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1. Introduction

For any non-negative integer n ≥ 0, the famous Chebyshev polynomials of the first kind Tn(x)
and the second kind Un(x) (see [1,2]) are defined by the second order linear recurrence formulae
Tn+1(x) = 2xTn(x) − Tn−1(x) for all integers n ≥ 1 with T0(x) = 1 and T1(x) = x; Un+1(x) =

2xUn(x)−Un−1(x) for all integers n ≥ 1 with U0(x) = 1 and U1(x) = 2x.
The general terms that are easy to deduce from the recursive relationships are

Tn(x) =
1
2
(αn + βn) and Un(x) =

1

2
√

x2 − 1

(
αn+1 − βn+1

)
,

where α = x +
√

x2 − 1 and β = x−
√

x2 − 1.
The generation functions of the Chebyshev polynomials Tn(x) and Un(x) are

1− xz
1− 2xz + z2 =

∞

∑
n=1

Tn(x) · zn, (|x| < 1, |z| < 1)

and
1

1− 2xz + z2 =
∞

∑
n=1

Un(x) · zn, (|x| < 1, |z| < 1).

Taking x = cos θ in Tn(x) and Un(x), then we also have the following identities

Tn(cos θ) = cos(nθ), Un(cos θ) =
sin((n + 1)θ)

sin θ
. (1)

Since these polynomials have an important position in the theory and application of mathematics,
many specialists and scholars have studied their various properties, and obtained a series of interesting

Symmetry 2020, 12, 704; doi:10.3390/sym12050704 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-7982-9916
http://dx.doi.org/10.3390/sym12050704
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/5/704?type=check_update&version=3


Symmetry 2020, 12, 704 2 of 9

conclusions. It is worth mentioning that T. Kim and their team to do a lot of important research work
(see [3–8]). Other papers related to Chebyshev polynomials can also be found in [9–22]. For example,
T. T. Wang and H. Zhang [9] and W. P. Zhang and T. T. Wang [10] obtained some exact expressions for
the derivative and integral of the Chebyshev polynomials of the first kind in terms of the Chebyshev
polynomials of the first kind. Y. Ma and X. X. Lv [12] considered the calculating problem of a certain
reciprocal sums of Chebyshev polynomials, and obtained some identities. That is, for k = 1, 2 and 3,
Y. Ma and X. X. Lv [12] gave some identities for the summations

q−1

∑
a=1

T−2k
a

(
cos

(
πh
q

))
and

q−1

∑
a=1

U−2k
a−1

(
cos

(
πh
q

))
, (2)

where, as usual, q is an odd number and h is an integer co-prime to q, i.e., (h, q) = 1.
Unfortunately, it is very difficult to obtain an identity for Equation (2) with k ≥ 4 by the

methods in [12]. Inspired by Y. Ma and X. X. Lv [12], in this paper, we utilize the mathematical
induction, the properties of symmetric polynomial sequences, and Chebyshev polynomials to study
these problems, and prove two generalized conclusions. In other words, we prove the following
two results:

Theorem 1. Let q be an odd number and q ≥ 3. For any positive integer k and integer h with (h, q) = 1,
we have the identity

q−1

∑
a=1

U−2k
a−1

(
cos

(
πh
q

))
= sin2k

(
πh
q

)
·

q−1

∑
a=1

sin−2k
(

πa
q

)

=
2 · sin2k

(
πh
q

)
(2k− 1)!

k

∑
i=1

S(k− 1, k− i) · (2i− 1)! ·
(
q2i − 1

)
π2i ζ(2i)

=
sin2k

(
πh
q

)
(2k− 1)!

k

∑
i=1

S(k− 1, k− i) ·
(
q2i − 1

)
2i

· (−1)i+1 · B2i,

where ζ(s) denotes the Riemann ζ-function, B2k denotes the Bernoulli numbers, and S(k− 1, i) are defined by
k−1

∏
i=0

(
x + (2i)2

)
=

k−1

∑
i=0

S(k− 1, i) · xk−i, and S(0, 0) = 1.

Theorem 2. Let q be an odd number and q ≥ 3. For any positive integer k and integer h with (h, q) = 1,
we have the identity

q−1

∑
a=1

T−2k
a

(
cos

(
πh
q

))
=

q−1

∑
a=1

cos−2k
(

πah
q

)
=

q−1

∑
a=1

cos−2k
(

πa
q

)

=
2

(2k− 1)!
·

k

∑
i=1

S(k− 1, k− i) ·
(
22i − 1

)
· (2i− 1)! ·

(
q2i − 1

)
π2i · ζ(2i)

=
1

(2k− 1)!
·

k

∑
i=1

S(k− 1, k− i) ·
(
22i − 1

)
·
(
q2i − 1

)
2i

· (−1)i+1 · B2i,

where we use the identity (see [1], Theorem 12.17)

ζ(2k) = (−1)k+1 · (2π)2k · B2k
2 · (2k)!

for all positive integers k.

Note that S(0, 0) = S(1, 0) = S(2, 0) = 1, S(1, 1) = 4, S(2, 1) = 20, S(2, 2) = 64, B2 = 1
6 , B4 = − 1

30 ,
and B6 = 1

42 ; from Theorems 1 and 2, we can immediately deduce the following two corollaries:
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Corollary 1. [12] Let q > 1 be an odd number. For any integer h and (h, q) = 1, we have the identity

q−1

∑
a=1

U−2
a−1

(
cos

(
πh
q

))
= sin2

(
πh
q

)
·
(
q2 − 1

)
3

;

q−1

∑
a=1

U−4
a−1

(
cos

(
πh
q

))
= sin4

(
πh
q

)
·
(
q2 + 11

) (
q2 − 1

)
45

and

q−1

∑
a=1

U−6
a−1

(
cos

(
πh
q

))
= sin6

(
πh
q

)
·
(
q2 − 1

) (
2q4 + 23q2 + 191

)
945

.

Corollary 2. [12] Let q > 1 be an odd number. For any integer h and (h, q) = 1, we have the identity

q−1

∑
a=1

T−2
a

(
cos

(
πh
q

))
=

q−1

∑
a=1

cos−2
(

πah
q

)
= q2 − 1;

q−1

∑
a=1

T−4
a

(
cos

(
πh
q

))
=

q−1

∑
a=1

cos−4
(

πah
q

)
=

(
q2 − 1

) (
q2 + 3

)
3

and

q−1

∑
a=1

T−6
a

(
cos

(
πh
q

))
=

q−1

∑
a=1

cos−6
(

πah
q

)
=

(
q2 − 1

) (
2q4 + 7q2 + 15

)
15

.

Some notes: It is clear that there are some calculation mistakes in [12]. In fact, for k = 3,
the corresponding results in [12] are

q−1

∑
a=1

U−6
a−1

(
cos

(
πh
q

))
= sin6

(
πh
q

)
·
(
q2 − 1

) (
2q2 − 11

) (
q2 + 17

)
945

and

q−1

∑
a=1

T−6
a

(
cos

(
πh
q

))
=

q−1

∑
a=1

cos−6
(

πah
q

)
=

(
q2 − 1

) (
2q4 + 7q2 − 363

)
15

.

That is to say, Theorems 1 and 2 in [12] are not correct for k = 3. Our theorems obtain a generalized
conclusion for all integers k ≥ 1. Thus, our results not only reveal the close connection between a
certain trigonometric functions and the Riemann ζ-function, but also generalize some existing results.
At the same time, an error in the existing [12] is corrected.

It is clear that {S(h, i)} (0 ≤ i ≤ h) is a symmetric polynomial sequence; it can be calculated by
the recursive formula S(h, i + 1) = (2h)2 · S(h− 1, i) + S(h− 1, i + 1) for all integers 0 ≤ i ≤ h− 2,
S(h, 0) = 1 and S(h, h) = 4h · (h!)2. This also reflects the advantages of our theorems. Here, we give
partial values of S(k, i), as shown in Table 1.
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Table 1. Values of S(h, i).

S(h, i) i=0 i=1 i=2 i=3 i=4 i=5 i=6

h=0 1
h=1 1 4
h=2 1 20 64
h=3 1 56 784 2304
h=4 1 120 4368 52,480 147,456
h=5 1 220 16,368 489,280 5,395,456 14,745,600
h=6 1 364 48,048 2,846,272 75,851,776 791,691,264 2,123,366,400

In Table 1, the first three lines are the values of S(h, i) corresponding to Corollaries 1 and 2, which
are no longer listed separately.

2. Several Lemmas

To facilitate the proofs of our theorems, we need following four basic lemmas.

Lemma 1. Let f (s) = π2

cos2(πs) . For any positive integer k, we have

(2k− 1)! · π2k

cos2k(s)
=

k−1

∑
i=0

S(k− 1, i) · π2i · f (2k−2i−2)(s),

where, as usual, f (n)(s) denotes the n-order derivative of f (s), the constants S(k − 1, i) are defined as
k−1

∏
i=0

(
x + (2i)2

)
=

k−1

∑
i=0

S(k− 1, i) · xk−i, and S(0, 0) = 1.

Proof. We prove this main lemma by mathematical induction. Note that S(0, 0) = 1; thus, from the
definition of f (s), we know that Lemma 1 is correct for k = 1. From the definition and properties of
the derivative, we have

f ′(s) =
2π3 · sin(πs)

cos3(πs)
and f ′′(s) =

3! · π4

cos4(πs)
− 22 · π4

cos2(πs)
. (3)

It is clear that Equation (3) implies

3! · π4

cos4(πs)
= f ′′(s) + 22 · π2 · f (s) =

1

∑
i=0

S(1, i) · π2i · f (2−2i)(s). (4)

Thus, Equation (4) implies that Lemma 1 is correct for k = 2.
Assuming that Lemma 1 is correct for all integers 1 ≤ k ≤ h, that is,

(2h− 1)! · π2h

cos2h(πs)
=

h−1

∑
i=0

S(h− 1, i) · π2i · f (2h−2−2i)(s), (5)

then, from Equation (5) and the properties of the derivative, we have

(2h)! · π2h+1 · sin(πs)
cos2h+1(πs)

=
h−1

∑
i=0

S(h− 1, i) · π2i · f (2h−2i−1)(s)

and

(2h)! · π2h+2

cos2h(πs)
+

(2h + 1)! · π2h+2 sin2(πs)
cos2h+2(πs)

=
h−1

∑
i=0

S(h− 1, i) · π2i · f (2h−2i)(s). (6)
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Note that sin2(s) + cos2(s) = 1 and (2h)2 · S(h− 1, i) + S(h− 1, i + 1) = S(h, i + 1) for all integers
0 ≤ i ≤ h− 2. From Equations (5) and (6), we have

(2h + 1)! · π2h+2

cos2h+2(πs)
=

(2h)2 · (2h− 1)! · π2k+2

cos2h(πs)
+

h

∑
i=0

S(h− 1, i) · π2i · f (2h−2i)(s)

= (2h)2 · π2 ·
h−1

∑
i=0

S(h− 1, i) · π2i · f (2h−2i−2)(s) +
h−1

∑
i=0

S(h− 1, i) · π2i · f (2h−2i)(s)

= (2h)2 · S(h− 1, h− 1) · π2h · f (s) + S(h− 1, 0) · f (2h)(s)

+(2h)2 ·
h−2

∑
i=0

S(h− 1, i) · π2i+2 · f (2h−2i−2)(s)

+
h−1

∑
i=1

S(h− 1, i) · π2i · f (2h−2i)(s)

= S(h, h) · π2h · f (s) +
h−2

∑
i=0

S(h− 1, i + 1) · π2i+2 · f (2h−2i−2)(s)

+S(h, 0) · f (2h)(s) + (2h)2 ·
h−2

∑
i=0

S(h− 1, i) · π2i+2 · f (2h−2i−2)(s)

=
h−2

∑
i=0

(
(2h)2 · S(h− 1, i) + S(h− 1, i + 1)

)
· π2i+2 · f (2h−2i)(s)

+S(h, h) · π2h · f (s) + S(h, 0) · f (2h)(s)

= S(h, 0) · f (2h)(s) +
h−2

∑
i=0

S(h, i + 1) · π2i+2 · f (2h−2i−2)(s) + S(h, h) · π2h · f (s)

= S(h, 0) · f (2h)(s) +
h−1

∑
i=1

S(h, i) · π2i · f (2h−2i)(s) + S(h, h) · π2h · f (s)

=
h

∑
i=0

S(h, i) · π2i · f (2h−2i)(s). (7)

Equation (7) implies that Lemma 1 is correct for k = h + 1.
This proves Lemma 1 by mathematical induction.

Lemma 2. Let g(s) = π2

sin2(πs)
and h(s) = (2π)2

sin2(2πs)
. For any positive integer k, we have the identities

(2k− 1)! · π2k

sin2k(πs)
=

k−1

∑
i=0

S(k− 1, i) · π2i · g(2k−2i−2)(s)

and

(2k− 1)! · π2k

sin2k(2πs)
=

k−1

∑
i=0

S(k− 1, i) · (2π)2i · g(2k−2i−2)(s),

where the constants S(k− 1, i) are defined as in Lemma 1.

Proof. Noting that sin2(πs) + cos2(πs) = 1, we have(
(2k− 1)! · π2k

sin2k(πs)

)′
= − (2k)! · π2k+1 · cos(πs)

sin2k+1(πs)
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and (
(2k− 1)! · π2k

sin2k(πs)

)′′
=

(2k)! · π2k+2

sin2k(πs)
+

(2k + 1)! · π2k+2 · cos2(πs)
sin2k+2(πs)

=
(2k + 1)! · π2k+2

sin2k+2(πs)
− (2k)2 · (2k− 1)! · π2k+2

sin2k(πs)
.

Thus, it is easy to deduce the identities

3! · π4

sin4(πs)
=

1

∑
i=0

S(1, i) · π2i · g(2−2i)(s) (8)

and

3! · (2π)4

sin4(2πs)
=

1

∑
i=0

S(1, i) · (2π)2i · h(2−2i)(s). (9)

Then, from Equations (8) and (9) and mathematical induction, we can deduce Lemma 2.

Lemma 3. Let q > 1 be an odd number, g(s) = π2

sin2(πs)
. For any positive integer k, we have

q−1

∑
a=1

g(2k−2)
(

a
q

)
= 2 · (2k− 1)! ·

(
q2k − 1

)
· ζ(2k),

where ζ(s) denotes the Riemann ζ-function.

Proof. From [23] (see Corollary 6, Section 3, Chapter 5), we have the identity

sin(πs) = πs ·
∞

∏
n=1

(
1− s2

n2

)
. (10)

Then, from Equation (10) and the properties of the derivative, we also have

g(s) =
π2

sin2(πs)
=

1
s2 +

∞

∑
n=1

(
1

(n + s)2 +
1

(n− s)2

)
. (11)

In general, for any positive integer k, we have

g(2k−2)(s) = (2k− 1)! ·
(

1
s2k +

∞

∑
n=1

(
1

(n + s)2k +
1

(n− s)2k

))
. (12)

Taking s = a
q in Equation (12), and then sum over all 1 ≤ a ≤ q− 1. From the definition of the

Riemann zeta-function, we have

q−1

∑
a=1

g(2k−2)
(

a
q

)
= (2k− 1)! ·

q−1

∑
a=1

 q2k

a2k +
∞

∑
n=1

 1(
n + a

q

)2k +
1(

n− a
q

)2k




= (2k− 1)! ·
(

∞

∑
n=0

q−1

∑
a=1

q2k

(nq + a)2k +
∞

∑
n=1

q−1

∑
a=1

q2k

(nq− a)2k

)

= 2 · (2k− 1)! ·
(

q2k ·
∞

∑
n=0

q

∑
a=1

1
(nq + a)2k −

∞

∑
n=1

1
n2k

)
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= 2 · (2k− 1)! ·
(

q2k − 1
)
· ζ(2k).

This proves Lemma 3.

Lemma 4. Let q > 1 be an odd number, g(s) = π2

sin2(πs)
and h(s) = (2π)2

sin2(2πs)
. For any integer k ≥ 1, we have

the identity
q−1

∑
a=1

h(2k−2)
(

a
q

)
= 22k ·

q−1

∑
a=1

g(2k−2)
(

a
q

)
.

Proof. If k = 1, then note that (2, q) = 1; from the properties of the complete residue system mod q
and the definitions of g(s) and h(s), we have

q−1

∑
a=1

h
(

a
q

)
= 22 ·

q−1

∑
a=1

π2

sin2
(

2πa
q

) = 22 ·
q−1

∑
a=1

π2

sin2
(

πa
q

) = 22 ·
q−1

∑
a=1

g
(

a
q

)
. (13)

Thus, Lemma 4 is correct for k = 1. Then, note that the identity

q−1

∑
a=1

(2π)2k

sin2k
(

2πa
q

) = 22k ·
q−1

∑
a=1

π2k

sin2k
(

πa
q

) (14)

holds for all positive integers k. Thus, Lemma 4 follows from Equations (13) and (14) and mathematical
induction.

3. Proofs of the Theorems

In this section, we use the lemmas in Section 2 to complete the proofs of our results. First,
we prove Theorem 1. For any odd number q ≥ 3 and integer h with (h, q) = 1, taking s = cos

(
πh
q

)
,

from Lemmas 2 and 3 and the properties of the complete residue system mod q, we have the identity

q−1

∑
a=1

1

U2k
a−1

(
cos

(
πh
q

)) = sin2k
(

πh
q

) q−1

∑
a=1

1

sin2k
(

πha
q

)
= sin2k

(
πh
q

) q−1

∑
a=1

1

sin2k
(

πa
q

) =
sin2k

(
πh
q

)
(2k− 1)! · π2k ·

q−1

∑
a=1

(2k− 1)! · π2k

sin2k
(

πa
q

)
=

sin2k
(

πh
q

)
(2k− 1)! · π2k ·

k−1

∑
i=0

S(k− 1, i) · π2i ·
q−1

∑
a=1

g(2k−2i−2)
(

a
q

)

=
sin2k

(
πh
q

)
(2k− 1)! · π2k ·

k

∑
i=1

S(k− 1, k− i) · π2k−2i ·
q−1

∑
a=1

g(2i−2)
(

a
q

)

=
2 · sin2k

(
πh
q

)
(2k− 1)! · π2k ·

k

∑
i=1

S(k− 1, k− i) · π2k−2i · (2i− 1)! ·
(

q2i − 1
)
· ζ(2i)

=
2 · sin2k

(
πh
q

)
(2k− 1)!

·
k

∑
i=1

S(k− 1, k− i) · (2i− 1)! ·
(
q2i − 1

)
π2i · ζ(2i).

This proves Theorem 1.
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Now, we prove Theorem 2. Note that the identity

f (s) =
π2

cos2(πs)
=

(2π)2

sin2(2πs)
− π2

sin2(πs)
= h(s)− g(s).

Thus, from this identity and Lemma 1, we have

(2k− 1)! · π2k

cos2k(s)
=

k−1

∑
i=0

S(k− 1, i) · π2i · f (2k−2i−2)(s)

=
k−1

∑
i=0

S(k− 1, i) · π2i ·
(

h(2k−2i−2)(s)− g(2k−2i−2)(s)
)

. (15)

From Equation (15), Lemmas 3 and 4, and the properties of the complete residue system mod q,
we have

q−1

∑
a=1

1

T2k
a

(
cos

(
πh
q

)) =
q−1

∑
a=1

1

cos2k
(

πha
q

) =
1

(2k− 1)! · π2k

q−1

∑
a=1

(2k− 1)! · π2k

cos2k
(

πa
q

)
=

1
(2k− 1)! · π2k ·

k−1

∑
i=0

S(k− 1, i) · π2i ·
q−1

∑
a=1

(
h(2k−2i−2)

(
a
q

)
− g(2k−2i−2)

(
a
q

))

=
1

(2k− 1)! · π2k ·
k−1

∑
i=0

S(k− 1, i) · π2i ·
q−1

∑
a=1

22k−2i · g(2k−2i−2)
(

a
q

)

− 1
(2k− 1)! · π2k ·

k−1

∑
i=0

S(k− 1, i) · π2i ·
q−1

∑
a=1

g(2k−2i−2)
(

a
q

)

=
1

(2k− 1)! · π2k ·
k−1

∑
i=0

S(k− 1, i) · π2i ·
(

22k−2i − 1
)
·

q−1

∑
a=1

g(2k−2i−2)
(

a
q

)

=
1

(2k− 1)!
·

k

∑
i=1

S(k− 1, k− i) · π−2i ·
(

22i − 1
)
·

q−1

∑
a=1

g(2i−2)
(

a
q

)

=
2

(2k− 1)!
·

k

∑
i=1

S(k− 1, k− i) ·
(
22i − 1

)
· (2i− 1)! ·

(
q2i − 1

)
π2i · ζ(2i).

Then, we complete the proof of Theorem 2.

4. Conclusions

In this paper, we obtain two main results. Theorem 1 establishes a generalized calculation formula
for a certain reciprocal sums of Chebyshev polynomials of the first kind. Theorem 2 establishes a
generalized calculation formula for a certain reciprocal sums of Chebyshev polynomials of the second
kind. As two special cases or two corollaries of our theorems, we give a new proof of the results in [12],
and we also point out two computational errors in [12].
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