examples of
real-time applications developed, and uC/OS-II and uC/OS-III have certifications for the development
of applications in the avionics, industrial control, and medical fields [27]. In [28], the authors propose
a system in the manufacturing IoT environment that includes aggregation nodes based on an Arm
Cortex M4 MCU and rt-thread RTOS. An evolution and an analysis of the real-time behaviors of the
FreeRTOS is presented in [29]. In [30], the authors present an implementation and performances of
a low-level control of omnidirectional mobile robot based on Keil RTX RTOS and an ARM Cortex
M4 MCU. In [31], an Electromagnetic transmitter for EM-MWD System is presented. The device is
developed with TMS320F2S12 MCU (digital signal processors based on Armv8.1-M architecture) and
uC/OS-III RTOS.

All of these examples highlight the fact that the selected RTOSs are used in the development of
real applications with real-time capabilities and present additional arguments for their selection, in
addition to the study presented in [14].

3. Experimental Setup

In [14], we presented some experimental results related to the time for context switching between
a low priority task to a higher priority task for the uC-OS/II, FreeRTOS 9.0.0, rt-thread, and Keil RTX
triggered by an event, semaphore and mailbox on two MCUs: STM32F407IG ARM Cortex™-M4
MCU, and STM32L053R8 ARM Cortex™-M0+ MCU. In this paper, we complete the experimental
tests with the time for the context switching between a high priority task to a lower priority task
(blocking wait in the high priority task) and the time for the primitives used to send and receive an
event, semaphore, and mailbox. Furthermore, we perform the experimental tests on two additional
RTOSs: FreeRTOS10.2.0 and uC-OS/III.

In the current section, we will describe and explain the experimental software applications when
the event is used as a synchronization mechanism between two tasks. For the events, we tested the
following scenarios: scenario 1—signal an event causing a context switch, scenario 2—wait for an
event causing context switching, scenario 3—signal an event without context switching (unblocking
signal), and scenario 4—wait for an available event (unblocking wait). In these scenarios, a test pin
(an output GPIO selected according to the MCU and board used) will be used to signal the beginning
and the end of the operation for which we want to measure the time. The time will be measured
with an oscilloscope on the test pin. For each scenario, we have a software application. This software
application is uploaded to the MCU flash in order to be executed.

The software diagram of the test software applications for the scenario 1 is shown in Figure 1 (it is
similar with the test software application used in [14]). The software applications consist of two tasks
with distinct priorities and the RTOSs are configured to use preemptive scheduling. In the test software
applications, the task with the lower priority, at a period of 1 ms, sets the test pin to 0 (LOW/FALSE)
and signals an event. The higher priority task waits, in an infinite loop, the event with infinite time-out
and when it receives the event, it sets the test pin to 1 (HIGH/TRUE). Thus, with an oscilloscope on the
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test pin, it is possible to determine the time for the task context switching triggered by the task with a
lower priority by sending the event waited by a task with the higher priority.
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Figure 2 presents the software diagram of the test software applications for the scenario 2.
The software applications consist of two tasks with distinct priorities and preemptive scheduling
will be used. The higher priority task sets the test pin to 0 (LOW/FALSE) and it waits an event with
a time-out of 1 ms. The lowest priority task consists of an infinite loop that sets the test pin to the
one logic. By calling the primitive for the event wait, a context switch is triggered and the lower
priority task, which is in the ready state, will pass to the running state and it will set the test pin to 1
(HIGH/TRUE). With this configuration and by using the test pin, we can measure the time for task
context switching from a higher priority task to a lower priority task.

These two scenarios can be found in real software applications. For example, a task can wait for
data from a communication line and when data are received, an event, mailbox, or semaphore is sent
to the task that waits for data. This can trigger a task context switch to execute the task that waits for
data. Or, a task can expect an event from another peripheral, such as a digital input, and a task context
switch must be triggered (with an event, mailbox, or semaphore) to handle that event.
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Figure 3 presents the software diagram of the test software applications for the scenario 3.
The software applications consist of only one task. In this case, every 1 ms, the test pin is set to
0 (LOW/FALSE), and an event (not expected by any task) is triggered, whereupon the test pin is set to
1 (HIGH/TRUE). After these operations, the primitive for waiting an event is called to receive and clear
the event. In this scenario, with the help of the test pin, the execution time for the primitive for event
triggering can be measured.
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Figure 4 presents the software diagram of the test software applications for the scenario 4.
The software applications consist of only one task. In this scenario, we want to measure the execution
time for the primitive used to receive an existing event. The software applications are similar with the
third scenario, with differences that the test pin is set to 0 (LOW/FALSE) before the call for the waiting
primitive and is set to 1 (HIGH/TRUE) after this call.
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Test software applications with the same configuration were developed when semaphores or
mailboxes are used as synchronization mechanisms, using the waiting and signalling primitives specific
to each mechanism. We developed a software application for each of the chosen RTOSs on two MCUs:
STM32F407IG ARM Cortex™-M4 MCU and STM32L053R8 ARM Cortex™-M0+ MCU. We used the
following versions of RTOSs: uC-OS/II V2.92.11, uC-OS/III V3.05.00, FreeRTOS 9.0.0, FreeRTOS 10.2.0,
rt-thread V2.1.1, and Keil RTX V4.82.0. For all RTOSs, the most code is in C because the purpose of
these RTOSs is to provide better portability. Using the same compiler, they can be compared under the
same conditions, with no optimized code. For each synchronization mechanism, a software application
has been developed for each MCU, and from these software applications, the scenarios are activated
with conditional compilation.

The tests were performed on two MCUs: STM32F407IG ARM Cortex™-M4 MCU and
STM32L053R8 ARM Cortex™-M0+ MCU. The following development kits were used for these
MCUs: KEIL MCBSTM32F400 and STM32 NUCLEO-L053R8. These two architectures are not similar
although both are based on a 32-bit RISC processor. ARM Cortex M0 + used a Von Neumann
architecture with instruction pipelining of two stages. The ARM Cortex M4 used a Harvard architecture
with Instruction pipelining of three stages. For the STM32F407IG ARM Cortex™-M4 MCU, the system
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clock was setup at 168 MHz (the source is a high-speed external clock of 25MHz with PLL activated)
and for the STM32L053R8 ARM Cortex™-M0+ MCU, the system clock was setup at 32 MHz (the source
is high-speed internal clock with PLL activated). The purpose is to compare the performances of the
RTOSs on the same MCU, not on different MCUs. We used two MCUs to see whether performance
differences between RTOSs are the same on different MCUs. On the two chosen microcontroller
architectures, a wide range of devices with hard/soft real-time capabilities can be designed and
developed based on real-time operating systems.

RTOSs were configured with fully preemptive scheduling, without round-robin (a single task
on a priority level) and with the internal tick clock of 1 ms. For all software applications, we used
the latest compiler (V5.06 update 6 build 750) included in the KEIL MDK-ARM Pro 5.29 tools with
compiler optimization level 3 (O3).

The configurations for compiler are the same for all software applications and we used the same
functions to handle the test GPIO pin. For the STM32L053R8 ARM Cortex™-M0+ MCU we used the
PC port, pin 13 as test pin, and for STM32F407IG ARM Cortex™-M4 MCU we used the GPIOH port,
pin 3 as test pin.

For this reason, the differences related to the time performances are due only to the way of
implementation of each RTOS. Regarding the measured values, the measurements errors are generated
by the oscilloscope (we used the PicoScope 2205MSO—that provides a vertical resolution up to 12 bits
and a time base accuracy of ±100 ppm).

For each chosen MCU, there are developed three software applications for each RTOS, one for
mailboxes, one for semaphores, and one for events. These software applications consist of 2 tasks
and, with conditional compilation, one of the 4 scenarios defined in this section is activated. Some
examples for the code for the tasks are shown in Appendix A for FreeRTOS when semaphores are used,
Appendix B for uC/OS-II RTOS when events are used, Appendix C for rt-thread when mailboxes are
used, and Appendix D for Keil RTX when events are used. With the help of the RTOS_TEST macro, one
of the 4 scenarios is activated. In addition, from these examples, you can see that the same functions
are used to handle the test pin. It can be observed that the operations are executed periodically, at
every 1 ms, to capture any jitter that may occur. The used oscilloscope is capable to detect and to
measure this jitter. The jitter is very important in determining the worst-case execution time (WCET),
which is very important for hard real-time systems.

4. Experimental Results and Discussions

In this section, the results obtained for the tests described in the previous section are presented.
The tests were performed on two MCUs: STM32F407IG ARM Cortex™-M4 MCU and STM32L053R8
ARM Cortex™-M0+ MCU.

For the measurements, we used the PicoScope 2205MSO oscilloscope. The operations are
periodically triggered at every 1 ms and the presence of jitter can be detected on the oscilloscope (the
jitter is determined by the oscilloscope, not by software). The test pin was connected to the analog part
of the oscilloscope, we used a threshold of 3 V was used to detect the start of the operation (to detect
the transition from 0 V to 3.3 V), and we used a timebase of 5 µs/div.

All operations are performed periodically and the oscilloscope can easily detect the present of
jitter. The jitter of 1 ms clock tick is not present because each operation is triggered at the end of
the clock tick interrupt and is much shorter by 1 ms. All measurements were performed in a series.
The uncertainty budget of the time measurement is generated by the errors generated by the PicoScope
2205MSO oscilloscope that provides a vertical resolution up to 12 bits and a time base accuracy of
±100 ppm. For a timebase of 5 us, the uncertainty budget of the time measurement is of ± 0.5 ns.
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Figure 5, Figure 6, and Figure 7 present the results obtained for the first scenario when a task
context switch is triggered by an event, semaphore, and mailbox. From these figures, it can be observed
that the smallest latency is obtained by Keil RTX when events are used, by rt-thread and Keil RTX
when semaphores are used, and by FreeRTOS0 and Keil RTX when mailboxes are used. It can be seen
that there are small differences between STM32F407IG ARM Cortex™ -M4 and STM32L053R8 ARM
Cortex™ -M0+ MCUs regarding latencies obtained by RTOS systems (comparison between RTOSs on
the same MCU). In the first case, no jitter appears in the latency measurement (the task switching is
periodically triggered at every 1 ms and the presence of jitter could be observed on the oscilloscope).
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The latency measurement is performed using a GPIO pin, and the time for port handling is the
same for each RTOS. Furthermore, each RTOS has the same latency generated by the access of the
GPIO port that is connected to the peripheral bus of the MCU. Usually, embedded systems must react
to external events that are received via peripherals (GPIO, ADC, UART, CAN, etc.) and the reaction
can be sent further through peripherals (GPIO, DAC, UART, CAN, etc.). For this reason, we consider
that the use of a GPIO pin to measure latency can bring us closer to the real functioning of the real-time
system that was developed based on an RTOS.

The results for the second scenario are presented in Figure 8, Figure 9, and Figure 10. As can be
seen from the figures, in this case, jitter is present during task switching. The jitter results from the fact
that the second task sets the test pin to 1 (HIGH/TRUE) in an infinite loop and it is preempted by the
higher priority task while it sets the pin. The preemption moments can influence the time when the
task is resumed and sets the test pin to 1 (HIGH/TRUE). In addition, there is an influence generated by
the interrupt service routine for the clock tick. From the figures, we can see that the smallest latency
and the smallest jitter is obtained by uC/OS-II and the highest latency is obtained by the rt-thread in
the case of events and mailboxes and by FreeRTOS9 in the case of semaphores.

In Figure 11, Figure 12, and Figure 13 the results for the third scenario are presented. In this case,
the time is measured when an event is triggered, a semaphore is issued, or a message is sent. For events
and semaphores, the lowest latency is obtained for rt-thread and for mailboxes, the lowest latency is
obtained for uC/OS-II. For events and semaphores, the highest latency is obtained for FreeRTOS10,
and for mailboxes, Keil RTX obtains the lowest latency.
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Figure 14, Figure 15, and Figure 16 present the results for the fourth scenario. In this case, it is
measured the time when an event, semaphore or mailbox is received. The results are similar to the
previous scenario, in the sense that for events and semaphores, the highest latency is obtained for
FreeRTOS10 and for the mailboxes Keil RTX obtains the lowest latency.
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The measurement error is the same for all cases because the same oscilloscope is used. All RTOSs
use supervisor call (SVC) interrupt to perform task switching, but there are differences in how the
directives for communication mechanisms are executed, and how the queues of different events (event,
semaphore, and mailbox) are accessed internally.

Furthermore, scenarios for measurement of the energy consumption can be made, but this is
dependent on the hardware platform used and as long as the MCU and other components enter the
low power consumption mode. On the same hardware platform, energy consumption is directly
proportional to the execution time that is measured in the scenarios proposed in this article.

Analyzing the results for the four scenarios, we can say that the best RTOS performers are uC/

OS-II, Keil RTX, and rt-thread. FreeRTOS, which is the most used RTOS in embedded projects, does
not have the best latency performances but the performances are close to the other RTOSs tested in our
case. The differences appear in the way of implementation of the access to internal queues for events,
semaphores, and mailboxes.

Also, when a RTOS is selected to design and develop applications with real-time capabilities, other
elements such as licensing mode, memory footprint, predictability, certifications, and support provided
must be considered. Usually, there are preferred mature RTOSs that have proven their functionality
and efficiency in developing other applications with real-time capabilities.

5. Conclusions

This paper presented an analysis and comparison in terms of timing performances for task
synchronization throughout events, semaphore, and mailboxes for six RTOSs (uC-OS/II, uC/OS-III,
FreeRTOS 9.0.0, FreeRTOS 10.2.0, RT-Thread, and Keil RTX) that are widely used to design and develop
applications on small MCUs. We measured the time for task switching triggered by an event, semaphore,
and mailbox and we compared the time achieved by the chosen RTOSs on ARM Cortex™-M4 and
STM32L053R8 ARM Cortex™-M0+ based MCUs. In addition, we measured the latencies for the
directives used to send/receive an event, semaphore, and mailbox. From the experimental results, we
can conclude that the best performances are achieved for uC/ OS-II, Keil RTX, and rt-thread. The lower
performances (close to the others RTOSs) are achieved by the FreeRTOS although it is the most used
RTOS in embedded projects. It should be mentioned that the tests were performed for small MCUs, and
for this reason, no variants of Linux based RTOSs have been tested. Although the timing is the most
important parameter in a hard or a soft real-time system, we must consider that we need to include
other criteria in selecting an RTOS, such as licensing, memory footprint, predictability, certifications,
and support provided. The results presented in this paper may represent an indication for selecting an
RTOS in terms of response time to the occurrence of a critical event (periodic or aperiodic), and which
is the most efficient synchronization mechanism for the selected RTOS.
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This appendix contains the code for two tasks of the test software application for FreeRTOS RTOS
when semaphores are used.
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void Task1 (void *argument) 

{  

 /* Attempt to create a semaphore. */ 

 xSemaphore = xSemaphoreCreateBinary();  

 while (1)  

 { 

#if (RTOS_TEST == TEST1) 

    xSemaphoreTake(xSemaphore, 10000); 

    PIN_On(0); 

#elif (RTOS_TEST == TEST2) 

  vTaskDelay(1);  // delay 1 ticks = 1ms     

  PIN_Off(0);     

  xSemaphoreTake(xSemaphore, 1); 

  PIN_Off(0);    

#elif (RTOS_TEST == TEST3)    

  xSemaphoreGive( xSemaphore ); 

  vTaskDelay(1);  // delay 1 ticks = 1ms     

  PIN_Off(0);  

  xSemaphoreTake(xSemaphore, 10000);  

  PIN_On(0); 

#elif (RTOS_TEST == TEST4) 

  vTaskDelay(1);  // delay 1 ticks = 1ms     

  PIN_Off(0);  

  xSemaphoreGive( xSemaphore ); 

  PIN_On(0);    

  xSemaphoreTake(xSemaphore, 10000); 

    

#else 

  osDelay(1);  

#endif 

  } 

} 

void Task2 (void *argument) 

{ 

 while (1)  

 { 

#if (RTOS_TEST == TEST1)   
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  vTaskDelay(1);  // delay 1 ticks = 1ms 

  PIN_Off(0); 

  xSemaphoreGive( xSemaphore ); 

#elif (RTOS_TEST == TEST2) 

  PIN_On(0);   

#elif (RTOS_TEST == TEST3)   

  vTaskDelay(1);  // delay 1 ticks = 1ms  

#elif (RTOS_TEST == TEST4) 

  vTaskDelay(1);  // delay 1 ticks = 1ms 

#else 

  vTaskDelay(1);  // delay 1 ticks = 1ms  

#endif   

 } 

} 

Appendix B 

This appendix contains the code for two tasks of the test software application uC/OS-II RTOS 
when events are used. 

 
void Task1 (void *argument) 

{  

 OS_ERR  err; 

 while (1)  

 { 

#if (RTOS_TEST == TEST1)    

  // wait until bit 0 is 0    

  OSFlagPend(flg_grp, 0x01, OS_FLAG_WAIT_CLR_ALL, 0, &err);   

  PIN_On(0);  

  OSFlagPost(flg_grp, 0x01, OS_FLAG_SET, &err); // set bit 0 

#elif (RTOS_TEST == TEST2)       

  PIN_Off(0);    

  // wait until bit 0 is 0       

  OSFlagPend(flg_grp, 0x01, OS_FLAG_WAIT_CLR_ALL, 2u, &err);    

#elif (RTOS_TEST == TEST3)    

  OSFlagPost(flg_grp, 0x01, OS_FLAG_CLR, &err); //reset bit 0 

  OSTimeDlyHMSM(0,0,0,1);  // wait 1ms     

  PIN_Off(0);    

  // wait until bit 0 is 0     

      OSFlagPend(flg_grp, 0x01, OS_FLAG_WAIT_CLR_ALL, 0, &err);     

  PIN_On(0); 

  OSFlagPost(flg_grp, 0x01, OS_FLAG_SET, &err); // set bit 0  

#elif (RTOS_TEST == TEST4) 

  OSTimeDlyHMSM(0,0,0,1); // wait 1ms      

  PIN_Off(0);  

Appendix B

This appendix contains the code for two tasks of the test software application uC/OS-II RTOS
when events are used.
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void Task1 (void *argument) 

{  

 OS_ERR  err; 

 while (1)  

 { 

#if (RTOS_TEST == TEST1)    

  // wait until bit 0 is 0    

  OSFlagPend(flg_grp, 0x01, OS_FLAG_WAIT_CLR_ALL, 0, &err);   

  PIN_On(0);  

  OSFlagPost(flg_grp, 0x01, OS_FLAG_SET, &err); // set bit 0 

#elif (RTOS_TEST == TEST2)       

  PIN_Off(0);    

  // wait until bit 0 is 0       

  OSFlagPend(flg_grp, 0x01, OS_FLAG_WAIT_CLR_ALL, 2u, &err);    

#elif (RTOS_TEST == TEST3)    

  OSFlagPost(flg_grp, 0x01, OS_FLAG_CLR, &err); //reset bit 0 

  OSTimeDlyHMSM(0,0,0,1);  // wait 1ms     

  PIN_Off(0);    

  // wait until bit 0 is 0     

      OSFlagPend(flg_grp, 0x01, OS_FLAG_WAIT_CLR_ALL, 0, &err);     

  PIN_On(0); 

  OSFlagPost(flg_grp, 0x01, OS_FLAG_SET, &err); // set bit 0  

#elif (RTOS_TEST == TEST4) 

  OSTimeDlyHMSM(0,0,0,1); // wait 1ms      

  PIN_Off(0);  
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  OSFlagPost(flg_grp, 0x01, OS_FLAG_CLR, &err); //reset bit 0 
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  OSTimeDlyHMSM(0,0,0,1); // wait 1ms 

#else 

  OSTimeDlyHMSM(0,0,0,1); // wait 1ms 

#endif 

  } 

} 

Appendix C 

This appendix contains the code for two tasks of the test software application rt-thread RTOS 
when mailboxes are used. 

 
void Task1 (void *argument) 

{  

 rt_uint32_t e;  

 while (1)  

 { 

#if (RTOS_TEST == TEST1)     

  rt_mb_recv(mailboxTest, &e, RT_WAITING_FOREVER); 

Appendix C

This appendix contains the code for two tasks of the test software application rt-thread RTOS
when mailboxes are used.
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  OSFlagPost(flg_grp, 0x01, OS_FLAG_CLR, &err); //reset bit 0 

  PIN_On(0);    

  // wait until bit 0 is 0      

  OSFlagPend(flg_grp, 0x01, OS_FLAG_WAIT_CLR_ALL, 0, &err);       

   OSFlagPost(flg_grp, 0x01, OS_FLAG_SET, &err); // set bit 0 
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{ 
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  OSFlagPost(flg_grp, 0x01, OS_FLAG_CLR, &err); //reset bit 0 
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#elif (RTOS_TEST == TEST3) 

  OSTimeDlyHMSM(0,0,0,1); // wait 1ms 

#elif (RTOS_TEST == TEST4) 

  OSTimeDlyHMSM(0,0,0,1); // wait 1ms 

#else 

  OSTimeDlyHMSM(0,0,0,1); // wait 1ms 

#endif 

  } 

} 

Appendix C 

This appendix contains the code for two tasks of the test software application rt-thread RTOS 
when mailboxes are used. 

 
void Task1 (void *argument) 

{  

 rt_uint32_t e;  

 while (1)  

 { 

#if (RTOS_TEST == TEST1)     

  rt_mb_recv(mailboxTest, &e, RT_WAITING_FOREVER); 
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  PIN_On(0); 

#elif (RTOS_TEST == TEST2) 

  rt_thread_delay(1);//wait 1ms     

  PIN_Off(0);     

  rt_mb_recv(mailboxTest, &e, 1u); 

  PIN_Off(0);    

#elif (RTOS_TEST == TEST3)    

  rt_mb_send(mailboxTest,0); 

  rt_thread_delay(1);//wait 1ms   

  PIN_Off(0);  

  rt_mb_recv(mailboxTest, &e, RT_WAITING_FOREVER); 

  PIN_On(0); 

#elif (RTOS_TEST == TEST4) 

  rt_thread_delay(1);//wait 1ms   

  PIN_Off(0);  

  rt_mb_send(mailboxTest,0); 

  PIN_On(0);    

  rt_mb_recv(mailboxTest, &e, RT_WAITING_FOREVER);    

#else 

  osDelay(1);      

#endif   

  } 

} 

 
void Task2 (void *argument) 

{ 

 while (1)  

 { 

#if (RTOS_TEST == TEST1) 

  rt_thread_delay(1);//wait 1ms 

  PIN_Off(0); 

  rt_mb_send(mailboxTest,0); 

#elif (RTOS_TEST == TEST2) 

  PIN_On(0);   

#elif (RTOS_TEST == TEST3)   

  rt_thread_delay(1);//wait 1ms 

#elif (RTOS_TEST == TEST4) 

  rt_thread_delay(1);//wait 1ms 

#else 

  rt_thread_delay(1);//wait 1ms 

#endif  

  } 

} 
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Appendix D

This appendix contains the code for two tasks of the test software application for Keil RTX RTOS
when semaphores are used.
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Appendix D 

This appendix contains the code for two tasks of the test software application for Keil RTX RTOS 
when semaphores are used. 

 
void Task1(void *argument) 

{ 

 semaphore = osSemaphoreCreate(osSemaphore(semaphore), 0); 

 while (1) 

 { 

#if (RTOS_TEST == TEST1)   

  osSemaphoreWait(semaphore, osWaitForever); 

  PIN_On(0); 

#elif (RTOS_TEST == TEST2) 

  osDelay(1); 

  PIN_Off(0); 

  osSemaphoreWait(semaphore, 1U); 

  PIN_Off(0); 

#elif (RTOS_TEST == TEST3)    

  osSemaphoreRelease(semaphore); 

  osDelay(1); 

  PIN_Off(0); 

  osSemaphoreWait(semaphore, osWaitForever); 

  PIN_On(0); 

#elif (RTOS_TEST == TEST4) 

  osDelay(1); 

  PIN_Off(0); 

  osSemaphoreRelease(semaphore); 

  PIN_On(0); 

  osSemaphoreWait(semaphore, osWaitForever); 

#else 

  osDelay(1); 

#endif     

 } 

} 

void Task2 (void *argument) 

{ 

 while (1)  

 {   

#if (RTOS_TEST == TEST1) 

  osDelay(1);   // wait 1ms 

  PIN_Off(0);  

  osSemaphoreRelease (semaphore); 

#elif (RTOS_TEST == TEST2) 

  PIN_On(0);   
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#elif (RTOS_TEST == TEST3)   

  osDelay(1);  

#elif (RTOS_TEST == TEST4) 

  osDelay(1);  

#else 

  osDelay(1);  

#endif 

 } 

} 
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