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Abstract: A tensor calculus adapted to the Anti-Newtonian limit of Einstein gravity is developed.
The limit is defined in terms of a global conformal rescaling of the spatial metric. This enhances
spacelike distances compared to timelike ones and in the limit effectively squeezes the lightcones to
lines. Conventional tensors admit an analogous Anti-Newtonian limit, which however transforms
according to a non-standard realization of the spacetime Diffeomorphism group. In addition to the
type of the tensor the transformation law depends on, a set of integer-valued weights is needed
to ensure the existence of a nontrivial limit. Examples are limiting counterparts of the metric,
Einstein, and Riemann tensors. An adapted purely temporal notion of parallel transport is presented.
By introducing a generalized Ehresmann connection and an associated orthonormal frame compatible
with an invertible Carroll metric, the weight-dependent transformation laws can be mapped into
a universal one that can be read off from the index structure. Utilizing this ‘decoupling map’ and
a realization of the generalized Ehresmann connection in terms of scalar field, the limiting gravity
theory can be endowed with an intrinsic Levi–Civita type notion of spatio-temporal parallel transport.

Keywords: strong coupling gravity; Carroll geometry; diffeomorphisms

1. Introduction

In a 1+d formulation where the geometry of a foliated manifold M is specified by a lapse-like
field ν, a shift-like field νa, and a spatial metric qab with inverse qab, consider the following action

S0[q, ϕ] = 1
2

∫ t f
ti

dt
∫

Σ dx
√

q
{

1
4ν e0(qab)(qadqbc − qabqcd)e0(qcd)

+ 1
ν e0(ϕ)2 − 2ν[U(ϕ) + Λ]

}
.

(1)

Here e0 = ∂t −L~ν, with L the d-dimensional Lie derivative, and ϕ is a minimally coupled scalar
field made dimensionless by multiplying with the square root of the gravitational constant. Its potential
U(ϕ) is real valued and has a constant term Λ taken out. The action (1) has a sound motivation as
the Anti-Newtonian limit of Einstein gravity minimally coupled to a scalar field φ. In 1+d form the
gravitational action S is a functional of the lapse N, shift Na, spatial metric gab with inverse gab, and the
scalar φ. The essential part of the scale transformation is gab 7→ λ2gab, for real λ. For large λ spacelike
distances are relatively enhanced and the lightcones appear to be squeezed to almost lines, thereby
implementing an Anti-Newtonian limit. Applied to the gravitational action S the Ricci scalar R(g) of
the spatial metric gab and spatial gradient term gab∂aφ∂bφ of the scalar field drop out for λ→ ∞, and
one is left with (1) (where the subscript 0 refers to λ−1 → 0). A more detailed motivation for this limit
and the associated Anti-Newtonian expansion is presented in Section 2.1. For short, we shall refer to
the gravity theory described by (1) as Sgravity. Here ‘S’ is a mnemonic used alternatively for ‘scaling’
or ‘strong coupling’.
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The subject of this article are the symmetries of the action (1) and the development of a
tensor calculus adapted to them. Since the Einstein–Hilbert action is usually motivated as the
unique ‘generally covariant’ action ‘second order’ in derivatives, one might expect (1) to be
invariant at best under a subclass of diffeomorphisms. Remarkably, (1) is invariant under the full
spacetime Diffeomorphism group Diff(M), which acts however in a non-standard way on the fields
ν, νa, qab, qab, ϕ [1]. One may think of this as a realization πS of the abstract Diffeomorphism group
different from the familiar tensorial one. We write

SDiff(M) := πS
(
Diff(M)

)
, (2)

and refer to S0’s invariance as one with respect to the SDiff(M) realization. For the concatenation
of two diffeomorphisms χ1, χ2 ∈ Diff(M), the realization πS meets the basic requirement πS(χ2 ◦
χ1) = πS(χ2)πS(χ1) when acting on ν, νa, qab, qab, ϕ. We shall not pursue topological aspects of the
Diffeomorphism group or the concomitant functional analytical aspects needed to turn πS into a
bona-fide representation. In fact, there are more pressing questions to be answered first.

One is that πS is grossly under-determined by knowing only its action on ν, νa, qab, qab, ϕ.
The standard tensor calculus is designed such that the generalized pull-back χ∗ and push-forward
χ∗ of a diffeomorphism χ ∈ Diff(M) are automorphisms of the tensor algebra that commute with
contractions. In particular, the pseudo-Riemannian metric gµν entering the Einstein–Hilbert action
is of course a second rank tensor and the push-forward defines a left action πT(χ)g := χ∗(g)
on it, πT(χ2)πT(χ1)g = (χ∗2χ∗1)g = (χ2 ◦ χ1)

∗g = πT(χ2 ◦ χ1)g. In a 1+d formulation the
metric is parameterized in terms of lapse N, shift Na, and spatial metric gab via gµν(y)dyµdyν =

εgN2dt2 + gab(Nadt + dxa)(Nbdt + dxb). Here yµ are local spacetime coordinates and (t, xa) are local
1+d coordinates; we allow both signatures throughout, εg = ±1. On the constituent fields N, Na, gab
the tensorial realization πT acts in a nonlinear and unfamiliar way, recorded here (for the first time,
we believe) in Equation (A33). By construction, the 1+d form of the matter coupled Einstein–Hilbert
action is invariant under πT(Diff(M)) acting on N, Na, gab, gab, φ. Of course πT(χ) differs from πS(χ)

for generic χ. Denoting the scale transformation by sλ(N, Na, gab, gab, φ) = (N, Na, λ2gab, λ−2gab, φ),
one finds that

πS(χ)(u) = lim
λ→∞

sλπT(χ)u , u = N, Na, φ , πS(χ)(gab) = lim
λ→∞

λ−2sλπT(χ)gab , (3)

for all χ ∈ Diff(M). After renaming the fields this produces the πS(χ) realization on ν, νa, qab, ϕ. The
additional λ−2 in sλπT(χ)gab’s asymptotics is crucial and the integer w(gab) = 2 will be referred to
as gab’s weight. A natural extension of this procedure to generic type (s

r) tensors U is to search for
weighted limits of the scaled tensorial realization

πS(χ)U = lim
λ→∞

[nλ(w)sλπT(χ)]U . (4)

Here U refers to the tuple uA, A = 1, . . . , |U| ≤ 2r+s, of U’s 1+d block components defined with
respect to the frame set by the N, Na foliation; each component may have to be rescaled by some λ−wA ,
wA ∈ Z, in order to obtain a finite nonzero limit. Each πS(χ) transformed block is a linear combination
of the other blocks with coefficients that may depend nonlinearly on ν, νa, qab. Scaling limits of part of
a direct sum metric are known in Differential Geometry as “adiabatic limits”. They have been used
to study connections, curvatures, and the spectra of covariant Laplacians [2–4], but to the best of our
knowledge have not been applied to Einstein gravity itself. Since the term “adiabatic limit” is already
taken in physics, we shall refer to (4) alternatively as “Anti-Newtonian limit” or simply as “λ-scaling
limit”. The resulting transformation law πS(χ)U will for generic χ ∈ Diff(M) differ from πT(χ)U and
will be taken as the defining characteristic of an Stensor of type (s

r) and weight tuple w.
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A nontrivial example is the counterpart of the Einstein tensor in Sgravity. With S0 from (1)
we define

G0 := 1√
q

δS0

δν

∣∣∣
grav

, G0,a := 1√
q

δS0

δνa

∣∣∣
grav

,

G0,ab := −εg
2

ν
√

q
δS0

δqab

∣∣∣
grav

+ εgqab
1
√

q
δS0

δν

∣∣∣
grav

.
(5)

where |grav indicates that the ϕ-dependent terms are omitted (which are attributed to an analogously
defined energy–momentum tensor for Sgravity). Then (G0, G0,a, G0,ab) turns out to be an Stensor in the
above sense of type (2

0) and weight (0, 0, 2). Concretely, this amounts to a specific transformation law
which we note here in linearized form:

δ0
ε G0 = ε0

ν e0(G0) + L~εG0 ,

δ0
ε G0,a = ε0

ν e0(G0,a) + L~εG0,a + ν∂a

(
ε0

ν

)
G0 − εgνG0,ab qbc∂c

(
ε0

ν

)
,

δ0
ε G0,ab = ε0

ν e0(G0,ab) + L~εG0,ab .

(6)

Suitably interpreted δ0
ε is the linearized version of πS(χ), where the descriptors (ξ0, ξa) of

the infinitesimal diffeomorphisms t′ = t − ξ0(t, x), x′a = xa − ξa(t, x) have been traded for
ε0 = νξ0, εa = ξa + νaξ0. These still comprise 1+d unconstrained functions of (t, x). For the
1+d block components (G, Ga, Gab) of the Einstein tensor proper, Gµν = Rµν − (1/2)gµν(R − 2Λ),
the corresponding gauge transformations differ from (6). This marks on the linearized level the
difference between the universal tensorial realization πT and the weight-dependent scaling realization
πS.

The limit construction (3) successfully defines the nonstandard realization πS for tensors of all
types. It is however not an autonomous formalism in that it is rooted in the tensorial realization πT .
On a foliated pseudo-Riemannian manifold one will naturally require the limits to be compatible
with moving indices with the spacetime metric gµν, gµν. This turns out to restrict the allowed weights
and also allows one to define and to compute the transformation law autonomously, using the πS
realization only.

An elegant way to code the same information is via decoupling map: for a given weight there
are polynomial redefinitions of the Stensor’s blocks that transform multilinearly among themselves.
For example in (6) the redefined blocks transform without the mixing terms in the middle equation.
Generally, the redefined blocks satisfy decoupled transformation laws that can be read off from the
index structure alone. The non-universal, weight-dependent aspects are coded by the redefinition,
i.e., by the decoupling map.

The key ingredient in this construction is an auxiliary structure βa, transforming under generic
diffeomorphisms as follows

β′a =
( ∂xc

∂x′a
+

∂t
∂x′a

νc
)[(∂t′

∂t
− ∂t′

∂xd νd
)

βc +
∂t′

∂xc

]
. (7)

For νa = 0 this is the transformation law of an Ehresmann connection. In fact, νa ≡ 0 is an
admissible gauge [1] in which the covariance group reduces to the group t′ = χ0(t, x), x′a = χa(x),
dubbed Carroll diffeomorphisms [5,6]. The generalized Ehresmann connection (7) allows one to
maintain covariance under the full Diffeomorphism group. In terms of βa and νa one can introduce an
orthonormal frame, which we call the SDiff frame,

e0 = ∂t − νa∂a = mµ ∂

∂yµ , Ea = ∂a + βae0 = Eµ
a

∂

∂yµ ,

E0 = dt− βaea = tµdyµ , ea = dxa + νadt = ea
µdyµ .

(8)
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It transforms without mixing under all of SDiff(M): e′0 ∝ e0, E′0 ∝ E0, while E′a, e′a are linear
combinations of Eb, eb, respectively. The SDiff frame has several other noteworthy properties. First,
it is metric compatible with respect to the following invertible, βa-dependent metric

gcµν := εgν2tµtν + qabea
µeb

ν , gµν
c := εgν−2mµmν + qabEµ

a Eν
b . (9)

That is, εgνtµ = gcµρ ν−1mρ and qabEν
b = gµρ

c ea
ρ hold. The more familiar degenerate Carroll

metric [5–8] is given by Qµν = qabea
µeb

ν|~ν=0, with pseudo-inverse Qµν = qabEµ
a Eν

b |~ν=0. Second,
the nonstandard SDiff(M) action on ν, νa, qab, qab, βa induces a standard tensorial transformation
for the ν−1mµ, Eµ

a and εgνtµ, ea
µ coordinate components of the frame (8). As a consequence the same

holds for the gcµν, gµν
c ; mathematically they intertwine the πS with the πT realization of Diff(M). Third,

note that the spatial block of gcµν and the temporal part of gµν
c are βa-independent. The non-mixing

transformation laws of the SDiff frame (8) thereby entail

q′ab e′a ⊗ e′b = qab ea ⊗ eb , ν′
−1e′0 = ν−1e0 . (10)

The spatial block of the metric and the temporal part of the contra-metric are separately fully
diffeomorphism invariant! This can be seen as the characteristic feature of the Sgravity geometry
compatible with the invariance of (1). These three properties conspire constructively to allow for the
above decoupling maps. Utilizing them a fully SDiff(M) covariant SCarroll–Levi–Civita connection can
be defined, generalizing the one in [9]. Since βa can be realized in terms of a scalar as βa = −∂a ϕ/e0(ϕ),
Sgravity coupled to a scalar with can be endowed with an intrinsic Levi–Civita type notion of
spatio-temporal parallel transport.

The article is organized as follows. In Section 2 we motivate the Sgravity action (1) in more
detail and derive the transformation law (3) that ensures its invariance. In Section 3 we introduce the
generalized Ehresmann connection (7) and discuss its ramifications: the existence of the SDiff frame (8)
compatible with the invertible Carroll metric (9), whose coordinate components intertwine the πS
with the πT realization. In Section 4.1 the limit construction (4) of Stensors is elucidated. Examples of
Stensors and their linearized transformation laws are presented in Section 4.2. Section 4.3 constructs
the decoupling maps. Different notations of SDiff(M) covariant parallel transport are discussed in
Section 5. Brief conclusions and an outlook are offered in Section 6. Appendix A revisits the 1+d tensor
calculus of (pseudo-)Riemannian geometry with a focus on (occasionally new) results needed in the
bulk of the paper.

2. Sgravity and Its Diffeomorphism Invariance

Written in 1+d form one can separate the kinematical from the dynamical spatial gradients
in Einstein gravity. Then Sgravity describes the temporal dynamics of the gravitational degrees of
freedom in a ‘generally covariant’ way. The number of physical degrees of freedom is the same [10] and
so is the abstract invariance group Diff(M), which however acts in a non-standard way on the fields.

2.1. Kinematical versus Dynamical Gravitational Gradients

Sgravity is best introduced starting from the 1+d form of the gravitational action. It is instructive
to include some minimal coupling to matter, for which we take a self-interacting scalar field φdim.
We retain the parameterization of the line element ds2 = −N2dt2 + gab(Nadt + dxa)(Nbdt + dxb).
The generalization of (A43) then reads.

SL[g, φdim] =
1
κ

S0[g,
√

κφdim] +
1
κ
V [g,
√

κφdim] , (11)
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where

S0[q, ϕ] = 1
2

∫ t f
ti

dt
∫

Σ dx
{

1
4n e0(qab)G(q)ab,cde0(qcd) +

1
n e0(ϕ)2 − 2nq[U(ϕ) + Λ]

}
,

V [g, φ] = 1
2

∫ t f
ti

dt
∫

Σdx ng
{

R(g)− gab∂aφ∂bφ
}

.
(12)

In addition to the propagating fields the densitized lapse n = N/
√

g and the shift Na enter,
the latter only through e0 := ∂t−L~N , the derivation transversal to the leaves of the foliation. The deWitt
metric is 2Gab,cd(q) = qacqbd + qadqbc − 2qabqcd. The rescaled scalar field φ =

√
κφdim is dimensionless

and the potential U(φ) in (12) has already been viewed as a function of it. Finally, κ = cdGN , c3 = 8π,
is the d-dimensional Newton constant. Next, we subject (11) to the following scale transformation sλ,
λ > 0:

κ → λdκ , gab(t, x)→ λ2gab(t, x)

N → N , Na → Na, φ→ φ, Λ→ Λ .
(13)

Note that sλ refers to a fiducial foliation but by (A42) is insensitive to foliation-preserving
diffeomorphisms. After the rescaling we set κ = 1 and rename κ̌ = λ−2. This gives

S[g, φ] = S0[g, φ] + κ̌V [g, φ] . (14)

The decomposition (14) separates kinematical spatial gradients carried by e0 from dynamical
gradients carried by R(g), ∂aφgab∂bφ, and can serve as the starting point for an Anti-Newtonian
expansion: the S0 term can be viewed as the λ→ ∞ limit of the rescaled original action. By (13) a large
λ� 1 emulates a large Newton constant and also enhances spacelike distances compared to timelike
ones. Neighboring world lines are harder to communicate with and the lightcone structure appears
Anti-Newtonian. It is instructive to absorb κ into a dimensionful spatial metric gdim

ab = κ−2/dgab. Then
all fields N, ndim = nκ, Na, φ, gdim

ab are invariant under the scale transformation and the action (11) reads

S0[gdim, φ] +
1

κ2/d V [g
dim, φ] . (15)

In this scale invariant field basis the role of κ̌ is thus played by κ−2/d, and an expansion in powers
of κ̌ is literally a strong coupling expansion. The limiting gravity theory with action S0[q, ϕ] is referred
to as strong coupling gravity or Sgravity, for short. For clarity’s sake we use different symbols

gab 7→ qab , N 7→ ν , Na 7→ νa , φ 7→ ϕ , (16)

for its fields and refer to them as Sfields. The densitized Slapse will occur infrequently, we then write
directly n 7→ ν/

√
q.

The limiting gravity theory described by S0 has originally been suggested in Hamiltonian form by
Isham [11] and was subsequently studied in [1,10,12,13]. In vacuum and without cosmological constant
it is equivalent to the “zero-signature” limit of Einstein gravity formulated by Henneaux [7]. In related
developments, first order forms of “Carroll gravity” theories have been introduced [14,15], so far of
uncertain relation to Henneaux’s version. In a mathematical relativity context the field equations
of S0 are known as the “velocity dominated” system. They describe the limiting behavior of a class
of “asymptotically velocity dominated” solutions of the Einstein field equations [16,17]. Conversely,
“Fuchsian techniques” [18,19] allow for the rigorous construction of relativistic spacetimes from “seed”
solutions of the velocity dominated fields equations.

The relativistic gradient expansion similarly takes seed solutions of the velocity dominated
system as the starting point but aims initially only at formal series solutions in powers of some control
parameter ε. Since its early beginnings in the context of the BKL scenario [20–23] it has been recast
as an alternative to (resummed) cosmological perturbation theory, deemed valid on “superhorizon”
scales [24–28]. There is also a streamlined version of the expansion employing the Hamilton-Jacobi
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method [29,30]. These are all on-shell techniques, in practice limited to seed solutions of the factorized
form qab(t, x) = a(t)2q̄ab(x). In the present setting λ−2 plays the role of the control parameter ε.

Using a suitable ansatz the Einstein–Hilbert action itself can be expanded in powers of λ−2,
but for off-shell seeds the variational field equations fail to preserve the constraints. An off-shell
Anti-Newtonian expansion that avoids issues with constraint non-propagation has been developed
in [31]. An iteratively constructed canonical transformation (“Trivialization map”) exists that maps the
full 1+d action SL into its strong coupling limit S0, while intertwining with the constraints. An outlook
on its relevance for the quantum theory can be found in [32].

2.2. Transformation of ν, νa, qab, qab

Since the very definition of the Sgravity action S0 refers to a foliation one might expect it to be
invariant only under the foliation-preserving subgroup Diff({Σ}) of Diff(M). In fact, S0 is (even for
generic parameter in the deWitt metric) invariant under the full 1+d dimensional diffeomorphism
group, which acts however non-tensorially according to [1]

ν′ =
ν

∂t′

∂t
− ∂t′

∂xc νc
,

ν′
a

= −

∂x′a

∂t
− ∂x′a

∂xb νb

∂t′

∂t
− ∂t′

∂xc νc
, (17)

q′ab =
( ∂xc

∂x′a
+

∂t
∂x′a

νc
)( ∂xd

∂x′b
+

∂t
∂x′b

νd
)

qcd .

The scalar field in the matter extended action transforms as usual, ϕ′ = ϕ. The primed fields
are evaluated at (t′, x′). The transformations (17) form a realization πS(χ), χ ∈ Diff(M), of the
Diffeomorphism group, partially defined by its action on ν, νa, qab, ϕ. By direct computation one can
verify that they form a group compatible with concatenation of the diffeomorphisms, πS(χ2)πS(χ1)u =

πS(χ2 ◦χ1)u, u = ν, ν2, qab, ϕ. The counterparts in pseudo-Riemannian geometry are the relations (A33)
which are induced by the familiar tensorial realization via push-forward (πT(χ)g)µν = (χ∗g)µν,
χ ∈ Diff(M). We anticipate in the notation πS that (17) can be extended to generic tensors to form a
bona-fide ‘scaling realization’ of the Diffeomorphism group for which we write

SDiff(M) = πS
(
Diff(M)

)
. (18)

The invariance of S0 will be shown below.
The transformation law (17) is related to its counterpart (A33) in pseudo-Riemannian geometry by

the limit (3) of the scale transformation (13). With the replacement (16) understood the transformation
laws (A33) and (17) coincide precisely on the subgroup Diff({Σ}) of foliation-preserving
diffeomorphisms in (A3).

The relations (17) can be linearized straightforwardly. With ξ0, ξa as in (A44) and ξ0 = ε0/ν,
εa = ξa + νaξ0 in parallel to the combinations in (A45) one finds

δ0
ε ν = e0(ε

0) + εa∂aν,

δ0
ε νa = e0(ε

a) ,

δ0
ε qab = ε0

ν e0(qab) + L~εqab .

δ0
ε ϕ = ε0

ν e0(ϕ) + εa∂a ϕ .

(19)
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Throughout we retain the notation e0 = ∂t −L~ν for the derivation transversal to the leaves of the
foliation set by νa, see (A18).

The need for a novel tensor calculus adapted to (17) can be seen in several ways, most obviously
by studying the metric itself. Consider the decomposition (A27) of the spacetime metric into temporal
and spatial blocks. Under the usual tensorial action of diffeomorphisms the blocks of the (co-and
contravariant) metric (A27) will mix, unless the diffeomorphism is foliation-preserving. The sum
however is invariant. Direct counterparts of co- and contravariant metric arise from the substitution (16)
(The right hand sides also coincide with gcµν|~β=0dyµdyν, gµν

c |~β=0(∂/∂yµ)(∂/∂yν), from (74), hinting at
βa’s role later on.)

gµνdyµdyν 7→ εgν2dt2 + qabeaeb , (20a)

gµν ∂

∂yµ

∂

∂yν
7→ εg(ν

−1e0)
2 + qab ∂

∂xa
∂

∂xb , (20b)

where on the right hand side e0 = ∂t − νa∂a, ea = dxa + νadt. Using (17) the transformation of the right
hand side under SDiff(M) can be computed. One finds

ν′2dt′2 = ν2dt2 + D−1 ∂t′

∂xb

(
dteb + ebdt

)
+ D−2 ∂t′

∂xb
∂t′

∂xc ebec , (21a)

q′abe′ae′b = qabeaeb ,

ν′−1e′0 = ν−1e0 , (21b)

q′ab ∂

∂x′a
∂

∂x′b
= qab ∂

∂xa
∂

∂xb + D−1 ∂t′

∂xc qcd
(

e0
∂

∂xd +
∂

∂xd e0

)
+ D−2qcd ∂t′

∂xc
∂t′

∂xd ,

where we use the shorthand D := ∂t′/∂t− νc∂t′/∂xc. Notably, the sums in (20) are no longer invariant.
Instead, the spatial part of the metric and the temporal part of the contra-metric are separately invariant
under the full SDiff(M) action!

We briefly comment on the derivation. The first equation in (21a) is just the chain rule, rewritten
as in (A32c). For the second equation in (21a) the transformation law of qab is needed. By taking the λ

scaling limit of (A38) one finds

q′ab = Xa
dXb

c qcd ,

Xa
b :=

∂x′a

∂xb − D−1 ∂t′

∂xb

(∂x′a

∂t
− ∂x′a

∂xe νe
)

,
(22)

where no confusion with the Xb
a in (A47) should arise. As a check one may verify q′acq′cb = qacqcb =

δb
a , using ( ∂xa

∂x′c
+ νa ∂t

∂x′c
)

Xc
b = δa

b ,
( ∂xc

∂x′a
+ νc ∂t

∂x′a
)

Xb
c = δb

a , (23)

on account of (A7). Often also the relations Xa
b∂t/∂x′a = −D−1∂t′/∂xb and (∂xc/∂x′a +

νc∂t/∂x′a)∂t′/∂xc = −D∂t′/∂x′a are useful. For the linearized version of (22) one finds δ0
ε qab =

(ε0/ν)e0(qab) + L~εqab, consistent with (19). In order to obtain the transformation law of ea, we start
from (A32d) which is merely a rewriting of the chain rule. By inserting N′a 7→ ν′a, Na 7→ νa,
from (17) specifics about Sgravity enter and the result can be written as e′a = Xa

beb. The invariance
q′abe′ae′b = qabeaeb then follows by combining (17), e′a = Xa

beb, and (23).
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The first relation in (21b) can be obtained as follows: starting from (A32a) and (A32b) one replaces
again N′a 7→ ν′a, Na 7→ νa, via its SDiff(M) transformation law. Repeated application of (A7) then
gives ν′−1e′0 = ν−1e0. Finally, the second relation in (21b) arises from

Xa
b

∂

∂x′a
=

∂

∂xb − D−1 ∂t′

∂xb e0 . (24)

Invariance of S0. As stressed at the beginning the unusual geometry described by (21) is
motivated by the invariance of S0 under the action (17). This invariance is plausible by the very
origin of (17) as a limit under the scaling transformation (13). Its direct verification highlights the
consistent interplay of the various non-standard transformation formulas and may be worth presenting
in detail. It is convenient to introduce the notion of an SDiff(M) scalar ϕ (Sscalar for short) as a function
on M that transforms like a conventional scalar ϕ′ = ϕ, with respect to (17). Metric-independent
conventional scalars are thus examples of Sscalars. Further, the first relation in (21b) can be rephrased
by saying that ν−1e0 maps Sscalars into Sscalars. The matter part of the action S0[q, ϕ] in (12) is
therefore a sum of two Sscalars, ν−2e0(ϕ)2 and U(ϕ) + Λ. The gravity part in S0[q, ϕ] can likewise be
written as a sum of SDiff(M) scalars. In order to see this, we note first

ν′
−1e′0(q

′
ab) =

( ∂xc

∂x′a
+

∂t
∂x′a

νc
)( ∂xd

∂x′b
+

∂t
∂x′b

νd
)

ν−1e0(qcd) . (25)

Infinitesimally, this can be verified straightforwardly. One way of establishing (25) for finite
transformations is as follows: as a real, symmetric, and positive definite matrix qab admits a spectral
decomposition of the form

qab =
d

∑
i=1

λiv
(i)
a v(i)b , (26)

where the eigenvalues are positive though not necessarily distinct, and the eigenvectors v(i)a , i,= 1 . . . , d,
can be chosen mutually orthogonal. The transformation law of the eigenvectors follows from (17).
(In the terminology of Section 4 va is the spatial part of a Scovector (v, va) of weight (0, 0) with v ≡ 0.)
It remains to show the implication

v′a =
( ∂xc

∂x′a
+

∂t
∂x′a

νc
)

vc =⇒ e′0(v
′
a) =

1
D

( ∂xc

∂x′a
+

∂t
∂x′a

νc
)

e0(vc) . (27)

This can be obtained directly along similar lines as (65b) later on. Alternatively, one can combine
e′0 = D−1e0 with the fact that vav̌a is an Sscalar to derive (27) from (65b). Either way, one obtains (25).

Combined with (22) and (23) it follows that

ν′
−1e′0(q

′
ac)q

′cb
=
( ∂xd

∂x′a
+

∂t
∂x′a

νd
)

ν−1e0(qde)qec Xb
c . (28)

Hence
ν−1tr

[
e0(q)q−1] , ν−2tr

[(
e0(q)q−1)2] are SDiff(M) scalars . (29)

Clearly, the invariance of S0 is thereby equivalent to

(dtdx)′ν′
√

q′ = (dtdx)ν
√

q . (30)

In the tensorial realization, this is of course the familiar invariance of the metric induced volume
form dy

√
εg det g(y) = dtdxN√g. Importantly, here it must hold with respect to the SDiff(M)

action (17) not with respect to the tensorially induced one (A33). In order to avoid slipping back
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into ‘tensorial patters’, we present the derivation in some detail. First, the Jacobian of the change of
variables dy′ = (det ∂y′/∂y)dy, is as in (A8)

det
∂y′α

∂yβ
=
( ∂t

∂t′
)−1

det
∂x′a

∂xb . (31)

Note that ∂t/∂t′ occurs which in general not the inverse of ∂t′/∂t. Second, by (17)

√
q′ = det

( ∂xb

∂x′a
+

∂t
∂x′a

νb
)√

q . (32)

The invariance (30) is therefore equivalent to

det
(∂x′a

∂xb

)
det

( ∂xb

∂x′a
+

∂t
∂x′a

νb
)
=

∂t
∂t′
(∂t′

∂t
− ∂t′

∂xc νc
)

. (33)

In order to verify this, one interprets the left hand side as the determinant of the product matrix.
Using the chain rule identities (A7) once more the product matrix simplifies to δc

b− (∂t′/∂xb)(∂xc/∂t′+
νc∂t/∂t′). This is a rank one perturbation of an invertible matrix to which the general formula
det(A + uvT) = (1 + vTA−1u)det A, for vectors u, v, is applicable. Using (∂t′/∂xa)(∂xa/∂t′) =

1 − (∂t′/∂t)(∂t/∂t′) in the result, one arrives at (33). This completes the proof of S0’s invariance
under (A33).

As noted, the transformations (17) form a group with respect to the concatenation of unconstrained
diffeomorphisms, t′ = χ0(t, x) and x′a = χa(t, x) are generic and of the same type that one chooses to
work with in the tensorially induced realization (A33). One noteworthy property of (17) is that the
Sshift νa does not mix with the other components. As a consequence, the ν′a ≡ 0 gauge can always
be attained by a merely νa-dependent diffeomorphism that is independent of ν, qab [1]. The residual
gauge group of the Sshift zero gauge is

χ ∈ Stab0(M|~ν) iff t′ = χ0(t, x) , x′a = χa(x) . (34)

The zero shift gauge is also attainable (on all globally hyperbolic spacetimes) with respect to
the tensorially induced action of the Diffeomorphism group [33]. The stabilizer subgroup then
is smaller, Stab(M|~N) = Diff[ti, t f ] × Diff(Σ), where Diff[ti, t f ] comprises endpoint-preserving
time reparameterizations, t′ = χ0(t), χ0(ti) = ti, χ0(t f ) = t f . Nevertheless, the residual gauge
transformations turn out to act identically on the gauge transformed fields. In Einstein gravity
Ň, Ňa ≡ 0, ǧab, φ̌, transform according to

Ň′ =
∂t
∂t′

Ň , ǧ′ab =
∂xc

∂x′a
∂xd

∂x′b
ǧcd , φ̌′ = φ̌ , (35)

for all χ ∈ Stab(M|~N). In Sgravity the counterpart is (55) below, for all χ ∈ Stab0(M|~ν).
The subgroup (34) can of course also act tensorially on conventional tensors and is then dubbed
the group of Carroll diffeomorphisms [5]. It will reoccur later on.

3. Carroll Structure and πS vs. πT Intertwining

The ‘speed of light to zero’ limit is often placed in the context of a ‘Carroll structure’ covariant
only under a subgroup of diffeomorphisms dubbed the Carroll group, t′ = χ0(t, x), x′a = χa(x) [5,6,8].
Here we show that the covariance group can be enhanced to the full Diffeomorphism group in its
πS(Diff(M)) realization by introducing a generalized Ehresmann connection βa. In terms of it one
can define an orthonormal frame which transforms without mixing of the spatio-temporal blocks
under all of πS(Diff(M)) and whose coordinate components intertwine with the original πT(Diff(M))
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realization. Further, βa allows one to restore the invariance of the sums (20) to obtain a nondegenerate
fully covariant Carroll metric.

3.1. A Fully Covariant Carroll Structure for Sgravity

A natural counterpart of the metric frame (A22) of pseudo-Riemannian geometry is obtained by
simply replacing Na with νa. This results in an orthonormal frame which we call Sframe:

Sframe :
(
e0 = ∂t − νa∂a, ∂/∂xa) ,

(
dt, ea = dxa + νadt

)
. (36)

By construction, it transforms without mixing under the Diff({Σ}) subgroup of SDiff(M). Indeed,
when restricted to foliation-preserving diffeomorphisms, ∂t′/∂xa = 0 = ∂t/∂x′a, the transformation
law (17) coincides with the tensorially induced one (A42). In particular, the shift transforms according
to (A17), so (A19) carries over. Under the action of all of SDiff(M) the blocks mix, however. By direct
computation one finds

e′0 =
1

∂t′
∂t −

∂t′
∂xb νb

e0 ,
∂

∂x′a
=
( ∂xb

∂x′a
+ νb ∂t

∂x′a
) ∂

∂xb +
∂t

∂x′a
e0 ,

dt′ =
(∂t′

∂t
− νb ∂t′

∂xb

)
dt +

∂t′

∂xb eb , e′a = Xa
beb ,

(37)

with Xb
a as in (23).

We now seek to identify a minimal additional structure that allows one to introduce an
orthonormal frame transforming without mixing under all of SDiff(M). The appropriate structure
turns out to be a connection transforming according to

β′a =
(

∂xc

∂x′a +
∂t

∂x′a νc
)[(

∂t′
∂t −

∂t′
∂xd νd

)
βc +

∂t′
∂xc

]
,

β′ae′a =
(

∂t′
∂t −

∂t′
∂xb νb

)
(βaea) + ∂t′

∂xb ea .
(38)

In terms of this we introduce the

SDiff frame :
(
e0, Ea := ∂a + βae0

)
,
(
E0 := dt− βaea, ea) . (39)

It has the desired property of transforming without mixing of the blocks under all of SDiff(M):

e′0 =
1

∂t′
∂t −

∂t′
∂xb νb

e0 , E′a =
(

∂xb

∂x′a +
∂t

∂x′a νb)Eb ,

E′0 =
(∂t′

∂t
− ∂t′

∂xb νb
)

E0 , e′a = Xa
beb .

(40)

Orthonormality holds in the sense

E0(e0) = 1 , E0(Ea) = 0 , ea(e0) = 0 , ea(Eb) = δa
b , (41)

and is preserved under the action of SDiff(M) on account of (23). For later use we note the
coordinate expansions

e0 = mµ ∂
∂yµ , Ea = Eµ

a
∂

∂yµ , E0 = tµdyµ , ea = ea
µdyµ ,

mµtµ = 1 , mµea
µ = 0 , Eµ

a tµ = 0 , Eµ
a eb

µ = δb
a .

(42)
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Completeness can be expressed as ea
µEν

a = δν
µ − tµmν. In adapted coordinates

mµ = δ
µ
0 − δ

µ
a νa , Eµ

a = δ
µ
a + βamµ ,

tµ = δ0
µ − βaea

µ , ea
µ = δa

µ + νaδ0
µ .

(43)

In particular, t0 = 1− νcβc, ta = −βa, so that tµ itself can be viewed as defining the connection.
Of course tµ will have nonzero vorticity in general, dE0 6= 0, i.e., ∂νtµ − ∂µtν 6= 0. In addition to the
given foliated manifold M only the co-connection νa (transforming as in (17)) and the connection βa

(transforming as in (38)) are needed. The following definition has become standard [5,7,8]:

Definition 1. (Carroll structure). A Carroll structure consists of a 1+ d dimensional manifold equipped with
a degenerate metric Qµνdyµdyν of rank d and a vector field mµ∂/∂yµ, such that Qµνmν = 0. An Ehresmann
connection for the Carroll structure is a one form tµdyµ dual to mµ∂/∂yµ, i.e., mµtν = 1. In terms of tµ, mµ the
Carrollian contra-metric Qµν is defined as the unique solution of Qµνtν = 0, QµρQρν = δ

µ
ν −mµtν.

As suggested by the notation, the above frame realizes the vector field mµ∂/∂yµ and its dual
tµdyµ in Sgravity. We now augment the Smetric qab and its inverse qab and define

Qµν := ea
µeb

νqab , Qµν := Eµ
a Eν

b qab . (44)

Combined with mµ, tµ they define a Carroll structure in Sgravity:

Qµνmν = 0 , Qµνtν = 0 , QµρQρν = δ
µ
ν −mµtν , (45)

which we shall refer to as the SCarroll structure. In particular, βa from (38) is its Ehresmann connection,
whence called the SEhresmann connection.

Since qab, qab are positive definite by assumption, the Carroll counterparts are positive semidefinite,
QµνVµVν ≥ 0, QµνVµVν ≥ 0, for all Vµ, Vµ. To guide the eye we also note the matrix forms in a
coordinate basis

(Qµν)µ,ν=0,1,...,d =

(
νcqcdνd qbcνc

qacνc qab

)
,

(Qµν)µ,ν=0,1,...,d =

(
βcqcdβd qbcβc−νbβcqcdβd

qacβc−νaβcqcdβd qab−qacβcνb−qbcβcνa+νaνbβcqcdβd

)
.

(46)

While Qµν matches the leading term in the λ scaling of the metric (A27), gµν 7→ λ2Qµν + O(1),
this is not the case for the contra-metric. In fact, the leading term in gµν under the λ scaling is
a rank one matrix, whose components have very different transformation properties than those
of Qµν. The SEhresmann connection is an independent structure indispensable for defining a
Carrollian contra-metric.

The relations (45) already appear in Henneaux [7], Equations (2.4) and (2.7). The identification of
tµ as a generalized Ehresmann connection with transformation law (38) seems to be new. In Henneaux’s
exposition Qµν is used to raise indices, in particular in the second fundamental form. Nevertheless, in
the final zero-signature gravity action the SEhresmann connection drops out, see his (6.1) vs. (6.17).
This highlights that the invariance of S0 cannot hinge on the ‘covariantization’ allowed by introducing
the SEhresmann connection; it must reside in the transformation properties of ν, νa, qab, ϕ alone. Here,
these unusual transformation properties (17) were taken as the starting point.
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In Section 4 we shall develop a tensor calculus adapted to (17). A special case will be the notion of
an Scovector (v, va) of weight (0, 0). The transformation properties turn out to be such that

βa = −
va

νv
, (47)

transforms according to (38). Of course this begs the question as to the origin of such an Scovector.
The simplest explicit construction is in terms of a scalar ϕ, for example the one in the action S0,
see (12). Then v = ν−1e0(ϕ), va = ∂a ϕ turn out to be an Scovector of weight (0, 0); whence (47) applies.
The Ehresmann covector tµ for this choice equals

tµ =
∂µ ϕ

e0(ϕ)
. (48)

It may be recognized as the λ scaling limit, uµ = N−1tµ + O(λ−2), of a covector uµ defining a
fluid foliation,

uµ =
∂µφ√

εg∂ρφgρσ∂σφ
, uµgµνuν = εg , (49)

with nonzero vorticity. We shall see in Section 3.2 that the Ea form an integrable distribution iff
Tab = 0, where

Tab = ∂aβb − ∂bβb + βae0(βb)− βbe0(βa) , (50)

plays the role of a torsion for the SEhresmann connection. Here e0 acts by ∂t −L~ν on general Diff({Σ})
tensors, where L~ν is the Lie derivative. One may check that βa = −∂a ϕ/e0(ϕ) has vanishing torsion
on account of e0(∂a ϕ)− ∂ae0(ϕ) = 0. By Frobenius theorem there must exist level surfaces of some
scalar field annihilated by the Ea’s. Indeed, Ea(ϕ) = 0, for βa = −∂a ϕ/e0(ϕ).

Fibre bundle Carroll structure via gauge fixing. The above definition of a Carroll structure does
not explicitly refer to a foliation and does not specify the class of diffeomorphisms that is meant
to preserve it. One usually interprets a Carroll structure as a fibre bundle [5,6], π : C → Σ, with
one-dimensional fibres and d-dimensional base Σ. The differential dπ : TC → TΣ then defines a
surjective map between the corresponding tangent bundles, with a one-dimensional kernel, called the
vertical subbundle. In local coordinates (t, xa), a = 1, . . . , d, on C, the projection is just π(t, xa) = xa,
and the vertical subspace at (t, x) is of the form V0(t, x)∂t, for some smooth V0(t, x). Without additional
structure there is no preferred way of identifying the complement of the vertical subbundle, i.e.,
the horizonal subbundle, with TΣ. An Ehresmann connection is a one-form badxa transforming
according to

b′adx′a =
∂t′

∂t
badxa +

∂t′

∂xc dxc , b′a =
∂xc

∂x′a
[∂t′

∂t
bc +

∂t′
∂xc

]
,

t′ = χ0(t, x) , x′a = χa(x) , χ ∈ Carroll(M) ⊂ Diff(M) .
(51)

These diffeomorphisms form a group under concatenation which has been dubbed the group of
Carroll diffeomorphisms [6]. The differential (A6) of such a diffeomorphism is lower triangular, ∂xa/∂t′ =
0 = ∂x′a/∂t, (∂t′/∂t)(∂t/∂t′) = 1, (∂xa/∂x′c)(∂x′c/∂xb) = δb

a . The transformation law (51) is designed
such that dt′ + b′adx′a = (∂t′/∂t)(dt + badxa) and ∂/∂x′a + ba∂/∂t′ = (∂xc)/∂x′a)(∂/∂xc + bc∂/∂t).
In other words, there is an orthonormal frame, the

Carroll frame : (∂t , ∂a + ba∂t), (dt + badxa, dxa) , (52)

that transforms without mixing (‘reduced’) under Carroll diffeomorphisms. Let (V0, Va) be the 1+d
components of a conventional vector. Then V0∂t and Va(∂a + ba∂t), are invariant under Carroll
diffeomorphisms, and the latter defines the desired one-to-one correspondence between the horizontal
subspace of TC and TΣ.



Symmetry 2020, 12, 752 13 of 63

By augmenting an invertible ‘Carroll tensor’ qbab with inverse qab
b one can define a Carroll structure

in the above sense:
Qb

µνdyµdyν = qbabdxadxb ,

Qµν
b

∂
∂yµ

∂
∂yν = qab

b (∂a + ba∂t)(∂b + bb∂t) .
(53)

The Carroll metric Qb
µν has rank d with null vector mµ = δ

µ
0 ; similarly Qµν

b has rank d

with null space spanned by tµ = δ0
µ − baδa

µ. Further, if q′bab = (∂xc/∂x′a)(∂xd/∂x′b)qbcd and

q′ab
b = (∂x′a/∂xc)(∂x′b/∂xd)qcd

b under Carroll diffeomorphisms, both sides of (53) are invariant. For
contradistinction we shall refer to (51) and (53) as the fibre bundle Carroll structure, with ‘b’ mnemonic
for bundle.

The Carroll structure in Sgravity identified above generalizes the one in (52) and (53). This
can be seen by revisiting the earlier construction in νa ≡ 0 gauge. As noted in (34), the latter is a
nonlinearly admissible gauge in Sgravity. The stability group of this gauge consists of generic temporal
diffeomorphisms, t′ = χ0(t, x), combined with time-independent spatial ones, x′a = χa(x). Here these
act in the nonstandard way inherited from (17), so we write

SCarroll(M) := πS
(
Carroll(M)

)
:= Stab0(M|~ν) ⊂ πS

(
Diff(M)

)
= SDiff(M) . (54)

Moreover, there is an explicitly constructible map that assigns to every field a ‘checked’
counterpart with the following properties. The ‘checked’ Sgravity fields are invariant under
diffeomorphisms with ∂x′a/∂t 6= 0, and they transform under (17) as if νa ≡ 0 [1]. Explicitly,
the transformation laws for the ‘checked’ Sgravity fields read:

ν̌′ =
∂t
∂t′

ν , ϕ̌′ = ϕ̌ , ν̌′a = ν̌a = 0 ,

q̌′ab =
∂xc

∂x′a
∂xd

∂x′b
q̌cd , q̌′ab =

∂x′a

∂xc
∂x′a

∂xd q̌cd ,
(55)

and the frame fields reduce to ě0 = ∂t, ěa = dxa. Further,

β̌′a =
∂xb

∂x′a
[∂t′

∂t
β̌b +

∂t′

∂xb

]
, (56)

and Ě0 = dt− β̌adxa, Ěa = ∂a + β̌a∂t. Note that, despite their familiarity, the transformations (55)
are not the tensorially induced transformation laws (A33) specialized to the Carroll subgroup.
The underlying nonstandard action of the Diffeomorphism group remains crucial for the construction.
Based on it, there is an isometric embedding of the fibre bundle Carroll structure (51) and (53) into the
Sgravity one (44) via (

∂t , ∂a + ba∂t
)
=
(
ě0, Ěa

)
,
(
dt + badxa, dxa) = (Ě0, ěa) ,

ba = β̌a , qb
ab = q̌ab , qab

b = q̌ab .
(57)

In particular Qµν|~ν=0 = Qb
µν, Qµν|~ν=0 = Qµν

b . Although the Sshift no longer explicitly occurs
in the transformation law, the ‘checked’ fields implicitly refer to it, so we maintain the distinction
between the πS and the πT actions.

In the above fibre bundle construction ‘space’ was regarded as the base manifold and ‘time’ as
the fibre. In the situation at hand the 1+d manifold M always comes with a non-metric foliation as
described in Appendix A.1. This can be recast formally as a fibre bundle as well, with ‘time’ as base
manifold and ‘space’ as fibres. The projection of the bundle y0 : M→ [ti, f f ] can be identified with the
scalar field setting the (pre-metric) temporal function; in local coordinates y0(t, xa) = t. Its differential
dy0 defines a surjective linear map dy0 : TM → T[ti, t f ], with a d-dimensional kernel, defining
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the vertical subbundle. At (t, xa) the vertical subspace is spanned by Va(t, x)∂a. The one-to-one
correspondence between the horizontal subbundle and T[ti, t f ] is now furnished by the (renamed)
co-connection νa from (A17). It allows one to introduce e0 = ∂t − νa∂a and ea = dxa + νadt and
the associated orthonormal frame (dt, ea), (e0, ∂/∂xa). The diffeomorphisms preserving this bundle
structure are the foliation-preserving ones, under which the orthonormal frame transforms without
mixing, see (A19). The SEhresmann connection does not enter and is in fact not needed. This is because
it transforms linearly itself under foliation-preserving diffeomorphisms, β′a = (∂xc/∂x′a)βc. Without
further restricting Diff({Σ}) one can set βa ≡ 0, which maps (e0, Ea), (E0, ea) into (e0, ∂/∂xa), (dt, ea).
The frame (40) then reduces to (A19).

In summary, if the 1+d manifold M underlying the Carroll structure comes equipped with a
foliation, there are two complementary fibre bundle constructions. One takes ‘space’ as the base
manifold via the Ehresmann connection ba and implements non-mixing transformation laws under
the subgroup of Carroll diffeomorphisms Carroll(M). The other takes ‘time’ as the base manifold
and via the co-connection νa arranges for non-mixing transformation laws under the subgroup of
foliation-preserving diffeomorphisms Diff({Σ}).

Neither of the fibre bundle constructions transforms without mixing with respect to the
complementary subgroup: (∂t, ∂a + ba∂t) and (dt + badxa, dxa) mix under Diff({Σ}). Likewise
(dt, ea = dxa + νadt) and (e0 = ∂t − νa∂a, ∂a) mix under Carroll(M). It is not hard to see that the
concatenation of a Carroll- with a foliation-preserving diffeomorphisms (in either order) gives rise to
a generic diffeomorphism. This suggests to search for a framework where both an Ehresmann-type
connection and a shift-type co-connection are present and non-mixing transformation laws under
the full Diffeomorphism group can be arranged. This is precisely what the SDiff frame (40)
and the concomitant SCarroll structure (38) and (44) accomplishes. The nonstandard action of
diffeomorphisms (17) on ν, νa, qab, qab is crucial for this to work. The interrelations among the three
orthonormal frames are summarized in Table 1.

Table 1. Interrelation among orthonormal frames and the (sub-)groups with respect to which they
transform without mixing of frame blocks.

line Carroll frame SDiff frame Sframe

non-mixing wrt νa=0←− non-mixing wrt
βa=0−→ non-mixing wrt

SCarroll(M) SDiff(M) Diff({Σ})
line

3.2. Structure Functions of the SDiff Frame

Any orthonormal frame of vector fields ei and one forms θi, i = 0, . . . , d, has a set of structure
constants associated with it, alternatively defined by [ei, ej] = f k

ijek or dθi = − 1
2 f i

jkθ j ∧ θk. In order to

compute the structure constants for the frame (e0, Ea), (E0, ea) in (39) and (41) a small preparation is
needed. The domain of the vectors fields must be extended from Diff({Σ}) scalars to other tensors.
For e0 this is done simply by interpreting it as E0 = ∂t −L~ν, where L~ν is the Lie derivative of Diff({Σ})
tensors. For Ea we contract with a generic Diff({Σ}) vector Va to form VaEa and interpret the result as

E~V = L~V + Vaβa e0 . (58)

This is a linear derivation on Diff({Σ}) tensors for which one can consider the torsion T

T(~V, ~W) := [E~V , E~W ]− E[~V,~W] . (59)

When acting on Scalars one finds

T(~V, ~W) = VaWbTab e0 + E~U , Ua := βbVbe0(Wa)− βbWbe0(Va) , (60)



Symmetry 2020, 12, 752 15 of 63

with Tab from (50). It satisfies the key property of a torsion tensor: the E~V form an integrable
distribution iff Tab = 0. A similar computation gives

[E~V , e0] + Ee0(~V) = −e0(βa)Va e0 . (61)

These results can again be specialized to Va 7→ δa
aV

, Wa 7→ δa
aW

, and give

[Ea, Eb] = Tab e0 + (βa∂bνc − βb∂aνc)Ec ,

[e0, Ea] = e0(βa)e0 + ∂aνcEc ,
(62)

with Ea interpreted as in (58). From here the structure constants in vector field form can be read off.
Consistency requires that the same structure constants enter the exterior derivatives of the one forms
E0, ea. By direct computation one finds

dea = ∂cνa ec ∧ E0 − 1
2 (βb∂cνa − βc∂bνc)eb ∧ ec ,

dE0 = −e0(βa)E0 ∧ ea − 1
2Tab ea ∧ eb .

(63)

The structure constants indeed match those in (62).
Next, we consider the transformation properties of Tab. The result is

T′ab =
(∂t′

∂t
− ∂t′

∂xe νe
)( ∂xc

∂x′a
+

∂t
∂x′a

νc
)( ∂xd

∂x′b
+

∂t
∂x′b

νd
)
Tcd , (64)

under the action of SDiff(M). The derivation proceeds by breaking up the defining relation (59)
and (60) into several separately invariant pieces. To this end, we denote by v̌a = ea

µVµ, w̌a = ea
µWµ the

spatially projected components of two (metric-independent) vectors Vµ, Wµ. They transform under
SDiff(M) according to (In the terminology of Section 4 v̌a, w̌a are the spatial parts of Svectors of weight
(0, 0).) v̌′a = Xa

b v̌b, w̌′a = Xa
bw̌b, with Xa

b from (22). Then v̌aEa will map Sscalars into Sscalars. Hence
also the commutator [v̌aEa, w̌aEa] will produce an Sscalar when acting on one. On the other hand,
this commutator equals ([v̌, w̌]a + Ua)Ea + v̌aw̌bTab e0, by (60). A quick inspection shows that (64)
is equivalent to the assertion that v̌aw̌bTab e0 maps Sscalars to Sscalars. On account of the previous
argument this will be the case iff ([v̌, w̌]a + Ua)Ea maps Sscalars to Sscalars. With a neat Stensor
calculus yet to be developed the latter has to be verified by direct computation. We first present the
relevant partial results:

[
v̌′, w̌′

]′a
=Xa

b

{[
v̌, w̌

]b
+ D−1 ∂t′

∂xc

(
w̌ce0(v̌b)− v̌ce0(w̌b)

)}
, (65a)

e′0(v̌
′a)=D−1Xa

b e0(v̌b) , (65b)

U′a=Xa
b

{
Ub − D−1 ∂t′

∂xb

(
w̌ce0(v̌b)− v̌ce0(w̌b)

)}
, (65c)

where we write again D = (∂t′/∂t− νc∂t′/∂xc) for readability’s sake. Clearly, (65a) and (65c) imply
that ([v̌, w̌]a + Ua)Ea maps Sscalars to Sscalars and hence (64). Further, (65c) is a straightforward
consequence of (65a) and (65b) and β′av̌′a = (Dβa + ∂t′/∂xa)v̌a. It remains to establish (65a) and (65b).
In both computations one needs

δXa
b = D−1 ∂t′

∂xb Xa
c δνc ,

Xb
a

∂

∂x′b
= ∂a − D−1 ∂t′

∂xa (∂t − νc∂c) .
(66)
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The first relation applies to any linear derivation δ in the original coordinates (like ∂a or ∂t − νa∂a)
and can be obtained by operating on (23). The second relation restates (24). This suffices for (65a).
For (65b) one also needs ν′a∂′a and ∂′bν′a, for which the following mixed evaluations are useful

ν′a
∂

∂x′a
= −D−1(∂t − νa∂a) +

∂

∂t′
,

∂ν′a

∂x′b
= −D−2

(∂x′a

∂t
− νd ∂x′a

∂xd

) ∂t′

∂xc
∂νc

∂x′b
+ D−1 ∂x′a

∂xc
∂νc

∂x′b
.

(67)

Operating with v̌dXb
d on the second equation in (67) and using (66) one obtains (65b). This

concludes the derivation of (64).

3.3. πS vs. πT Intertwining and an Invertible Carroll Metric

The coordinate components of the SDiff frame transform under SDiff(M) as follows

m′µ =
1

∂t′
∂t −

∂t′
∂xc νc

∂y′µ

∂yν
mν , E′a

µ =
( ∂xb

∂x′a
+

∂t
∂x′a

νb
)

Eν
b

∂y′µ

∂yν
,

t′µ =
(∂t′

∂t
− ∂t′

∂xc νc
) ∂yν

∂y′µ
tν , e′µ

a = Xa
beb

ν
∂yν

∂y′µ
.

(68)

Using also the Slapse ν, the combinations nµ := ν−1mµ and nc
µ = εgνtµ will transform as

conventional vectors and covectors (For reoccurring symbols we use a right sub- or superscript ‘c’ to
indicate a ‘Carroll’ variant that depends on βa.)

n′µ =
∂y′µ

∂yν
nν , n′cµ =

∂yν

∂y′µ
nc

ν , (69)

under the action of SDiff(M), with nµnc
µ = εg invariant. So far only ν, νa, βa entered. Adjoining also

qab, qab one can form Qµν, Qµν and finds from (68) the standard transformation law

Q′µν =
∂yρ

∂y′µ
∂yσ

∂y′ν
Qρσ , Q′µν

=
∂y′µ

∂yρ

∂y′µ

∂yσ
Qρσ . (70)

In summary, the induced transformation law for the quantities (69) and (70) is that of the tensorial
πT realization. The underlying constituent fields ν, νa, qab, qab (and indirectly βa) however transform
according πS, not according to the tensorially induced realization (A33) and (A38). This means the
components (mµ, Eµ

a ) and (tµ, ea
µ) of the SDiff frame can be regarded as intertwiners between the πS

and the πT realization of Diff(M).
In pseudo-Riemannian metric geometry the nondegenerate metric of course transforms according

to (70). The standard foliation fields are nµ = εgNdtµ and nµ = gµνnν, for a temporal function T = t,
see (A29). Suitably interpreted they also transform tensorially. Crucially, the temporal function
must be held fixed to this end. For example ∂t/∂y′µ then are the components of dtµ after a Diff(M)

transformation. Further, N then is a scalar, so that nµ transforms like a covector. This is to be contrasted
with (A33) where N transforms nontrivially. In fact, the N′ on the left hand side refers to a changed
temporal function t′, namely the one would naturally use in adapted ‘primed’ coordinates. In this
interpretation εgNdtµ does not transform like a covector. Similarly, nµ = εgNgµνdtν, in the second
interpretation does not transform like a vector. Correspondingly Nnµ∂/∂yµ = ∂t − Na∂a = e0 has
been found to transform according to (A46). In particular, e′0 is not proportional to e0, unless the
diffeomorphism is foliation-preserving. This is to be contrasted with e′0 ∝ e0 from (21) when computed
with the SDiff(M) realization acting on the constituent fields.
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We now return to (69) and claim that the SDiff(M) transformation laws of the constituent fields
ν, νa, βa can be uniquely recovered from it:

(69) holds iff ν, νa, βa transform as in (17) and (38) . (71)

It suffices to verify this in adapted coordinates. Then nµ = ν−1(δ
µ
0 − δ

µ
a νa) and nc

µ = εgνδ0
µ(1−

βaνa)− εgνβaδa
µ. Reversing the computation underlying the first equation (69) one finds that n′µ =

(∂y′µ/∂yν) nν holds iff ν, νa transform as in (17). With this in place n′cµ = (∂yν/∂y′µ)nc
ν is found to

imply (38), with the consistency condition on νaβa satisfied identically.
So far qab, qab did not enter. Augmenting them one can form Qµν, Qµν as in (46). One then finds

that the tensorial transformation law (70) uniquely imprints all of the SDiff(M) transformation laws of
the constituent fields:

(70) and (46) hold iff ν, νa, qab, qab, βa transform as in (17), (22) and (38) . (72)

In brief, this holds because in the Qµν relation the d(d+1)/2 equations arising from the lower
d× d block fix the qab transformation law. Then the d relations from the off-diagonal blocks fix the
νa transformation law. The remaining relation is satisfied identically. With this in place, the Qµν

relation similarly determines the qab and βa transformations laws. In summary, the πT(Diff(M))

transformations (69) and (70) in combination with the defining relations in terms of ν, νa, qab, qab, βa

uniquely characterize the nonstandard transformation laws of the latter.
This holds for the full Diffeomorphism group acting in two different ways. As before, one can now

specialize to the zero Sshift gauge and transition to the ‘checked’ fields as in (55)–(57). Then SDiff(M)

is reduced to SCarroll(M) by (54). As noted after (34) the stabilizer subgroup of the zero-shift gauge
with respect to the tensorial Diff(M) action is smaller than Carroll(M). Relevant in the present context
is however the specialization of the transformation laws (68)–(70) induced by the SCarroll(M) action.
This is readily seen to be the Carroll(M) subgroup of Diff(M), acting tensorially. The intertwining
relations (68) specialize to

m̌′µ =
1
∂t′
∂t

∂y′µ

∂yν
m̌ν , Ě′a

µ
=

∂xb

∂x′a
Ěν

b
∂y′µ

∂yν
,

ť′µ =
∂t′

∂t
∂yν

∂y′µ
ťν , ě′µ

a
=

∂x′a

∂xb ěb
ν

∂yν

∂y′µ
.

(73)

Evaluating these in adapted coordinates with m̌µ = δ
µ
0 , Eµ

a = δ
µ
a + βaδ

µ
0 , tµ = δ0

µ, ea
µ = δa

µ, one
finds that ∂y′µ/∂yν and ∂y′µ/∂yν, necessarily have to be of Carroll type: ∂xa/∂t′ = 0 = ∂x′a/∂t,
(∂t′/∂t)(∂t/∂t′) = 1, (∂xa/∂x′c)(∂x′c/∂xb) = δb

a . The previous characterization of the nonstandard
transformation laws in terms of the standard ones therefore carries over upon restriction to the Carroll
subgroup: the checked versions of (69) and (70) intertwine the πS(Carroll(M)) realization (55) and (56)
and the πT(Carroll(M)) realization of the Carroll group.

Invertible Carroll metric. One might be tempted to view the degeneracy of the Carroll metric
in (44) and (45) as the hallmark of the βa augmented Sgeometry. However, with the same data one can
define an invertible metric. Consider

gcµν := εgnc
µnc

ν + qabea
µeb

ν , gµν
c := εgnµnν + qabEµ

a Eν
b , (74)

with nc
µ,nµ from (69). Both are invertible, gcµρgρν

c = δν
µ, and the induced transformation law is

g′cµν =
∂yρ

∂y′µ
∂yσ

∂y′ν
gcρσ , g′µν

c =
∂y′µ

∂yρ

∂y′µ

∂yσ
gρσ
c . (75)
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Hence, an SCarroll structure on a manifold can be used to endow the same manifold also with a
pseudo-Riemannian metric. Moreover,

nc
µ = gcµνnν , qabEν

b = gµν
c ea

ν , (76)

holds, making the SDiff frame a metric frame with respect to gcµν, gµν
c . Indeed, the structure of (74)

mirrors that of gµν = εgnµnν + gabea
µea

ν and gµν = εgnµnν + gab∂
µ
a ∂ν

b in pseudo-Riemannian geometry,
see (A28) and (A29). Similarly, (76) is parallel to (A26) and (A50).

In order to explore the parallelism further let us try to equate

gµν
!
= gcµν, gµν !

= gµν
c . (77)

This gives rise to an overdetermined system of equations that allows one to express the metric
data in terms of the Carroll data. Explicitly

N =
1√

ν−2 + εgβcqcdβd

,

Na = νa −
εgqacβc

ν−2 + εgβcqcdβd
,

gab = qab + εgν2βaβb ,

gab = qab −
εgqacβcqbdβd

ν−2 + εgβcqcdβd
.

(78)

Consistency requires that the Sgravity transformation laws (17) and (22) combined with that of the
SEhresmann connection (38) imply the tensorially induced ones for N, Na, gab, gab in (A33) and (A38).
This is indeed the case, as can be verified by straightforward computations. Recall from (48)
that the SEhresmann connection can be realized in terms of a scalar field, βa = −∂a ϕ/e0(ϕ).
The correspondence (77) and (78) then defines an intriguing notion of a ‘composite metric’.

The map (ν, νa, qab, βa) 7→ (N, Na, gab) cannot be invertible, as the βa degrees of freedom have
no counterpart. A trivial one-to-one correspondence can be set up in βa = 0 gauge. This reduces the
Diff(M) group to its foliation-preserving subgroup Diff({Σ}), and both sets of fields simply coincide:
N = ν, Na = νa, gab = qab, gab = qab. A more interesting one-to-one correspondence arises in
νa = 0 gauge. As seen earlier, this reduces SDiff(M) to SCarroll(M) and the induced action is via the
πT(Carroll(M)) subgroup of πT(Diff(M)). Denoting again the Sfields in the νa = 0 gauge by a check
one finds

β̌a = −εg
gabNb

N2 + εgNcgcdNd ,

ν̌ =
√

N2 + εgNcgcdNd ,

q̌ab = gab − εg
gacNc gbdNd

N2 + εgNcgcdNd ,

q̌ab = gab + εg
NaNb

N2 .

(79)

By construction the SCarroll(M) action on the Sfields induces the πT(Carroll(M)) specialization
of (A33) and (A38) for N, Na, gab, gab. Conversely, given N, Na, gab, gab carrying the tensorially induced
transformation law πT(Carroll(M)), one can view (79) as the definition of certain composite fields.
The assertion then is that the composite fields have the simple transformation laws (55) and (56). In this
reading the relations (79) are implicit in [5,6] when the Randers-Papapetrou form of the line element is
matched to the ADM form. The interpretation as a gauge fixing of (77) and (78) with the underlying
fully diffeomorphism covariant invertible gcµν, gµν

c is new.
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First order frames. All frames considered so far block diagonalize the respective metric. In first
order formulations typically ‘Vielbeins’ are used which diagonalize the underlying metric, see [14,15]
in the present context. Such frames can be obtained from the ones considered simply by diagonalizing
qab. We return to (26) and rewrite it in terms of εi

a :=
√

λiv
(i)
a . The reasoning leading to (26) also applies

to qab and gives rise to its normalized, mutually orthogonal eigenvectors εi
a, i = 1, . . . , d. Together

qab = εi
aε

j
bδij , qab = εa

i εb
j δ

ij , εi
aεb

i = δb
a , εi

bεb
j = δi

j . (80)

The spatial parts of the frames considered can then be redefined

ei
µ := ea

µεi
a , ∂

µ
i := ∂

µ
a εa

i , Eµ
i := Eµ

a εa
i , (81)

and give rise to an SVielbein, an SDiff Vielbein, and (by setting νa = 0) a Carroll Vielbein. Orthogonality
and completeness holds in the form

Eµ
i ej

µ = δ
j
i = ∂

µ
i ej

µ , ei
µEν

i = δν
µ − tµmµ , ei

µ∂ν
i = δν

µ − dtµmµ , (82)

while orthogonality with the respective temporal parts is preserved. Both the degenerate and the
nondegenerate Carroll metric are diagonalized

Qµν = ei
µej

νδij , Qµν = Eµ
i Eν

j δij ,

gcµν = εgnc
µnc

ν + ei
µej

νδij , gµν
c = εgnµnν + Eµ

i Eν
j δij .

(83)

4. Stensor Calculus

We now aim at developing a tensor calculus which bears to Sgravity and its diffeomorphism
invariance an analogous relation as Einstein gravity in 1+ d form has to its non-manifest
diffeomorphism invariance. For example, the standard tensor calculus is designed such that the
Einstein tensor is a symmetric type (0

2) tensor, although less manifestly so in 1+d form. The counterpart
of the Einstein tensor in Sgravity does not transform like a conventional tensor. Yet, on account of the
full diffeomorphism invariance of the underlying action some adapted notion of an ‘Stensor’ ought
to exist.

Our basic approach is via the limit construction (4) outlined in the introduction. We elaborate
on it in Section 4.1, proposing a broad but implicit and a narrower but more intrinsic notion of an
Stensor. In Section 4.2 we consider the linearized transformation laws of Stensors and exemplify the
concept with the counterparts of the metric, the Einstein, and the energy–momentum tensor in Sgravity.
In Section 4.3 we show that the weight-dependent transformation laws can always be brought into a
simple standard form (in which the 1+d blocks do not mix) by means of a ‘decoupling transformation’.
The latter makes crucial use of the SCarroll structure introduced in Section 3.1.

The scale transformation sλ in (4) refers to a choice of foliation but is insensitive to
foliation-preserving diffeomorphisms Diff({Σ}). We thus fix a fiducial foliation and choose some
orthonormal frame (m̃, ẽa), (t̃, ẽa) adapted to it. We will frequently encounter tuples of Diff({Σ})
tensors that arise as the components with respect to some such frame, regardless of its transformation
properties under foliation changing diffeomorphisms. A convenient definition is:

Definition 2. (1+d tuple). On a foliated manifold M let (m̃, ẽa), (t̃, ẽa) be an orthonormal frame transforming
covariantly under Diff({Σ}),

m̃′ = m̃ , ẽ′a =
∂x′a

∂xb ẽb , t̃′ = t̃ , ẽ′a =
∂xb

∂x′a
ẽb . (84)
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No transformation properties of the frame under foliation changing diffeomorphisms are assumed. Let Uν1 ...νs
µ1 ...ur

be the coordinate components of a conventional type (s
r) tensor and consider (in some lexicographic ordering)

the set of all ũb1 ...bs′
a1 ...ar′

obtained by contracting with r′ copies of ẽµ
a , r − r′ copies of m̃µ, and s′ copies of ẽb

ν,
s − s′ copies of m̃µ. A 1+d tuple is a tuple uA, A = 1, . . . , |U| ≤ 2r+s, of Diff({Σ}) tensors with the
Diff({Σ}) index structure implied by the above contractions. The convention for the labeling is such that
u1 = m̃µ1 . . . m̃µr Uν1 ...νs

µ1 ...ur t̃ν1 . . . t̃νs .

Since for each lower µ and upper ν index there are two choices at most 2r+s-independent
Diff({Σ}) tensors arise. If U has symmetries the number of independent blocks |U| could be smaller.
By construction

u′1 = u1, u′b1 ...
a1 ... =

∂xd1

∂x′a1

∂x′b1

∂xc1
uc1 ...

d1 ... , u = uA, A 6= 1 , wrt Diff({Σ}) . (85)

One could easily spell out for each type (s
r) the Diff({Σ}) index structure of the 1 + d tuples

explicitly. Then reference to an underlying conventional tensor could be avoided. In the following
we consider the 1+d tuples obtained by taking as the frame one of the previously studied frames: the
metric frame, the Sframe, and the SDiff frame. We begin with the metric frame.

4.1. Limit Construction of Stensors

We return to the intertwining relations (A48) of the metric frame. As exemplified in (A52)
and (A53) one can use them to determine the nonlinear transformation law of tensor components with
respect to the (e0, ∂a), (dt, ea) orthonormal frame. We now consider the λ → ∞ scaling limit of this
construction.

Stensors of weight zero. On a foliated pseudo-Riemannian manifold consider the 1+d tuple
uA, A = 1, . . . , |U|, obtained by taking the metric frame components of a conventional type (s

r) tensor
U and assume the uA to be invariant under sλ from (13). The limit (4) then always exists with zero
weights, nλ(0) = 1. The 1+d tuple with the transformation law πS(χ)uA, A = 1, . . . , |U|, imprinted
by the limit is called an Stensor of type (s

r) and weight zero.
In pseudo-Riemannian geometry conventional tensors that are independent of the spacetime

metric give rise to Stensors of zero weight. However the metric-independence is not a necessary
condition, only the sλ-invariance of the uA with respect to the fiducial foliation matters. Under these
conditions the existence of a limit with nλ(0) = 1 in (4) can easily be seen from the intertwining
relations (A48) of the metric frame. As long as the metric frame components uA of the conventional
tensor considered are sλ invariant, the only nontrivial response in πT(χ)uA to the scaling (13) is
the replacement of gab with λ−2gab in the intertwining relations (A48). In the limit λ → ∞ the
gab-dependent terms in (A48) drop out, resulting in the intertwining relations of the Sframe

m′µ=
1
D

mν ∂y′µ

∂yν
, (86a)

(∂′a)
µ=
[( ∂xb

∂x′a
+

∂t
∂x′a

νb
)

∂ν
b +

∂t
∂x′a

mν
] ∂y′µ

∂yν
, (86b)

(dt′)µ=
[

Ddtν +
∂t′

∂xa ea
ν

] ∂yν

∂y′µ
, (86c)

e′aµ=Xa
beb

ν
∂yν

∂y′µ
. (86d)
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In the limit the metric shift Na should be replaced with νa and the components in (86) can be
viewed as referring to the Sframe expanded in a generic coordinate basis: e0 = ∂t−νa∂a = mµ ∂/∂yµ,
∂a = ∂

µ
a ∂/∂yµ, dt = dtµdyµ, ea = dxa+νadt = ea

µdyµ. The relations (86) can then also be computed
directly from (17) without referring to (A48) and its scaling limit. The invariance of the orthonormality
relations (A49) carries over to the Sframe. The relations (86) witness again two remarkable properties:
the mµ and ea

µ components do not mix with the other frame components under the SDiff(M) action,
and the transformation pattern is independent of the spatial metric qab and its inverse. The intertwining
relations (86) can be used to compute the transformation law for any weight zero Stensor, without
reference to the limit construction.

For the sake of illustration we consider vectors and covectors here; the extension to tensors of
arbitrary rank and type is straightforward. Consider first the sλ-invariant Sframe components (v̌, v̌a)

of a vector field Vµ∂/∂yµ. Then

v̌′ = v̌ + εg
ν

D
∂t′

∂xa v̌a , v̌′a = Xa
b v̌b ,

v̌ := nµVµ = εgνV0 , v̌a := ea
µVµ = Va + νaV0 .

(87)

Similarly, the sλ-invariant Sframe components (v, va) of a covector Vµdyµ transform according to

v′ = v , v′a =
( ∂xb

∂x′a
+

∂t
∂x′a

νb
)

vb + ν
∂t

∂x′a
v ,

v := nµVµ = ν−1(V0 −Vaνa) , va := Vµ∂
µ
a = Va .

(88)

The same transformations arise by taking the scaling limit of (A52) and (A53). Expressed in terms
of the Sframe components the vectors fields and one-forms read

Vµ ∂
∂yµ = εgv̌ ν−1e0 + v̌a∂a ,

Vµdyµ = νv dt + vaea .
(89)

This highlights again the intertwining character of the construction: the left hand sides are
invariant under the standard tensorial action πT of diffeomorphisms while the right hand sides are
invariant under the SDiff(M) action.

A type (0
0) Stensor of weight zero is called an Sscalar, and examples have already been encountered

in the verification of S0’s SDiff(M) invariance. A simple example of an Scovector arises from the
gradient of a metric-independent Sscalar like ϕ. In adapted coordinates the components are V0 = ∂t ϕ,
Va = ∂a ϕ; hence v = ν−1e0(ϕ), va = ∂a ϕ are its Sframe components. By direct computation one finds
this pair to transform according to (88). Hence, (ν−1e0(ϕ), ∂a ϕ) is an Scovector of weight (0, 0).

Other Stensors of zero weight can be formed by taking tensor products. In addition, Stensors of
zero weight admit a trace operation inherited from conventional tensors that commutes with taking
tensor products. Both aspects will be detailed below.

Stensors of integer weight. Often the existence of a nontrivial limit in (4) requires nonzero
weights, nλ(w) 6= 1. We begin with a broad but somewhat implicit definition

Definition 3. (Stensors as Limits). On a foliated pseudo-Riemannian manifold, a 1+d tuple suA, A =

1, . . . , |U|, of Diff({Σ}) tensors is called an Stensor of type (s
r) and weight w ∈ Z|U|, if it arises from the

metric frame components uA of a conventional type (s
r) tensor Uν1 ...νs

µ1 ...ur as the finite nonzero limit suA =

limλ→∞ λ−wA sλuA. Then
πS(χ)

suA = lim
λ→∞

λ−wA sλπT(χ)uA , (90)
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defines its transformation law, which depends only on the type and the weights. In the limits the substitution
N 7→ ν, Na 7→ νa, gab 7→ qab, gab 7→ qab is understood. Whenever unambiguous the “s” left superscript will
be omitted.

Several features are implicit in this ‘Limit Definition’: first, nonzero weights arise only if the
conventional tensor U is metric-dependent. Second, the mixing pattern of the components suA can
be computed from the intertwining relations (A48) by keeping only the leading terms in a large
λ expansion and it is uniquely determined by the type and the weights wA. The discussion after
Equation (A53) implies that each πS(χ)

suA is a linear function of the suB, B = 1, . . . , |U|, while ν, νa, qab

may enter nonlinearly. Third, for a fixed type only a finite number of consistent weight assignments
exist, see Section 4.2.

While the Limit Definition successfully defines the realization πS for generic tensors it does so
non-autonomously in terms of πT . For most purposes the Limit Definition is also too broad. In order
to motivate a narrower but more intrinsic notion we begin with the following observation: the metric
frame components uA of a conventional tensor U some of whose indices have been moved with gµν, gµν

will differ from those vA of an underlying tensor V with scale invariant metric frame components
solely by having some of the Diff({Σ}) indices moved with gab, gab. This covers most of the situations
occurring in gravitational fields theories. The sλ-invariant combinations may include derivatives of
gab like gace0(gcb) or gac∂dgcb, etc., but terms with nonzero scaling weight then normally arise from
moving indices with the undifferentiated spatial metric. In the following we restrict attention to ‘metric
compatible’ Stensors arising as the weighted limits of conventional gravitational tensors of this form.
In this situation the weights are always even integers and the Sframe components uA are related to
those vA of an underlying Stensor of zero weight by moving Diff({Σ}) indices with qab, qab.

Definition 4. (Metric compatible Stensors). Let M be a manifold foliated by the fields entering the Sframe
(36) and equipped with qab, qab transforming according to (17) and (22). A 1+d tuple uA, A = 1, . . . , |U|, of
Diff({Σ}) tensors is called a metric compatible Stensor of type (s

r) and weight w ∈ (2Z)|U|, if it arises from an
Stensor vA, A = 1 . . . , |V| = |U|, of the same rank but zero weight by moving indices with qab, qab. Metric
compatible Stensors arising from variations of the Sgravity action S0 will be denoted by a subscript ‘0’.

This is an intrinsic notion in that no reference to the λ scaling is made. A minor indirect reference
to conventional tensors is made through the notion of a 1+d tuple. The latter also entails that the
qab, qab occur coordinated in different blocks in a way compatible with moving spacetime indices with
gµν, gµν. As a consequence the qab, qab always originate from the scaling limit of gab, gab at the same
position in the tuple which ensures consistency with the Limit Definition. As in the definition of an
1+d tuple, the reference to conventional tensors could be avoided by listing the possible patterns
that can arise. In any case, the resulting uA are constructed from ν, νa, qab, qab, suitable derivatives,
and the underlying vA components. The scaling degree of some such uA can be read off simply from
that of the constituent fields: w(ν) = w(νa) = 0, w(qab) = 2, w(qab) = −2, w(vA) = 0. Further,
the transformation law of the uA can be computed intrinsically from the πS realization alone, and thus
does not have to be part of the definition.

As an illustration, consider again the case of a vector Vµ∂/∂yµ and a covector Vµdyµ with
sλ-invariant metric frame components. Then Wµ := gµνVν defines a covector, whose metric frame
components w := nµWµ, wa := ∂

µ
a Wµ are related to those of Vµ by w = v̌, wa = gabv̌b. The components

(w, wa) will transform according to (A53). However, wa now transforms nontrivially wa 7→ λ2wa under
the scale transformation (13). As a consequence the λ→ ∞ scaling limit of (A53) is not given by (88)
but rather by (92) below. Similarly, Wµ := gµνVν defines a vector whose metric frame components
w̌ = nµWµ, ǔa = ea

µWµ, are related to those of Vµ by w̌ = v, w̌a = gabvb. Before scaling (w̌, w̌a)

transform according to (A52). However, since w̌a 7→ λ−2w̌a under (13) this will again affect the λ→ ∞
scaling limit. Instead of (87) the limit of (A52) is now given by (93) below.
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The interrelations of the Sframe components will be the same, just with qab, qab replacing gab, gab.
By Definition, the tuple (w, wa) is a metric compatible Scovector of weight (0, 2) and (w̌, w̌a) is a metric
compatible Svector of weight (0,−2). The relations to the underlying weight zero Svector (v̌, v̌a) and
Scovector (v, va) are given by

(w, wa) = (v̌, qabv̌b) , Scovector of weight (0, 2) ,

(w̌, w̌a) = (v, qabvb) , Svector of weight (0,−2) .
(91)

The transformation laws can be computed using only the πS realization, i.e., (17), (22), (87)
and (88), and coincide with the ones obtained via the limit construction:

Scovector of weight (0,2):

w′ = w + εg
ν

D
∂t′

∂xb qbcwc , w′a =
( ∂xb

∂x′a
+ νb ∂t

∂x′a
)

wb . (92)

Svector of weight (0,−2):

w̌′ = w̌ , w̌′a = Xa
b

(
w̌b − ν

D
qbc ∂t′

∂xc w̌
)

. (93)

One may verify that the inner product, εgww̌ + wbw̌′b, is invariant. Note that the transformation
pattern (92) and (93) clearly differ from those of the weight (0, 0) counterparts in (88) and (87),
respectively.

Tensor product. A basic operation for conventional tensors is the tensor product. In view
of (90) one may ask whether the λ scaling limit of a tensor product coincides with the tensor product
of the limits and defines again a weighted Stensor. This is indeed the case and can be seen as
follows. Let U be a conventional type (s

r) tensor which factorizes into a tensor product U = P⊗ Q,
i.e., Uν1...νs

µ1...µr = Pν1...νs′
µ1...µr′

Q
νs′+1...νs
µr′+1...µr , in terms of coordinate components, for 1 ≤ r′ ≤ r, 1 ≤ s′ ≤ s. Its metric

frame components are obtained by contracting with nµ, nµ, ∂a
µ, eµ

a in all possible ways and therefore
factorize as well: uA = pA′ ⊗ qA′′ , A = A′ ∪A′′, where we now interpret the indices as abstract ones
and correspondingly include the tensor product symbol. The weights are additive, wA = wA′ + wA′′ ,
and we may assume them to be such that the limits limλ→∞ λ−wA′ sλ pA′ , limλ→∞ λ−wA′′ sλqA′′ , exist
separately, i.e., there are no spurious λ · λ−1 cancellations in the product. The standard realization
πT of the diffeomorphism group is such that πT(χ)uA = πT(χ)pA′ ⊗ πT(χ)qA′′ , for all χ ∈ Diff(M),
whence named ‘tensorial realization’. It follows that

limλ→∞ λ−wA sλπT(χ)uA =
(

limλ→∞ λ−wA′ sλπT(χ)pA′
)
⊗
(

limλ→∞ λ−wA′′ sλπT(χ)qA′′
)

i.e. πS(χ)
suA = πS(χ)

spA′ ⊗ πS(χ)
sqA′′ .

(94)

The same holds for the linear hull of expressions of the form P⊗Q, which concludes the argument.
The weighted Stensors of a given type (s

r) obviously form a linear space. The above result shows
that they can also be endowed with a tensor product under which the weight is additive

⊗ : (s
r)× (s′

r′) → (s+s′
r+r′)

(pA, wA)× (qB, w′B) 7→ (pA ⊗ qB, wA + w′B) .
(95)

The resulting tensor algebra STensorw(M) has SDiff(M) as its automorphism group. Symbolically,

πS(χ) ∈ Aut STensorw(M) , for all χ ∈ Diff(M) , (96)

in analogy to the standard case (A15).



Symmetry 2020, 12, 752 24 of 63

We add some comments: (i) Importantly, the weighted Stensors do not in general admit a
well defined trace operation. In particular, STensorw(M) is not equipped with a trace operation.
The qualified existence of a trace operation and the circumstances under which it commutes with
taking tensor product will be discussed below. (ii) It is not automatic that all weighted Stensors can
be obtained by taking the linear hull of tensor products of Svectors and Scovectors. Examples will be
discussed later on. However the transformation laws of generic weighted Stensors can be obtained
from (87) and (88) alone by taking tensor products. (iii) An exception to (i) and (ii) are Stensors of
weight zero. These always admit a well-defined trace operation that commutes with taking tensor
products. Moreover, for weight zero all higher rank Stensors can be obtained by taking tensor products
of rank one Stensors. Both properties follow from the Sframe intertwining relations (86).

Trace operation. The tensor product (95) applies to all weighted Stensors, in particular to metric
compatible ones. One will naturally want a trace operation to be compatible with moving indices; so
we restrict attention to metric compatible Stensors. Then only trace operations contracting a covariant
with a contravariant index need to be considered. To motivate the definition we return to conventional
tensors and their metric frame components. Before taking the metric frame components contraction
with δ

µ
ν effects the trace over a lower µ index and an upper ν index. The completeness relation for the

metric frame reads
δ

µ
ν = εgnµnν + eµ

a ∂a
ν , (97)

see (A25) and (A26). It can be used to expand any type (s
r) conventional tensor U in terms of its metric

frame components uA, , A = 1, . . . , |U| ≤ 2r+s, see (A54). The trace will likewise be governed by (97)
and produce the expansion of a type (s−1

r−1) tensor. The coefficients vB, B = 1, . . . , |trU| ≤ 2r+s−2 of
the latter will be linear combinations of spatial traces of a subset of the original coefficients uA. We
write (tr u)B for the coefficients vB, assuming that it is clear from the context over which pair of indices
the trace is taken. For example, a type (1

2) tensor with without symmetries and components Uσ
µν will

expand into 8 terms, while the trace Uµ
µν expands into 2 terms with coefficients that involve spatial

traces of only 4 of the original 8 coefficients. Explicitly

Uµ
µν = εgnν(u + εgua

a) + eb
ν(εgub + ua

ab) ,

u := nµ′nν′nσ′Uσ′
µ′ν′ , ub := nµ′ eν′

b nσ′Uσ′
µ′ν′ ,

uc
a := eµ′

a nν′∂c
σ′U

σ′
µ′ν′ , uc

ab := eµ′
a eν′

b ∂c
σ′U

σ′
µ′ν′ .

(98)

The Stensor of weight wA associated with U has components suA = limλ→∞ λ−wA sλuA. Whenever
well-defined we define its trace by the same spatially contracted linear combinations (tr su)B as the
original tensor. In the above example, the trace of the type (1

2) Stensor uA, A = 1, . . . , 8, has the
2 coefficients su + εg

sua
a, εg

sub +
sua

ab, where su, sub, suc
a, suc

ab, are the limiting counterparts of the
coefficients in (98). A necessary condition for this to make sense is that all terms in a linear combination
have the same weight. In the example suc

a must have weight 0 since su has, and sub and suc
ab must have

the same weight. Generally, in each linear combination (tr su)B all terms must have a fixed weight,
for which we write wB, B = 1, . . . , |trU| ≤ 2r+s−2. If the original Stensor uA has weight zero this is
automatically satisfied, otherwise this condition restricts the class of weighted Stensors which allow
for a well-defined trace. Whenever this condition is met, one will want the tuple (tr su)B to transform
as an Stensor of type (s−1

r−1) and weight wB. This will normally be the case automatically but is best
verified on a case-by-case basis.

In summary, for any Stensor suA, A = 1, . . . , |U| ≤ 2r+s of type (s
r) and weight wA one can (for a

pair of indices understood) introduce the tracial coefficients (tr su)B, B = 1, . . . , |trU| ≤ 2r+s−2, as a
linear combination of spatial contractions of the original coefficients uA. Assume that the terms in
each linear combination carry the same weight wB and that the set (tr su)B, B = 1, . . . , |trU| ≤ 2r+s−2

transforms like an Stensor of type (s−1
r−1) and weight wB. Then the latter Stensor is called the Strace of

suA, A = 1, . . . , |U| ≤ 2r+s.
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A relevant example is the SRiemann tensor (124) below, which can be modeled as an Stensor
of type (2

2) and weight (0, 0,−2, 0). Its Strace then is a type (1
1) Stensor of weight (0, 0,−2, 0), which

coincides with the independently defined SRicci tensor.
Generally, Stensors of weight zero admit a trace. The condition on the weights is trivially

satisfies so that only the transformation law needs to be checked. As far as the transformation law
is concerned we can model the Stensors in question as a tensor product of Svectors and Scovectors
of zero weight. Since all indices are on the same footing it suffices to verify that the type (1

1) Stensor
(v, va)⊗ (w̌, w̌a) = (vw̌, vw̌a, vaw̌, vaw̌b) admits a trace. The trace is given by εgvw̌ + vaw̌a and ought
to transform as an Sscalar, based on (87) and (88). This is indeed the case. It follows that for zero
weight the tensor algebra STensorw=0(M) can be equipped with a trace operation that commutes with
taking tensor products, in exact analogy to the standard case.

4.2. Examples of Stensors and Their Gauge Variations

In the second half of this section we present prime examples of Stensors relevant in a gravitational
context. Among them are Sgravity counterparts of the metric, the Einstein- and energy–momentum
tensor, as well as the Riemann tensor. All of them are metric compatible Stensors in the sense defined
and are subject to a specific weight-dependent transformation law. Those related to variations of the
Sgravity action S0 will be denoted by a subscript ‘0’ rather than a left superscript ‘s’.

For many purposes the linearization of transformation laws under generic diffeomorphisms
suffice. For standard tensors on some smooth manifold M this is implemented by the (generally
covariant) Lie derivative. If M is a foliated pseudo-Riemannian manifold the latter induces 1+d
gauge variations on the metric frame components that are discussed in Appendix A.3. Here we aim at
counterparts of these gauge variations for Stensors.

A convenient starting point is the linearized version of the Limit Definition. Consider the 1+d
tuple uA, A = 1, . . . , |U|, of Diff({Σ}) tensors obtained by taking the metric frame components of a
conventional tensor. The tuple transforms under infinitesimal diffeomorphisms according to the gauge
variations induced by the spacetime Lie derivative. We write δεuA, for these gauge variations and
take their λ→ ∞ scaling limit. By assumption each uA scales according to uA → λwA suA + O(λwA−2)

and the right hand side of δεuA may also explicitly depend on λ2gab, λ−2gab. As a results there
are for each type (s

r) only a finite number of weight assignments wA, A = 1, . . . , |U|, that lead to
a consistent nontrivial λ → ∞ limit. These can readily be classified and lead to a list of possible
linearized transformation laws for Stensors in the sense of the Limit Definition. We write δ0

ε
suA for

these Stensor gauge variations and label them by the weight tuple wA, A = 1, . . . , |U|. Whenever
unambiguous the “s” left superscript will be omitted.

Not all of these cases are compatible with moving spacetime indices as required for metric
compatible Stensors. In a second step one can screen the previous list for compatibility with these
criteria to obtain a subset of possible weights and linearized transformation laws metric compatible
Stensors. We illustrate the construction for rank r + s ≤ 2.

For rank 0 there is only one possibility: rank 0 tensors are scalars and their SDiff(M) counterpart
has already been introduced. Infinitesimally

δ0
ε ϕ =

ε0

ν
e0(ϕ) + νa∂a ϕ , (99)

characterizes Sscalars.
For rank 1 there are four consistent limits:
Scovector, weight w(v) = 0, w(va) = 0:

δ0
ε v = ε0

ν e0(v) + L~εv ,

δ0
ε va = ε0

ν e0(va) + L~εva + ν∂a

(
ε0

ν

)
v .

(100)
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Scovector, weight w(v) = 0, w(va) = 2:

δ0
ε v = ε0

ν e0(v) + L~εv− εgν∂a

(
ε0

ν

)
qabvb ,

δ0
ε va = ε0

ν e0(va) + L~εva .
(101)

Svector, weight w(v̌) = 0, w(v̌a) = 0:

δ0
ε v̌ = ε0

ν e0(v̌) + L~εv̌− εgν∂b

(
ε0

ν

)
v̌b ,

δ0
ε v̌a = ε0

ν e0(v̌a) + L~εv̌a ,
(102)

Svector, weight w(v̌) = 0, w(v̌a) = −2:

δ0
ε v̌ = ε0

ν e0(v̌) + L~εv̌

δ0
ε v̌a = ε0

ν e0(v̌a) + L~εv̌a + ν∂b

(
ε0

ν

)
qbav̌ .

(103)

These are precisely the linearized versions of (129), (130), (92) and (93). On account of (91) all four
cases are also metric compatible.

The list of transformation laws for rank two Stensors arising as weighted limits can similarly be
generated by inspection of (A62), (A65) and (A68). The results are collected in Table 2.

Table 2. Possible scaling weights for rank 2 Stensors. The type (0
2), (

2
0) tensors are assumed to

be symmetric.

Type Sframe Components Possible Weights

(0
2) (τ, τa, τab) (0, 0, 0); (0, 0, 2)

(0, 2, 2); (0, 2, 4)

(1
1) (t, ťb, ta, tb

a) (0, 0, 0, 0); (0, 0, 2, 0)

(0,−2, 0, 0); (0, 0, 2, 2)

(0,−2, 0,−2); (0,−2, 2; 0)

(2
0) (τ̌, τ̌a, τ̌ab) (0, 0, 0); (0, 0,−2)

(0,−2,−2), (0,−2,−4)

Most of these are not metric compatible. In the following we focus on three cases directly
relevant for Sgravity: covariant symmetric rank two tensors (τ, τa, τab) of weight (0, 0, 2); contravariant
symmetric rank two tensors (τ̌, τ̌a, τ̌ab) of weight (0,−2,−2); and the interpolating case of a mixed
rank two tensor (t, ťb, ta, tb

a) of weight zero. We first note the transformation laws, which can be
obtained, for example, from (A68), (A65) and (A62).

Type (0
2), weight w(τ) = 0, w(τa) = 0, w(τab) = 2:

δ0
ε τ = ε0

ν e0(τ) + L~ετ ,

δ0
ε τa = ε0

ν e0(τa) + L~ετa + ν∂a

(
ε0

ν

)
τ − εgντab qbc∂c

(
ε0

ν

)
,

δ0
ε τab = ε0

ν e0(τab) + L~ετab .

(104)
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Type (1
1), weight w(t) = 0, w(ťb) = 0, w(ta) = 0, w(tb

a) = 0:

δ0
ε t = ε0

ν e0(t) + L~εt− εgν∂b

(
ε0

ν

)
ťb ,

δ0
ε ťb = ε0

ν e0(ťb) + L~ε ťb ,

δ0
ε ta = ε0

ν e0(ta) + L~εta + ν∂a

(
ε0

ν

)
t− εgν∂b

(
ε0

ν

)
tb
a ,

δ0
ε tb

a = ε0

ν e0(tb
a) + L~εtb

a + ν∂a

(
ε0

ν

)
ťb .

(105)

Type (2
0), weight w(τ̌) = 0, w(τ̌a) = −2, w(τ̌ab) = −2:

δ0
ε τ̌ = ε0

ν e0(τ̌) + L~ετ̌ ,

δ0
ε τ̌a = ε0

ν e0(τ̌
a) + L~ετ̌a + ν∂b

(
ε0

ν

)[
qbaτ̌ − εgτ̌ba] ,

δ0
ε τ̌ab = ε0

ν e0(τ̌
ab) + L~ετ̌ab .

(106)

We yet have to show that the two symmetric Stensors are indeed metric compatible in the sense
defined. In order to do so, we note that the transformation law (105) is consistent with the following
reduction conditions

ťa = 0 , tb
a − qadqbctd

c = 0 . (107)

The reduced transformation law reads

δ0
ε t = ε0

ν e0(t) + L~εt ,

δ0
ε ta = ε0

ν e0(ta) + L~εta + ν∂a

(
ε0

ν

)
t− εgν∂b

(
ε0

ν

)
tb
a ,

δ0
ε tb

a = ε0

ν e0(tb
a) + L~εtb

a ,

(108)

with tb
a = qadqbctd

c . In terms of the reduced weight zero Stensor (t, ta, tb
a) we define τ := t, τa := ta,

τab := qactc
b = qbctc

a. Then (τ, τa, τab) transforms according to (104). By Definition it is a symmetric,
metric-compatible Stensor of type (2

0) and weight (0, 0, 2). For the contravariant case one proceeds
similarly. In terms of the reduced weight zero Stensor (t, ta, tb

a) one defines τ̌ := t, τ̌a := qabtb,
τ̌ab := qactb

c = qbcta
c . Then (108) implies that (τ̌, τ̌a, τ̌ab) transforms according to (106) and hence

defines a symmetric, metric-compatible Stensor of type (2
0) and weight (0,−2,−2).

Another aspect of the metric compatibility of (τ, τa, τab) and (τ̌, τ̌a, τ̌ab) is the existence of a
well-defined trace operation inherited from the underlying mixed weight zero Stensor. For the latter
the trace operation is a special case of the one described after (97). Explicitly, tr(t, ťb, ta, tb

a) = εgt + ta
a,

which transforms like an Sscalar. Using the above construction one obtains the induced trace operations

tr(τ, τa, τab) = εgτ + qabτab , tr(τ̌, τ̌a, τ̌ab) = εgτ̌ + qabτ̌ab . (109)

These expressions adhere to what one would expect from the completeness relations (A61)
and (A67) and are Sscalars on account of (104) and (106). These mathematically preferred cases turns
out to be also the ones for which Sgravity provides constructible examples.

Sgravity metric as an Stensor. The projected components of the pseudo-Riemannian metric gµν

are τ = εg, τa = 0, τab = gab, and the transformation law (A68) specializes consistently. The Sgravity
metric will naturally be assigned projected components τ = εg, τa = 0, τab = qab, and as such should
be a type (2

0) Stensor of weight (0, 0, 2). The transformation law (104) indeed specializes consistently.
Moreover, the nontrivial variation, δ0

ε qab = (ε0/ν)e0(qab) +L~εqab, coincides with the one in (19). Note
that the nontrivial weight assignment is essential for this to work. The strong coupling contra-metric
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will similarly be assigned projected components τ̌ = εg, τ̌a = 0, τ̌ab = qab. As such it should be an
Stensor of type (0

2) with weight (0, 0,−2) or (0,−2,−2). On account of the preceeding discussion
we take the weight to be (0,−2,−2). The transformation law (106) indeed specializes consistently
and the nontrivial variation, δ0

ε qab = (ε0/ν)e0(qab) + L~εqab, matches the linearized form of (22). Both
(εg, 0, qab) and (εg, 0, qab) have a well defined trace (109) which equals 1+d.

Energy–momentum Stensor. Next, consider the energy–momentum tensor of the scalar
field (A69). In order to take the λ→ ∞ scaling limit we interpret the scalar field as dimensionless and
scale invariant as in (13). For the limit of the energy–momentum tensor’s 1 + d components E, Pa, Tab
one then finds

lim
λ→∞

(
sλE, sλPa, λ−2sλTab

)∣∣
subst = (E0, P0,a, T0,ab

)
,

E0 = −εgρ0 , P0,a =
e0(ϕ)

ν
∂a ϕ , T0,ab = qabP0 , (110)

ρ0 := −
εg

2ν2 e0(ϕ)2 + U(ϕ) , P0 := −
εg

2ν2 e0(ϕ)2 −U(ϕ) .

Here ‘subst’ refers to the substitution (16) and the limits are viewed as functions of ν, νa, qab, ϕ.
In parallel to (112) below the limiting expressions can alternatively be obtained as variations of the
matter part of the action S0 in (1); keeping to our notational conventions we therefore denote them
with a subscript ‘0’. Along different lines this matter action also arises in a first order formulation [15].
Based on the previously defined transformation laws δ0

ε one finds by direct computation

δ0
ε E0 = ε0

ν e0(E0) + L~εE0 ,

δ0
ε P0,a = ε0

ν e0(P0,a) + L~εP0,a + ν∂a

(
ε0

ν

)
E0 − εgνT0,abqbc∂c

(
ε0

ν

)
,

δ0
ε T0,ab = ε0

ν e0(T0,ab) + L~εT0,ab .

(111)

This agrees with the transformation law (104) of a type (0
2) Stensor of weight (0, 0, 2). Since T0,ab =

qabP0 the last equation in (111) is equivalent to δ0
εP0 = (ε0/ν)e0(P0) + L~εP0. This pairs with the first

equation, as E0 = −εgρ0. It also ensures that the scaling limit−ρ0 + dP0 of the trace Tρ
ρ = εgE + gabTab

in (A69) transforms like a Sscalar under δ0
ε .

Field equations Stensor. The gauge variations of the purely gravitational part of the strong
coupling field equations must be compatible with (111). In general relativity this is ensured by
the transformation properties of the projected components (A72) of the Einstein tensor. In Sgravity
we define

G0 :=
1
√

q
δS0

δν

∣∣∣
grav

, G0,a :=
1
√

q
δS0

δνa

∣∣∣
grav

,

G0,ab := −εg
2

ν
√

q
δS0

δqab

∣∣∣
grav

+ εgqab
1
√

q
δS0

δν

∣∣∣
grav

,
(112)

with S0 from (1). This parallels (A72), but since S0 is regarded as a functional of ν (not n = ν/
√

q) the
sign in the second term of G0,ab is flipped. Taking this into account, the expressions (112) turn out to be
the weighted scaling limits of the Einstein tensor’s components in the metric frame:

lim
λ→∞

(
sλG, sλGa, λ−2sλGab

)∣∣
subst = (G0, G0,a, G0,ab

)
. (113)
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As a consequence (G0, G0,a, G0,ab) should transform as an Stensor of type (0
2) with weight

(0, 0, 2). Explicitly,

δ0
ε G0 = ε0

ν e0(G0) + L~εG0 ,

δ0
ε G0,a = ε0

ν e0(G0,a) + L~εG0,a + ν∂a

(
ε0

ν

)
G0 − εgνG0,ab qbc∂c

(
ε0

ν

)
,

δ0
ε G0,ab = ε0

ν e0(G0,ab) + L~εG0,ab .

(114)

It is a nontrivial consistency check that this comes out correctly, based solely on the δ0
ε variations

of the basic Sgravity fields and the definition (112). Before turning to this check, observe the difference
to the transformation law (A68) satisfied by the projected components of the Einstein tensor: in contrast
to (A68) the mixing only occurs in the G0,a variation. Importantly, (114) matches (111) in the matter
sector which renders the Sgravity field equations

G0 = E0 , G0,a = P0,a , G0,ab = T0,ab, (115)

foliation-independent.
We now turn to the direct verification of (114). A bonus feature is that the result turns out to

be valid for arbitrary parameter c in the DeWitt metric, i.e., when 2G(q)ab,cd in (12) is replaced with
2Gab,cd(q) = qacqbd + qadqbc + cqabqcd. The limit of Einstein gravity corresponds to c = −2. In order to
facilitate comparison with (A72) and [1,10] we regard SL

0 as a functional of qab, νa and the densitized
Slapse n = ν/

√
q instead of ν. We write SL

0 = S0|grav for the resulting c-dependent purely gravitational
part of the Sgravity action (12), with ‘L’ indicating that the Lagrangian not the Hamiltonian version
enters. For simplicity we also omit the cosmological constant term, which can be restored from the
previously treated matter sector by shifting the potential, U(ϕ) 7→ U(ϕ) + Λ. In this setting the
independent variations are: −δSL

0 /δn =: HL
0 (the Lagrangian form of the Hamiltonian constraint),

−δSL
0 /δνa =: HL

0,a (the Lagrangian form of the Diffeomorphism constraint), and δSL
0 /δqab. We first

note the explicit forms of

δSL
0

δn = −HL
0 = − 1

8n2

(
e0(qab)qadqbce0(qcd) +

c
2 e0(ln q)2

)
,

δSL
0

δqab = e0

(
1

4n e0(qab)
)
+ c

2 qabe0

(
1

4n e0(ln q)
)
− 1

4n e0(qac)qcde0(qdb) .
(116)

Since δ0
ε e0(qab) = e0(

ε
n e0(qab)) + L~εqab, all constituent quantities transform according to their Lie

derivatives under purely spatial gauge transformations. Hence also δSL
0 /δn and δSL

0 /δqab, transform
according to their spatial tensor type (a +2 scalar density and a +1 cotensor density, respectively) under
time-dependent spatial gauge transformations. For the temporal part of the gauge transformations we
use ε = ε0/

√
q as the descriptor, matching n = ν/

√
q. A lengthy direct computation then shows

δ0
εHL

0 =
ε

n
e0(HL

0 ) + L~εHL
0 ,

δ0
ε

δSL
0

δqab = e0

(
ε

n
δSL

0
δqab

)
+ L~ε

δSL
0

δqab .
(117)

Unlike in general relativity, the evolution equations do not mix with the constraints and thus
could be imposed separately. The gauge variation ofHL

0,a requires variation of the Christoffel symbols.
A slightly more efficient route is to start from the averaged form∫

dx ηaHL
0,a =

∫ dx
4n

{
−L~ηqabe0(qab) +

c
2
(L~η ln q)e0(ln q)

}
, (118)
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for a non-dynamical spatial vector ηa. In the gauge variation of (118) one finds that the e0(ε) terms
cancel and that modulo total time derivatives the result can be written as the spatial average of
−εL~ηHL

0 − (ε/n)(L~ηqab)δSL
0 /δqab. Stripping off the ηa auxiliary vector one obtains

δ0
εHL

0,a = ε−1∂a(ε
2HL

0 ) + 2qac∇b

(
ε

n
δSL

0
δqab

)
+ L~εHL

0,a . (119)

It is instructive to compare this with the Diffeomorphism Ward identity for pure Sgravity

δSL
0

δn
· δ0

ε n +
δSL

0
δνa · δ

0
ε νa +

δSL
0

δqab
· δ0

ε qab = 0 , (120)

where the · indicates a dtdx integration. Stripping off the gauge descriptors ε, εa yields

e0(qab)
δSL

0
δqab

+ ne0(HL
0 ) = 0 ,

2qac∇b

(
δSL

0
δqcb

)
− e0(HL

0,a) + n−1∂a(n2HL
0 ) = 0 .

(121)

Specializing (119) to ε = 0, εa = νa thus mirrors the time evolution ofHL
0,a, as expected on general

grounds. The second equation in (121) can also be used to rewrite (120) in a more suggestive form

δ0
εHL

0,a =
ε

n
e0(HL

0,a) + L~εHL
0,a + 2n∂a

( ε

n

)
HL

0 + 2qac
δSL

0
δqbc

∂b

( ε

n

)
. (122)

UsingHL
0 = −qG0,HL

0,a = −
√

qG0,a, 2δSL
0 /δqab = −ν

√
q(εgG0,ab + qabG0), in (117) and (122) one

arrives at (114).
SRiemann tensor. Rank four Stensors warrant a systematic discussion, omitted here. Mostly

in order to highlight the difference to other notions of curvature we present the scaling limit of the
Riemann tensor. We begin with noting the metric frame components of the type (0

4) Riemann tensor

Σ α′
a Σ β′

b Σ γ′
c Σ δ′

d Rα′β′γ′δ′ = R(4)
abcd + R(2)

abcd =: gaa′gbb′ r
a′b′
cd

= εg(KadKbc − KacKbd) + R(g)abcd ,

Σ α′
a Σ γ′

c Σ δ′
d Rα′β′γ′δ′n

β′ = R(2)
a0cd =: gcc′gdd′ r

c′d′
a =: gaa′ r

a′
cd

= ∇dKca −∇cKda , (123)

Σ α′
a Σ γ′

c Rα′β′γ′δ′n
β′nδ′ = R(2)

a0c0 + R(0)
a0c0 =: gaa′ r

a′
c

= N−1e0(Kac) + KadKd
c − εgN−1∇a∇cN .

Here the superscripts refer to the scaling weight of the homogeneous parts under the scaling
transformation (13). As before, Kab = −(2N)−1e0(gab) is the extrinsic curvature. Since all blocks are
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built solely from N, Na, gab, gab there is no freedom to choose weight assignments. A nontrivial limit
for the blocks arises only for the case

srd
a := limλ→∞ sλrd

a = gdd′R(2)
d′0a0 = ν−1e0(Kd

a )− Kd
c Kc

a ,

srdc
a := limλ→∞ λ2sλrdc

a = qdd′qcc′R(2)
a0d′c′ = −∇

dKc
a +∇cKd

a ,

srd
ab := limλ→∞ sλrd

ab = qdd′R(2)
d′0ab = −∇aKd

b +∇bKd
a ,

srdc
ab := limλ→∞ sλrdc

a = qdd′qcc′R(4)
d′c′ab = εg

(
Kc

aKd
b − Kd

a Kc
b
)

.

(124)

In line with the general conventions we changed the notation in the limiting quantities and regard
them as functions of ν, νa, qab. Note that the dependence on the Riemann tensor of the spatial metric
has dropped out. The Riemann type symmetries are preserved in the limit and imply

srd
a = qaa′qdd′ sra′

d′ ,
srdc

a = qdd′qcc′qaa′
sra′

d′c′ ,
srd

ab = qbb′
srdb′

a − qaa′
srda′

b ,

srcd
ab = qaa′qbb′

sra′b′
c′d′ qdd′qcc′ , srcd

ab = qdd′[qbb′
srcb′

ad′ − qaa′
srca′

bd′
]

.
(125)

Together with the transformation law (127) below the weights in (124) identify the quadtuple(
srb

a, srdc
a , srd

ab, srdc
ab
)

as a (specific) Stensor of type (2
2) and weight (0,−2, 0, 0). We shall refer to it as the

SRiemann tensor.
The SRicci tensor is defined analogously, starting from the contractions of (123). Its transformation

law is that of a type (1
1) Stensor (s$, s$̌b, s$a, s$b

a) of weight (0,−2, 0, 0), which can be obtained by taking
the weighted limit of (A65). On the other hand, one can take the trace of the limits (124) and finds

srd
d = ν−1e0(K)− Kc

dKd
c = s$ ,

srdc
d = −∇dKc

d +∇
cK = s$̌c ,

srd
db = −∇dKd

b +∇bK = s$b ,

εg
src

b +
srdc

db = εgν−1e0(Kc
b)− εgKKc

b = s$c
b .

(126)

These coincide with the indicated coefficients of the SRicci tensor, rendering the transition
from (126) to (126) an example of an Strace, as previously discussed.

The transformation law under infinitesimal SDiff(M) transformations for type (2
2) Stensors of

weight (0,−2, 0, 0) and with Riemann-like symmetries are as follows

δ0
ε td

a = ε0

ν e0(td
a) + L~εtb

a

δ0
ε tdc

a = ε0

ν e0(tdc
a ) + L~εtdc

a + ν∂e

(
ε0

ν

)[
qectd

a − qedtc
a − εgqebtdc

ab
]

,

δ0
ε td

ab = ε0

ν e0(td
ab) + L~εtd

ab − ν∂a

(
ε0

ν

)
td
b + ν∂b

(
ε0

ν

)
td
a − εgν∂c

(
ε0

ν

)
tdc
ab ,

δ0
ε tcd

ab = ε0

ν e0(tcd
ab) + L~εtcd

ab .

(127)

The Riemann-like symmetries (125) are compatible with the transformation law (127). Subject to
them, one has in particular td

ab = gdd′gaa′gbb′ ta′b′
d′ . This allows one to express td

ab in terms of tcd
a ; so one

of the middle two relations in (127) is then redundant.

4.3. Decoupling Maps

So far the covariant Carroll structure of Section 3.1 did not enter. Making use of it,
the transformation law of metric compatible Stensors can be coded in a more concise way.
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Weight zero. Stensors of weight zero can be viewed as arising from some conventional tensor by
taking components with respect to the Sframe, written as uA, which turn out to be sλ invariant. This
leads to a characteristic mixing pattern for the blocks that can be inferred from the Sframe intertwining
relations (86). On the other hand, one can consider the components of the same conventional tensor
with respect to the (ν-rescaled) SDiff frame, (ν−1e0, Ea), (νE0, ea). Concretely, for a type (s

r) tensor with
coordinate components Uν1...νs

µ1...µr the components cuA arise by contracting in all possible ways with
nµ = ν−1mµ, Eµ

a , nc
µ = εgνtµ, ea

µ. For clarity’s sake we denote the components with respect to the SDiff

frame systematically by a left superscript, cub1 ...
a1 .... In particular, a left superscript does not necessarily

signal a βa dependence as before.
On account of (68) the multiplets cuA do not mix under arbitrary SDiff(M) transformations.

The 1 + d tuples uA and cuA, A = 1, . . . , |U| ≤ 2r+s, can be related by expressing one set of frame
coordinate components in terms of the other. Using the ν rescaled variants and (39) and (42) the
nontrivial conversion formulas are

nc
µ = nµ − εgνβaea

µ , Eµ
a = ∂

µ
a + νβanµ . (128)

For example, in the case of a vector field Vµ∂/∂yµ with sλ-invariant Sframe components (v̌, v̌a)

one has
cv̌ := nc

µVµ = v̌− εgνβav̌a , cv̌a = ea
µVµ = v̌a ,

cv̌′ = cv , cv̌′a = Xa
b
cv̌b .

(129)

For a one-form Vµdyµ with sλ-invariant Sframe components (v, va) one finds similarly

cv := nµVµ = v , cva := VµEµ
a = va + νβav .

cv′ = cv , cv′a =
( ∂xb

∂x′a
+

∂t
∂x′a

νb
)c

vb .
(130)

Compared to (87) and (88) the mixing terms have disappeared. For later reference we also note
the transition formulas for a weight zero Stensor (t, ťb, ta, tb

a) of type (1
1):

ct = t− εgνβa ťa ,
c ťb = ťb ,
cta = ta + νβat− εgνβbtb

a − εgνβaνβb ťb ,
ctb

a = tb
a + νβa ťb .

(131)

Again, the affine νβa transformation law precisely cancels the mixing terms of the original Stensor
blocks. This holds generally:

Consider the 1+d tuple cuA, A = 1, . . . , |U|, obtained by taking the SDiff frame components
of a conventional type (s

r) tensor U, and assume them to be sλ-invariant (treating νβa as invariant).

Each of these SDiff frame components cub1 ...bs′
a1 ...ar′

transforms multilinearly among itself for fixed r′, s′,
with (∂x·/∂x′a + ∂t/∂x′aν·) for each lower a index, and with Xb

. for each upper b index, while nµ, nc
µ

contractions do not affect the transformation law. Further, each cub1 ...bs′
a1 ...ar′

can be expanded in terms of

the Sframe components ub1 ...bs̄
a1 ...ar̄ , for varying s̄, r̄, with νβa-dependent coefficients. As a consequence the

decoupled transformation laws for the SDiff frame components are in one-to-one correspondence with
the mixing transformation law of the Sframe components.

Nonzero weight. Next, we seek to generalize this correspondence to Stensors of nonzero weight.
The 1+d tuple cuA, A = 1, . . . , |U|, obtained by taking the SDiff frame components of a conventional
type (s

r) tensor U, will then no no longer be sλ-invariant. One may be tempted to simply take the
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weighted limit limλ→∞ λ−wA sλ
cuA, to obtain the nonmixing multiplets. Some experimentation shows

that this does not work; the limits in general do mix under SDiff(M) transformations.
Instead, we proceed as follows. Restricting attention to metric compatible Stensors the idea is

simply to apply the decoupling map of the underlying Stensor of zero weight and rewrite it to obtain a
decoupling map for the weighted Stensor. We first illustrate the procedure with several examples.

Consider a weight zero Scovector (v, va) and define w̌ := v, w̌a := qabvb. As seen before, then
(w̌, w̌a) transforms as an Svector of weight (0,−2). Applying the decoupling map (130) to (v, va),
i.e., cv = v, cva = va + νβav, and rewriting it suggests

cw̌ = w̌ , cw̌a = w̌a + w̌qabνβb . (132)

By direct computation one can verify that (132) indeed decouples the weight (0,−2)
transformation law (93). Similarly, starting with a weight zero Svector (v̌, v̌a) one can define w := v̌,
wa := qabv̌b. Then (w, wa) is an Scovector of weight (0, 2). Applying the decoupling map (129),
i.e., cv̌ = v̌− εgνβav̌a, cv̌a = v̌a, gives

cw = w− εgνβaqabwb , cwa = wa . (133)

These can be checked to decouple the (0, 2) transformation law (92). In fact, the original and the
decoupled transformation laws are in one-to-one correspondence.

We remark that both maps (132), (133) can alternatively be obtained by moving the spacetime
index with the invertible Carroll metric (74) to get Wc

µ := gcµνVν and Wµ
c := gµν

c Vν, in a first step. The
SDiff frame components of Wc

µ are given by cw = cv̌, cwa = qabv̌b. Utilizing the weight zero map (129)
and inserting the definitions reproduces (132). Similarly, the SDiff frame components of Wµ

c are w̌ = v,
w̌a
c = qabvcb. Utilizing the weight zero map (130) and inserting the definitions reproduces (133).

Next we consider rank 2 metric compatible Stensors and focus again on the two cases from
Section 4.2. We first present the decoupling maps in both cases and then comment on the derivation:

Type (0
2) weight (0, 0, 2):

cτ = τ , cτa = τa + τνβc − εgτabqbcνβc , cτab = τab . (134)

Type (2
0) weight (0,−2,−2):

cτ̌ = τ̌ , cτ̌a = τ̌a + τ̌qabνβb − εgτ̌abνβb , cτ̌ab = τ̌ab . (135)

In Section 4.2 we noted explicitly the linearized form of the transformation law for each of these
weighted Stensors. It may suffice here to verify the decoupling property also at the linearized level.
The additional variation needed is the linearized form of (38) which comes out as

δ0
ε(νβa) =

ε0

ν
e0(νβa) + L~ε(νβa)− ν∂a

( ε0

ν

)
. (136)

Using (104)–(106) and (136) one can verify that the given combinations indeed decouple the
linearized transformation laws, that is, (138) below holds.

In order to derive (134) we return to the realization of (τ, τa, τab) in terms of the reduced type (1
1)

Stensor (t, ta, tb
a) of weight (0, 0, 0), with tb

a = qadqbctd
c . One has τ := t, τa := ta, τab := qactc

b = qbctc
a.

Next, we recall from (131) the decoupling map for a weight zero type (1
1) tensor. Specializing to

ťa = 0, tb
a − qadqbctd

c = 0, and inserting the defining relations for (τ, τa, τab) one obtains (134). The
derivation of (135) proceeds similarly. In term of the reduced weight zero Stensor (t, ta, tb

a) one realizes
(τ̌, τ̌a, τ̌ab) as τ̌ := t, τ̌a := qabtb, τ̌ab := qactb

c = qbcta
c . The decoupling map (131) specialized to

ťa = 0, tb
a − qadqbctd

c = 0 implies (135).
The construction principle generalizes and yields the following result and definition:
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Definition 5. (Decoupling map and SCarroll tensor). Let uA, A = 1, . . . , |U|, be a metric compatible
Stensor of type (s

r) and weight wA. Then there exists a homogeneous polynomial fA of degree wA in νβa, qab, qab,
uB, B 6= A, and possibly preexisting Stensors such that

cuA = uA + fA(νβ, q, q−1, u) , (137)

decouples the transformation law. The map uA 7→ cuA is called the decoupling map and the resulting 1+d tuple
cuA, A = 1, . . . , |U|, is called an SCarroll tensor of weight wA.

We add several explanations. (i) The degree is defined by w(νβa) = 0, w(qab) = 2, w(qab) = −2,

w(uB) = wB. (ii) By a decoupled transformation law we mean that each cuA = cub1 ...bs′
a1 ...ar′

transforms
multilinearly among itself under generic (foliation-changing as well as non-Carroll) diffeomorphisms
in the πS realization, where an Xb

· occurs for each upper and a (∂x·/∂x′a + ν·∂t/∂x′a) occurs for each
lower index. The uc

1 component is always invariant. Upon linearization this amounts to

δ0
ε
cuA =

ε0

ν
e0(

cuA) + L~εcuA , (138)

where L~ε is the d-dimensional Lie derivative acting on cub1 ...bs′
a1 ...ar′

according to its Diff({Σ}) tensor type.
(iii) The term SCarroll tensor is modeled after that of Carroll tensors [5,9] which transform covariantly
and without mixing under the Carroll subgroup of diffeomorphisms. SCarroll tensors have the same
feature but with respect to the πS realization of the full diffeomorphism group. In fact, an SCarroll
tensor gives rise to a 1+d tuple of Carroll tensors by fixing the νa = 0 gauge. For SCarroll tensors of
weight zero this is clear from the reduction of the corresponding frames, see (57). In particular, each
upper index transforms with ∂x′b/∂x· and each lower index with ∂x·/∂x′a. The same holds if indices
are subsequently moved with qab or qab as they transform correspondingly under the Carroll subgroup.
(iv) The SCarroll tensors are a convenient arena on which an adapted Levi–Civita type connection can
be defined, see Section 5.3.

5. Sconnections

The nonstandard transformation laws (21) of the Sgravity metric blocks does not allow for an
interesting notion of spatio-temporal parallel transport. A purely temporal partial connection exists
however which has a transparent relation to the scaling limit and a symmetrized Bott connection.
By utilizing the SEhresmann connection and the decoupling map also a fully SDiff(M) covariant
SCarroll–Levi–Civita connection can be introduced.

5.1. Connections in Orthonormal Frames

For convenience we collect here the main formulas for the connection formalism in orthonormal
frames. Initially we take M to be a D = 1+d-dimensional differentiable manifold equipped only with
an orthonormal frame and consider the frame components of tensors. Next we augment a generic
affine connection which we later specialize to be metric and torsion-free. Finally, we illustrate the use
by application to the Levi–Civita connection in the metric frame, as needed later on.

Let εi, i = 0, . . . , d, be a “frame”, i.e., a basis of in general non-commuting vector fields on
M, [εi, εj] = f k

ijεk, and let θi, i = 0, . . . , d, be the dual 1-forms, 〈εi, θ j〉 = δ
j
i . Using dθ(V, W) =

Vθ(W)−Wθ(V)− θ([V, W]) for the differential of a one-form one has

[εi, εj] = f k
ijεk iff dθi = −1

2
f i

jkθ j ∧ θk . (139)
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Expansion in a local coordinate basis {yµ} gives the “vielbeins” εi = ε
µ
i ∂/∂yµ, θi = θi

µdyµ, with

ε
µ
i θ

j
µ = δ

j
i , ε

µ
i θi

ν = δ
µ
ν . Coordinate components of a tensor U can be converted into frame components

Ui...
j... = (εi

µθν
j . . .)Uµ...

ν....
Generic affine connection: An affine connection ∇ assigns to every vector field V a derivation

∇V that preserves the tensor type, obeys ∇V f = X( f ),∇ f VU = f∇VU for scalars f , and commutes
with contracted multiplication. The coefficients of an affine connection ∇ with respect to a frame are
introduced by

∇iεj = γk
ijεk , ∇iθ

j = −γ
j
ikθk , (140)

with ∇i = ∇εi . On the frame components of a tensor U = Ui...
j... εi ⊗ . . . θ j ⊗ . . ., the covariant

derivative then acts by

(∇kU)i...
j... = εk(Ui...

j...) + γi
klU

l...
j... + . . .− γl

kjU
i...

l... − . . . . (141)

The torsion and curvature of ∇ are defined by T(V, W) = ∇VW − ∇WV − [V, W], and
R(V, W)U = ∇V(∇WU) − ∇W(∇VU) − ∇[V,W]U, respectively, for vectors fields V, W, U. The
definitions imply the Cartan structure equations

1
2 Ti

klθ
k ∧ θl = dθi + ωi

j ∧ θ j ,

1
2 Ri

jklθ
k ∧ θl = dωi

j + ωi
k ∧ωk

j ,
(142)

where ωi
j := γi

jkθk is the connection one-form and the two-forms on the lhs were expanded in terms

of the frame components Ti
kl := 〈θi, T(εk, εl)〉, Ri

jkl := 〈θi, R(εk, εl)εj〉. Explicit expressions for them
can be obtained either directly or from the structure equations, with the result

Ti
kl = γi

kl − γi
lk − f i

kl ,

Ri
jkl = εk(γ

i
l j)− εl(γ

i
kj) + γi

kmγm
lj − γi

lmγm
kj − f m

klγ
i

mj .
(143)

Detailed derivations can be found, e.g., in [34], Sections 13.5–13.8. The structure equations imply
the Bianchi identities which in turn project onto component identities

∑
(jkl)

Ri
jkl = ∑

(jkl)
(∇jTi

kl − Tm
jlT

i
km) ,

∑
(mkl)
∇mRi

jkl = ∑
(mkl)

Tn
kmRi

jnl , (144a)

(∇k∇l −∇l∇k) f =−Ti
kl∇i f ,

(∇k∇l −∇l∇k)Vi = Ri
jklV

j − T j
kl∇jVi , (144b)

where the sums are over the cyclic permutations (ijk) of the indices.
Next, consider a change of frame basis

ε̂i = Bj
i εj , θ̂i = (B−1)i

jθ
j , (145)

for some function B : M→ GL(1+d,R). In the ‘hatted’ frame the connection components are defined
by ∇̂i ε̂j = γ̂k

ij ε̂k, with ∇̂i = ∇Bl
i εl

. Relating this to the original defining relation (140) one finds

γ̂k
ij = (B−1)k

l Bp
i Bq

j γl
pq + (B−1)k

l Bp
i εp(Bl

j) . (146)
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This alone implies that the covariant derivative’s frame components (141) transform covariantly

(∇̂kÛ)i...
j... = Bl

kBp
j (B−1)i

q(∇lU)
q...

p... . (147)

Since the torsion and the curvature are defined in terms of ∇VW only, their frame components
will transform covariantly as well under a change of basis.

Torsion-free metric connection: So far no metric entered. If M is in addition a
pseudo-Riemannian manifold with metric g and ∇ is a metric compatible connection, i.e., ∇g = 0,
one has explicit expressions for the connection coefficients in terms of εk(gij), Tk

ij, f k
ij. The metric

compatibility translates via Vg(U, W) = g(∇VU, W) + g(U,∇VW) and gij = g(εi, εj) into

εk(gij) = γl
kigl j + γl

kjgli , (148)

which combined with γi
kl − γi

lk = f i
kl + Ti

kl also fixes the symmetric part of γi
kl . Together

γk
ij = 1

2 gkl [εj(gil) + εi(gjl)− εl(gij)]

− 1
2 [g

kl gim( f m
jl + Tm

jl) + gkl gjm( f m
il + Tm

il) + f k
ji + Tk

ji] .
(149)

Next, we specialize to a torsionfree metric connection, which is unique and called the Levi–Civita
connection. Then (149) holds with Ti

jk = 0. More directly one can obtain this from the solution
of Vg(U, W) = g(∇VU, W) + g(U,∇VW). and 0 = ∇VW − ∇WV − [V, W], in terms of the
Koszul formula

2g(∇WV, ξ) = −ξg(V, W) + Vg(W, ξ) + Wg(ξ, V)

− g
(
[W, ξ], V

)
− g
(
[V, W], ξ

)
+ g
(
[ξ, V], W

)
,

(150)

see, e.g., [34], p. 590. It can be evaluated in any basis of vector fields εi, i = 0, . . . , d, using only
the defining relations [εi, εj] = f k

ijεk, ∇iεj = γk
ijεk, where ∇i := ∇εi . The result is again (149) with

Ti
jk = 0. In a coordinate basis εµ = ∂/∂yµ, θµ = dyµ, the connection coefficients (149) then reduce to

the Christoffel symbols Γρ
µν = 1

2 gρσ[∂νgµσ + ∂µgνσ − ∂σgµν]. The relation to the connection coefficients
in a generic frame is given by

γk
ij = Γk

ij +
1
2 θk

µ[εi(ε
µ

j ) + εj(ε
µ

i )] + 1
2 f k

ij ,

Γk
ij := θk

ρε
µ

i ε ν
j Γρ

µν .
(151)

This is such that (∇kU)i...
j... = ε

ρ
k θi

µε ν
j (∇ρU)

µ...
ν....

Levi–Civita connection in metric frame. In order to apply this to the metric frame we identify

εi = (N−1 ĕ0, ∂a) , θi = (Ndt, ea) , i = 0, . . . , d , (152)

where we momentarily use a breve ˘ to distinguish ĕ0 = ∂t − Nb∂b acting on scalars from the general
e0 = ∂t −L~N acting on arbitrary Diff(Σ) tensors. The dual one-forms θi are normalized according to

θ j(εi) = δ
j
i . The frame components of the metric are g(εi, εj) = gij = diag(εg, gab). The nonvanishing

commutator coefficients are
f 0
0b = N−1∂bN , f c

0b = N−1∂bNc . (153)
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The torsion vanishes by definition, Ti
jk = 0. For the connection coefficients one finds from (149)

initially expressions where time derivatives enter through ĕ0(gab) = ∂tgab − Nc∂cgab. Rewritten in
terms of e0(gab) = ĕ0(gab)− ∂aNcgcb − ∂bNcgcb, one obtains

γ0
0b = N−1∂bN , γ0

a0 = 0 , γ0
00 = 0 ,

γ0
ab = −

εg

2
N−1e0(gab) ,

γc
00 = −εggcdN−1∂dN ,

γc
a0 =

1
2

N−1e0(gad)gdc

γc
0b =

1
2

N−1e0(gbd)gdc + N−1∂bNc

γc
ab =

1
2

gcd[∂agdb + ∂bgad − ∂dgab
]
= γc

ba .

(154)

The general formula (141) then determines the metric frame components of ∇WU in terms of U’s
metric frame components, for any (directional) vector W. The covariance under the standard tensorial
action of diffeomorphism is accounted for by the general transformation formulas (146) and (147). The
relevant B matrix corresponds to the diffeomorphism induced reorganization of the metric frame and
can be read off from (A46) and (A33a) and the ∂′a transformation formula in (37) (which applies to the
metric frame as well, up to a change in notation). The B matrix has no zero entries and the component
instances of (146) are unenlightening. The component form of (147) is best elucidated in the scalar and
rank one case.

In fact, a covariant (directional) derivative ∇W can be introduced axiomatically as a derivation of
the tensor algebra, see, e.g., [34], Section 13.4. As such it is uniquely determined by its action on scalars
and (co-)vectors. In this approach we seek to characterize ∇W by its action on scalars and (co-)vectors.
The direction is normally described in terms of a vector (∇W = Wν∇ν); for later use we also prepare a
covector version (∇W = Wµgµν∇ν). In both cases the metric frame components are used, (w̌, w̌a) for
Wµ and (w, wa) for Wµ. Acting on a scalar φ one then has

∇Wφ = εgw̌N−1e0(φ) + w̌b∂bφ .

∇Wφ = εgwN−1e0(φ) + wagab∂bφ .
(155)

By construction, (N−1e0(φ), ∂aφ) are the frame components of a covector which implies that∇Wφ

transforms like φ.
The corresponding relations for vectors with metric frame components (v̌, v̌a) and covectors with

metric frame components (v, va) read

∇W v̌=εgw̌N−1e0(v̌) + N−1∂cNw̌v̌c + w̌b∂bv̌ + Kabw̌av̌b ,

∇W v̌a=εgw̌N−1e0(v̌a) + w̌b∇bv̌a − εgKa
b(w̌v̌b + w̌bv̌)− εggacN−1∂cNw̌v̌ , (156a)

∇Wv=εgwN−1e0(v) + N−1∂aNwgabvb + wagab∂bv + Kabwavb ,

∇Wva=εgwN−1e0(va)− εgN−1∂aNwv + wcgcb∇bva + εgKb
a(wvb − wbv) . (156b)

By common abuse of notation we write ∇W v̌ := εg(∇WV)i=0, as Vi=0 = εgv̌, and similarly for
the other components. Further, Kab := −(2N)−1e0(gab) is the extrinsic curvature, and indices are
moved with gab, gab. In the derivation, one starts from the vector and covector version of (141) and
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inserts (154). Initially again the scalar derivative ĕ0 enters, which has been converted into the proper
Lie derivative action of e0 in order to arrive at (156).

We add several remarks: (i) The characteristic properties of an affine connection manifestly hold:
directional linearity ∇ f WV = f∇WV and the Leibniz rule ∇W( f V) = f∇WV + (W f )V, for all scalar
functions f . (ii) As a check one may verify that ∇W (upon conversion w̌ = w, w̌b = gbawa) acts on
εgv̌v + v̌ava like a scalar, see (155). (iii) The vector and covector versions are related by moving indices,

∇W v̌ = ∇Wv , ∇W v̌a = gab∇Wvb , (157)

subject to the identifications w̌ = w, w̌b = gbawa, v̌ = v, v̌b = gbava. The relations (157) in turn are
consistent with (∇W g)i=a,j=b = w̌c∇cgab = 0. The latter is a special case of ∇W ’s action on a rank
two tensor. (iv) Generally, the action of ∇W on the metric frame blocks of some type (s

r) tensor can
be computed either from (141) or by considering tensor products of the (co-)vector actions (156). (v)
The (w, wa) = (v, va) specialization of (156b) leads to a 1+d form of the geodesic congruence equation.
Explicitly, Vν∇νVµ = 0 iff

εgve0(v) + gabva∂b(Nv) + NKabvavb ,

ve0(va)− v2∂aN + εgNvb∇bva = 0 .
(158)

This agrees with Equation (3.6) of [35]. The present co-vector version is in turn equivalent to
the 1+d form of the vector version, see Equations (18) and (19) in [36]. The conservation ∇V E = 0
of E := VµgµνVν = εgv2 + vagabvb amounts to εgvN−1e0(E) + vbgba∂aE = 0, which can also be
verified directly.

5.2. Temporal SDiff(M) Covariant Derivative from Scaling Limit

Since a covariant derivative maps tensors to tensors, the limit construction (90) can be applied
before and after taking the covariant derivative. We wish to study the induced relation of the limits.

We recall from Section 4.1 that for a vector Vµ there exist two consistent weight assignments for
its metric frame components (v̌, v̌a), namely (0, 0) or (0,−2). Similarly, for a covector Vµ only two
weight assignments for its metric frame components (v, va) lead to a finite nonzero limit, namely (0, 0)
and (0, 2). As before, both versions related by v̌ = v, v̌b = gbava and the zero components always have
weight zero. On account of (157) we may therefore restrict attention to the limits of (156b). In line with
the general convention, we attribute to ∇Wv scaling weight zero; deviating from it would remove the
temporal transport term, at odds with the interpretation of ∇W as a derivation. By inspection of (156b)
one sees that only two weight assignments for the covector pairs lead to finite nonzero limits. For
convenient reference we also note the limits of the conjugate vector versions. Case one is:

w(w̌a) = −2 = w(v̌a) : (159a)

lim
λ→∞

sλ∇W v̌ = εgw̌N−1e0(v̌) ,

lim
λ→∞

λ2sλ∇W v̌a = εgw̌N−1e0(v̌a)− εgKa
b(w̌v̌b + w̌bv̌)− εggacN−1∂cNw̌v̌ .

w(wa) = 0 = w(va) : (159b)

lim
λ→∞

sλ∇Wv = εgwN−1e0(v) ,

lim
λ→∞

sλ∇Wva = εgwN−1e0(va)− εgN−1∂aNwv + εgKb
a(wvb − wbv) .
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Case two is:

w(w̌a) = −2, w(v̌a) = 0 : (160a)

lim
λ→∞

sλ∇W v̌ = εgw̌[N−1e0(v̌) + N−1∂bNv̌b] ,

lim
λ→∞

sλ∇W v̌a = εgw̌[N−1e0(v̌a)− Ka
b v̌b] .

w(wa) = 0, w(va) = 2 : (160b)

lim
λ→∞

sλ∇Wv = εgwN−1e0(v) + N−1∂aNwgabvb + Kabwavb ,

lim
λ→∞

λ−2sλ∇Wva = εgwN−1e0(va) + εgKb
awvb .

In both cases the ‘directional” covector (w, wa) has weight zero and the image has the same
weight as (v, va). Only (159) admits a (w, wa) = (v, va) specialization, which produces the geodesic
congruence equations of strong coupling gravity [35]. In line with the conventions of Section 4.1 we
shall replace N, Na, gab, gab with their Sgravity counterparts ν, νa, qab, qab, after the scaling limit has
been taken. In particular, Kb

a := −(2ν)−1e0(qac)qcb with e0 = ∂t −L~ν after the substitution.
In order to interpret the limits of sλ∇W in (159) and (160) as connections directional linearity and

the Leibniz rule should hold. While directional linearity is valid for all (w, wa) the Leibniz property
works only if wa = 0 or the scalar f is a function of t only. We adopt the first restriction and note

∇s
f WV = f∇s

WV , ∇s
W( f V) = f∇s

WV + (W f )V , ∂
µ
a Wµ = wa = 0 , (161)

valid for all (v, va). This suggests to interpret the limits of sλ∇W (159) and (160) as partial connections.
These can be defined for any vector bundle and distribution over a manifold, see, e.g., [37] in a
related context. Here we consider directly the tangent bundle TM and an integrable subbundle V .
The annihilator V⊥ of V is the subbundle of the cotangent bundle T∗M consisting of one forms that
vanish on V . Then ∇ : V × V⊥ → V⊥ is a partial connection in V⊥ along V if ∇ f WV = f∇WV, and
∇W( f V) = f∇WV + (W f )V hold for all scalars f and W ∈ V , V ∈ V⊥.

Identifying V with the temporal subbundle T[ti, t f ] of TM generated by ν−1e0 and V⊥ with the
spatial one forms V = vadxa in T∗Σt, this concept applies to the situation at hand and we write ∇s for
the resulting partial connection. The directional vector just occurs as a prefactor ∇s

W = εgw̌∇s
0, for

W = εgw̌ ν−1e0 ∈ T[ti, t f ]. The ‘temporal’ directional derivative ∇s
0 itself corresponds to W = ν−1e0.

Its defining relations can be read off from (159) and (160) and read

∇s
0 : T[ti, t f ]× T∗Σt −→ T∗Σt ,

(ν−1e0, V = vaea) 7→ (∇s
0V)a = ν−1e0(va) + Kb

avb ,
(162)

where e0 = ∂t − L~ν and (161) ensures the defining properties for both weight assignments (159)
and (160). Similarly, one can define a partial connection acting on vectors

∇s
0 : T[ti, t f ]× TΣt −→ TΣt ,

(ν−1e0, V = v̌a∂a) 7→ (∇s
0V)a = ν−1e0(v̌a)− Ka

b v̌b ,
(163)

again for both weight assignments. The vector and the covector version are related by moving indices

gab∇s
0v̌b = ∇s

0va . (164)
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Equivalently, ∇s
0 is metric compatible in the following sense

gab
[
(∇s

0v̌a)ǔb + (∇s
0ǔa)v̌b] = ν−1e0

(
gabǔav̌b) . (165)

Another natural partial connection on the (co-)tangent bundle is the Bott connection, see,
e.g., [4,37,38]. In the above notation the defining relations are

(∇B
WV)(U) := W ·V(U)−V([W, U]) ,

V(∇B
WU) := V([W, U]) , W ∈ V , V ∈ V⊥ , U ∈ TM .

(166)

The covector version is related to the vector version by the usual formula; both enter in the
following. In order to evaluate (166) with the previous identifications, we prepare the metric frame
components of the commutator

[W, U]i = W jεj(Ui)−U jεj(Wi) + f i
jkW jUk . (167)

For the metric frame components this gives explicitly

nµ[W, U]µ = εgN−1[w̌e0(ǔ)− ǔe0(w̌)] + w̌a(∂aǔ−N−1∂aNǔ)− ǔa(∂aw̌−N−1∂aNw̌) .

ea
µ[W, U]µ = εgN−1[w̌e0(ǔa)− ǔe0(w̌a)] + w̌b∂bǔa − ǔb∂bw̌a .

(168)

After renaming of N, Na the Bott connection thus evaluates to

∇B
W v̌a = εgw̌ν−1e0(v̌a) , ∇B

Wva = εgw̌ν−1e0(va) , (169)

with W = εgw̌ν−1e0. Again, the directional vector only occurs as a prefactor and it suffices to consider
the case W = ν−1e0 for which we write∇B

0 . The Bott connection is not compatible with moving ‘spatial’
indices, rather there is an induced action of the covector version on vectors and of the vector version
on covectors given by

∇B∗
0 v̌a := gac∇B

0 (gcbv̌b) = ν−1e0(v̌a)− 2Ka
b v̌b .

∇B∗
0 va := gac∇B

0 (g
cbvb) = ν−1e0(va) + 2Kb

avb .
(170)

Comparing with (163) and (166) one sees

∇s
0 =

1
2
∇B

0 +
1
2
∇B∗

0 , (171)

on spatial vectors and covectors; see also [38]. The symmetrization accounts for the metric
compatibility (165) of ∇s

0 noted before.
Next we verify the covariance properties of∇s. Since the directional vector transforms as well we

consider ∇s
W = εgw̌∇s

0. On account of the definitions (162), (163) the image of a spatial (co-)Svector
should transform again as a spatial (co-)Svector of the same weight. Since (w̌, w̌a) always has weight
(0, 0) and w̌a ≡ 0 its transformation law is imply w̌′ = w̌. For the (co-)vector ∇s

W acts on there
are two cases to consider: (v, va) can have weight (0, 0) or (0, 2); similarly (v̌, v̌a) can have weight
(0, 0) or (0,−2). The transformation laws in general mix the spatial with the temporal component,
see Section 4.1. In precisely those cases where the spatial component mixes on can, however, set
the temporal component to zero consistently, thereby obtaining a non-mixing transformation law.
Specifically, the pattern is as follows:

v′a =
( ∂xb

∂x′a
+

∂t
∂x′a

νb
)

vb with

{
v = 0 for weight (0, 0) ,

v generic for weight (0, 2) .
(172)
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Similarly,

v̌′a = Xa
b v̌b with

{
v̌ generic for weight (0, 0) ,

v̌ = 0 for weight (0,−2) .
(173)

Here Xb
a is defined in (22) of and obeys (23) as well as (∂t/∂x′a)Xa

b = −D−1∂t′/∂xb.
The transformation laws of the ν−1e0 images of various quantities have been prepared in (28) for
Kb

a ; (27) for ν−1e0(va); (65b) for ν−1e0(v̌a). These imply the desired results:

εgw̌′
[
ν′
−1e′0(v

′
a) + K′bav′b

]
=
( ∂xc

∂x′a
+

∂t
∂x′a

νc
)

εgw̌
[
ν−1e0(vc) + Kb

c vb
]

, (174)

where in order to be consistent with (172) one should define

(∇s
WV)i=0 =

{
0 for (v = 0, va) of weight (0, 0) ,

unspecified for (v, va) of weight (0, 2) .
(175)

Similarly
εgw̌′

[
ν′
−1e′0(v̌

′a)− K′abv̌′b
]
= Xa

c εgw̌
[
ν−1e0(v̌c)− Kc

bv̌b] , (176)

where in order to be consistent with (172) one should define

(∇s
WV)i=0 =

{
unspecified for (v̌, v̌a) of weight (0, 0) ,

0 for (v̌ = 0, v̌a) of weight (0,−2) .
(177)

In summary, the definitions (162) and (163) provide for rank one Stensors an intrinsically defined
partial connection for Sgravity which is covariant with respect to SDiff(M) and related to the limit of
the Levi–Civita connection by (159) and (160) as well to the Bott connection by (171).

It remains to extend the definition of ∇s
0 to Stensors of higher rank. The obvious formula is

(∇s
0T)b1b2...

a1a2... := ν−1e0
(
Tb1b2...

a1a2...
)
+ Kd

a1
Tb1b2...

d a2... + . . .− Kb1
c Tc b2...

a1a2... − . . . . (178)

Here only one of the blocks of an Stensor enters. However, in general any one block will mix
with the other blocks under the full SDiff(M) action. What is needed is a generalization of the
conditions (172) and (173) that ensure that one of the blocks (like va, v̌a in (172), (173)) does not mix.
That is, (168) applies to Stensors of arbitrary type and weight with the property that one of the blocks
transforms according to

T′b1b2...
a1a2...

!
=
( ∂xd1

∂x′a1
+

∂t
∂x′a1

νd1
)( ∂xd2

∂x′a2
+

∂t
∂x′a2

νd2
)

. . . Xb1
c1 Xb2

c2 . . . Tc1c2...
d1d2... , (179)

under the action of all of SDiff(M). A straightforward extension of the previous computation shows
that (∇s

W T)b1b2...
a1a2... then transforms in the same way. One way to obtain Stensors with the property

(179) is by taking tensor products of the rank one Stensors (172) and (173). The tensor product will
in general have nonzero spatio-temporal blocks, for example (v, va)⊗ (w̌, w̌b) = (v⊗ w̌, v⊗ w̌b, va ⊗
w̌, va ⊗ w̌b), in abstract index notation. Moreover, in general the purely spatial block va ⊗ w̌b will mix
with v⊗ w̌, v⊗ w̌b, va ⊗ w̌ under the action of SDiff(M). The assertion is that, if (v1, v1

a), (v2, v2
a), . . .

satisfy (172) and (w̌1, w̌a
1), (w̌2, w̌a

2), . . . satisfy (173) then Tb1b2...
a1a2... = v1

a1
v2

a2
w̌b1

1 w̌b2
2 . . . will not mix with the

other blocks and transform like (179). This can easily be shown by induction on the rank. The linear
hull of such factorized tensor products then produces a large class of instances of (179).

In addition, there are Stensors which satisfy (179) but are not manifestly tensor products of the
above form. Important examples are the metric compatible rank two tensors that model Sgravity’s
metric, Einstein-, and Energy–momentum tensors. Applied to the metric. The definition (178) implies
∇s

0qab = 0, recasting the earlier form (164) and (165) of metric compatibility. A class of rank four
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tensors that satisfy (178) are the Sgravity counterparts of the type (2
2) forms of the Riemann tensor and

the Weyl tensor.
We add a few comments on the literature. The ‘adiabatic limit’ of the Levi–Civita connection

for vectors and covectors and its relation to the Bott connection was found in [4,38]. The covariance
properties of ∇s

W under a nonstandard realization of the diffeomorphism group are however not
discussed in [4,38]. In Equations (A.68) ff of Ciambelli et al. [9] a temporal covariant derivative ∂̂t

acting on Carroll tensors is introduced by the condition ∂̂tqab = 0. It it shown to be covariant under
the Carroll subgroup of the diffeomorphism group, i.e., to map Carroll tensors onto Carroll tensors of
the same type. In the present setting this corresponds to the zero Sshift specialization of the above
result. An early version of a related construction appears in [7]. A temporal covariant derivative ∇n is
introduced by ∇nQµν = 0 for a degenerate Carroll metric Qµν and shown to map ‘transversal’ lower
index tensors onto themselves. By evaluating this construction in the metric frame (A22) one finds it
to correspond to the ∇s

0Ta1a2... case of (178). The transversal tensors correspond to our spatial blocks.
As stressed before, transversality alone is however not sufficient to ensure a closed transformation
law under the full diffeomorphism group. The above construction identifies both the class of Stensors
on which ∇s

0 can act consistently and the precise realization πS(Diff(M)) with respect to which it
is covariant.

The temporal covariant derivative ∇s
0 captures the intuition that in Sgravity only temporal

gradients are dynamical. From this viewpoint a spatial counterpart is of secondary importance. By
augmenting the generalized Ehresmann connection and utilizing the decoupling map from Section 4.3
a spatio-temporal covariant derivative can be introduced.

5.3. A Fully Covariant SCarroll–Levi–Civita Connection

In the previous section the SEhresmann connection βa did not enter. As seen in Section 4.3 it
can be used to decouple the SDiff(M) transformation law of metric compatible Stensors. For short,
the 1+d tuples cuA, A = 1, . . . , |U|, arising in this way have been called SCarroll tensors. As usual, A

is a multi-index and cuA is short for some multiplet cub1...bs′
a1...ar′

which under the action of SDiff(M) does
not mix with other multiplets. In the following we aim at defining a connection with the properties:

(a) it maps SCarroll tensors onto SCarroll tensors and hence is fully SDiff(M) covariant.
(b) it is compatible with the non-degenerate Carroll metric gcµν.

(c) for any one multiplet the image only depends on the same multiplet.

An obvious candidate is the Levi–Civita connection associated with gcµν. It satisfies (a), (b) but
turns out to fail (c). For readability’s sake we repeat the defining relations

gcµν = εgnc
µnc

ν + qabea
µeb

ν , gµν
c = εgnµnν + qabEµ

a Eν
b , (180)

with gcµρgρν
c = δν

µ. Here nc
µdyµ = εgν(dt − βaea) =: εgνE0, Eµ

a ∂/∂yµ = ∂a + βae0, where βa

is a generalized Ehresmann connection. Together with nµ and ea
µ from the metric frame the

pair (nc
µdyµ, ea

µdyµ), (nµ∂/∂yµ, Eµ
a ∂/∂yµ) forms an orthonormal frame, dubbed the SDiff frame.

The terminology reflects the fact that the frame components intertwine the nonstandard Sgravity
realization of the Diffeomorphism group with the familiar tensorial one. As a consequence the
quantities (180) transform as conventional rank two tensors, see (75). Moreover, nc

µ = gcµνnν,
qabEν

b = gµν
c ea

ν, holds, making the SDiff frame a metric frame with respect to gcµν, gµν
c . In summary, given

the Sgravity fields ν, νa, qab, qab and βa a manifold M can be equipped with the pseudo-Riemannian
metric (180) which has the SDiff frame as its metric frame.

We now define the unique torsion-free gc-compatible connection ∇c by the Koszul formula (150)
and refer to it as the gc Levi–Civita connection. The familiar explicit expressions for the Christoffel
symbols and the Riemann tensor carry over with gcµν replacing the gµν of a pseudo-Riemannian
manifold. The standard formulas for the action of ∇c

µ on metric-independent tensors likewise carry
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over. The same holds for metric-dependent tensors, provided indices are moved with gcµν, gµν
c .

Denoting by Uν1 ...νs
µ1 ...µr the spacetime coordinate components of some such tensor, it will transform

under changes of coordinates like a conventional type (s
r) tensor. Its Sframe components willl define

an SCarroll tensor in the sense defined. The gc covariant derivative ∇c
µUν1 ...νs

µ1 ...µr will on account
of (75) transform like a conventional type ( s

r+1) tensor (a transformation law which is induced by
the underlying πS realization, however). In the present context the components in the SDiff frame
(ν−1e0, Ea), (νE0, ea) are of main interest. Indeed, it follows from the intertwining relations alluded
to that the projections of the ∇c

µ covariant derivative will again transform in a non-mixing way. In
other words

∇c
0 := nµ∇c

µ = nc
ν∇

µ
c , ∇c

a := Eµ
a∇c

µ = qabeb
µ∇

µ
c , (181)

maps SCarroll tensors (as 1+d tuples) into other SCarroll tensors. In the equivalent expressions we set
∇µ

c := gµν
c ∇c

ν and used (76). In order to compute the frame components we use the identification

εi = (ν−1 ĕ0, Ĕa) , θi = (νE0, ea) , i = 0, 1, . . . , d . (182)

The breve ˘ serves again to distinguish ĕ0 = ∂t − νb∂b acting on scalars from the general e0 =

∂t −L~ν acting on generic Diff(Σ) tensors. In particular, it enters Ĕa = ∂a + βa ĕ0. In the computation of
the structure constants and the connection coefficients initially ĕ0 and Ĕa occur. In a second step the
transport term νb∂b is augmented by the terms needed to produce the Lie derivative L~ν adequate for
the Diff(Σ) tensor the e0 derivative acts on.

For the structure constants this has been done in Section 3.2. In the conventions of (139) one has

f 0
0b = e0(βb) + ν−1Ebν , f 0

ab = νTab ,

f c
0b = ν−1∂bνc , f c

ab = βa∂bνc − βb∂aνc .
(183)

The frame components of the Carroll co- and contravariant metric (180) are defined by gcij :=

gc(εi, εj), gij
c := gc(θi, θ j). Hence gc00 = εg = g00

c , gc0a = 0 = g0a
c , gcab = qab, gab

c = qab. The frame
derivative εk(gcij) is thus only nonzero if both i and j are nonzero. In this case ν−1 ĕ0(qab) and Ĕc(qab)

are the nonvanishing parts, for k = 0 and k = c, respectively. The connection coefficients for the gcµν

compatible torsion free connection are computed via (149) in the frame (182). The result is

γ0
0b = ν−1∂bν + ν−1e0(νβb) , γ0

a0 = 0 , γ0
00 = 0 ,

γ0
ab = −

εg

2ν
e0(qab) +

1
2

νTab ,

γc
00 = −εgqcbν−1[∂bν + e0(νβb)] ,

γc
a0 =

1
2ν

qcde0(qda)−
εg

2
qcdνTad ,

γc
0b =

1
2ν

qcde0(qdb) + ν−1∂bνc +
εg

2
qcdνTdb ,

γc
ab = Γc

ab(q) + βa∂bνc

+
1
2

qcd[βae0(qdb) + βbe0(qda)− βde0(qab)
]

,

(184)
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where Γc
ab(q) are the Christoffel symbols formed from qab, qab. For βa ≡ 0 the coefficients (184) reduce

to (154) upon substitution of N, Na, gab, gab by ν, νa, qab, qab. As a further check one may verify the
metricity conditions:

γc
00qcb + εgγ0

0b = 0 = γd
c0qdb + εgγ0

cb ,

ν−1 ĕ0(qab) = γc
0aqcb + γc

0bqca ,

Ĕc(qab) = γd
caqdb + γd

cbqda .

(185)

By construction, the covariant derivative (141) with coefficients (185) in the SDiff frame will have
properties (a), (b) from the introductory list. It does not have property (c), simply because the ‘mixed’
coefficients γk

ij with one or more of i, j, k equal 0 are nonzero.
The point to observe is that the ‘unwanted’ coefficients transform tensorially and thus are not

instrumental for the covariance properties. In order to explore this we interpret the transformation
relations (40) of the SDiff(M) frame as a linear change of frame basis (which happens to be
diffeomorphism induced). The general formulas (145) and (146) for a change of frame then apply with
a specific block diagonal transition matrix

B =

(
1 0
0 X−1

)
, B−1 =

(
1 0
0 X

)
,

(X−1)b
a =

∂xb

∂x′a
+ νb ∂t

∂x′a
, Xa

b =
∂x′a

∂xb − D−1 ∂t′

∂xb

(∂x′a

∂t
− ∂x′a

∂xe νe
)

.

(186)

Denoting the SDiff(M) transformed coefficients by a prime, the specialization of (146) reads

γ′000 = γ0
00 , γ′0a0 = (X−1)e

aγ0
e0 , γ′00b = (X−1)e

bγ0
0e ,

γ′0ab = (X−1)e
a(X−1)

f
b γ0

e f , γ′c00 = Xc
e γe

00 , γ′ca0 = Xc
e(X−1)

f
a γe

f 0 ,

γ′c0b = Xc
e(X−1)

f
b γe

0 f + Xc
e ν−1 ĕ0((X−1)e

b) ,

γ′cab = Xc
e(X−1)

f
a (X−1)

g
b γe

f g + Xc
e(X−1)

f
a Ĕ f ((X−1)e

b) .

(187)

One sees that all but γc
0b, γc

ab transform tensorially. As a consequence, only these two sets of
components are instrumental for the covariance properties (147) in the SDiff frame.

Our proposal is to simply omit all terms in (141) with tensorial coefficients. The resulting
connection we denote by c∇0, c∇a as its acts in the desired way on the SCarroll multiplets
cub1...bs′

a1...ar′
. Explicitly

c∇0
cub1...bs′

a1...ar′
= ν−1 ĕ0

(
cub1...bs′

a1...ar′

)
+ γb1

0c
cuc b2...bs′

a1a2...ar′
+ . . .− γc

0a1
cub1b2...bs′

c a2...ar′
− . . . ,

c∇a
cub1...bs′

a1...ar′
= Ĕa

(
cub1...bs′

a1...ar′

)
+ γb1

ac
cuc b2...bs′

a1a2...ar′
+ . . .− γc

aa1
cub1b2...bs′

c a2...ar′
− . . . .

(188)

One may check that (188) still transforms covariantly under all of SDiff(M). Further, it manifestly
has property (c) from the introductory list. Next, observe that γc

0b contains ν−1∂bνc and γc
ab contains

βa∂bνc. These terms convert the scalar action of ĕ0 = ∂t − νc∂c into its proper Lie derivative action
e0 = ∂t −L~ν, and similarly for Ĕa = ∂a + βa ĕ0. Hence (188) is equivalent to

c∇0
cub1...bs′

a1...ar′
= ν−1e0

(
cub1...bs′

a1...ar′

)
+ γ̆b1

0c
cuc b2...bs′

a1a2...ar′
+ . . .− γ̆c

0a1
cub1b2...bs′

c a2...ar′
− . . . ,

c∇a
cub1...bs′

a1...ar′
= Ea

(
cub1...bs′

a1...ar′

)
+ γ̆b1

ac
cuc b2...bs′

a1a2...ar′
+ . . .− γ̆c

aa1
cub1b2...bs′

c a2...ar′
− . . . ,

(189)



Symmetry 2020, 12, 752 45 of 63

where
γ̆c

0b := −Kc
b +

εg
2 qcdνTdb ,

γ̆c
ab := Γc

ab(q) + qcdνβdKab − νβaKc
b − νβbKc

a .
(190)

Here Kb
a = −(2ν)−1e0(qac)qcb is the Sgravity counterpart of the extrinsic curvature and Tab is

the torsion Stensor from (50). It remains to re-check metric compatibility. Recall that the nonzero
SDiff frame components of gcµν are gc00 = εg, gcab = qab. Metric compatibility therefore amounts to
c∇0qab = 0 and c∇cqab = 0. Both are indeed satisfied. The c∇0qab = 0 identity in fact holds on
account of only the −Kc

b term in γ̆c
0b, while the torsion term drops out. On the other hand the torsion

terms separately transforms tensorially, q′cd
ν′T′db = Xc

e(X−1)
f
b qedνTd f , using (17), (22) and (64). By the

same reasoning as above, the torsion term can therefore be omitted from γ̆c
0b without affecting the

covariance properties of c∇0. Although the −Kc
b part also transforms tensorially it must be kept in

order to ensure metricity. Our final form of the connection satisfying (a), (b), (c) of the introductory
paragraph is c∇a as in (189) together with

c∇0
cub1...bs′

a1...ar′
= ν−1e0

(cub1...bs′
a1...ar′

)
− Kb1

c
cuc b2...bs′

a1a2...ar′
+ . . . + Kc

a1
cub1b2...bs′

c a2...ar′
− . . . . (191)

Building on an earlier coinage [9] we shall refer to it as the SCarroll–Levi–Civita connection. It
is covariant under the full diffeomorphism group in its πS realization. Similar as in Table 1 a gauge
fixing to νa = 0 or βa = 0 produces valid connections with a smaller covariance group. In particular
c∇a reduces in νa = 0 gauge to the Carroll–Levi–Civita connection introduced in (A.45) of [9], which
is covariant under the Carroll subgroup of the Diffeomorphism group.

Next, we consider the curvature tensor cRl
ijk associated with c∇. The general formulas

in (143) and (144) apply, with all indices referring to the SDiff frame. Specifically, on account of
(188) all but the terms involving γc

0b, γc
ab are absent in (143). By inspection one finds that only two

blocks of the curvature tensor are nonzero which read

cRa
b0d = ν−1 ĕ0(γ

a
db)− ∂dγa

0b + γa
0eγe

db − γa
deγe

0b − f 0
0dγa

0b − f e
0dγa

eb ,
cRa

bcd = Ra
bcd(q)− f 0

cdγa
0b − f e

cdγa
eb .

(192)

By construction, these must be related to c∇ by instances of the commutation
relations (144b). Explictly (

c∇0
c∇d − c∇d

c∇0
)
cVa = cRa

b0d
cVb ,(

c∇c
c∇d − c∇d

c∇c
)
cVa = cRa

bcd
cVb .

(193)

As a consequence the two blocks must transform separately tensorially with X, X−1 according to
their ‘spatial’ index pattern.

The SCarroll–Levi–Civita connection is mathematically natural in the context of the fully covariant
Carroll structure. Via the decoupling map the cuA have an expansion in terms of Stensor components
and νβa. One can pull back the images c∇0

cuA, c∇a
cuA, via the inverse of the decoupling map. This

produces quantities of the correct type and with the transformation law of an Stensor, which one
can interpret as the sought after spatio-temporal s∇0

suA, s∇a
suA, if cuA = suA + . . .. In general

the pull-back will still depend on βa, limiting its relevance for Sgravity proper. As noted in (48)
the SEhresmann connection can be realized in terms of a scalar field as βa = −∂a ϕ/e0(ϕ), with
e0 = ∂t − νc∂c. Sgravity coupled to a scalar field therefore does admit a mathematically natural if
indirect notion of spatio-temporal parallel transport.

The resulting connection, however, does not seem to have a simple relation to the partial
connection ∇s

0 arising via the scaling limit. The structural parallelism between (178) and (191) is
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of course not accidental, but c∇0 and ∇s
0 act on different objects. Similarly, the curvature tensor (192)

bears no direct relation to the one (124) defined by the scaling limit.

6. Conclusions

The basics of a tensor calculus adapted to the Anti-Newtonian limit of Einstein gravity—Sgravity
for short—have been developed. Neither the metric nor the field equations of Sgravity form
conventional tensors. The appropriate notion of Stensors arises as a scaled limit πS of the tensorial
realization πT of the Diffeomorphism group Diff(M). In addition to the type of the tensor,
the transformation law is characterized by integer-valued weights needed to ensure the existence of a
nontrivial limit. By introducing a generalized Ehresmann connection βa, the associated SDiff frame
and the invertible Carroll metric compatible with it, the weight-dependent transformation laws can
be mapped into a universal, merely type-dependent transformation law that can be read off from the
index structure.

In contrast to other notions of ‘Carroll geometry’ studied in the literature, full, unrestricted
Diffeomorphism covariance is maintained throughout. This is possible through the interplay of
two connection-like quantities, the generalized Ehresmann connection βa and the shift-like field νa.
The coordinate components of the SDiff frame in fact intertwine the nonstandard realization πS with
the tensorial one πT . The tensorial realization is however largely irrelevant in the context of Sgravity;
for example the metric and the field equations transform as Stensors of type (0

2) and weight (0, 0, 2),
not as conventional tensors. Despite the inevitable occurrence of a fiducial foliation, the quantities are
locally independent of the choice of this foliation, as well as independent of the choice of coordinates.
Standard tensor calculus is not the only way to build such objects.

The nonstandard transformation laws (21) of the Sgravity metric blocks does not allow an
interesting notion of spatio-temporal parallel transport. A purely temporal partial connection exists,
however, which has a transparent relation to the scaling limit and a symmetrized Bott connection.
By utilizing the SEhresmann connection and also the decoupling map, a fully SDiff(M) covariant
SCarroll–Levi–Civita connection was introduced. Since the SEhresmann connection can be realized
in terms of a scalar field, βa = −∂a ϕ/e0(ϕ), Sgravity coupled to a scalar admits a mathematically
natural if indirect notion of spatio-temporal parallel transport. Both variants build on and generalize
earlier notions [7,9,38]. Other versions of parallel transport occur in the first order formulations
of Carroll gravity [14,15]. These are currently of unclear relation to and significance for Einstein
gravity’s Anti-Newtonian limit. One can also directly analyze the scaling limit curvature tensors and
finds well-defined Stensors in the sense introduced here. Their relation to commutators of covariant
derivatives likewise remains to be clarified.

An interesting application of the present tensor calculus is to the stochastic quantization of
Sgravity. The basic Langevin equation ought to preserve the covariance group of the classical field
equations, here SDiff(M). As such one will cast it as a linear relation among three Stensors of type
(2

0) and weight (0, 0, 2): the generalized metric, the field equations, and the noise. The system can be
simplified and appears to be amenable to numerical simulations.

Funding: This research was supported by PittPACC.
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Appendix A. 1+d Tensor Calculus Revisited

In the 1+d tensor calculus one considers the components of a generic tensor in an orthonormal
frame that block diagonalizes the metric, here dubbed the ‘metric frame’. It is standard material in
many textbooks, see, e.g., [39]. Occasionally, a distinction between 3+1 and 1+3 formalisms is made.
We shall not follow this convention; 1+d merely refers to the co-dimension + dimension of the leaves.
In this appendix we present several select topics which are not normally discussed in this context,
but which are needed for the present developments: (i) The mixing pattern of the 1+d components
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under foliation changing diffeomorphisms. (ii) Applied to the metric in ADM parameterization the
induced transformation law for lapse, shift, and spatial metric. (iii) The role of the frame components
as intertwiners. (iv) The linearized form of (i) in terms of gauge variations.

Appendix A.1. Spacetime Diffeomorphisms in 1+d Form

In this section no metric structure enters. All manifolds are assumed to be differentiable and
equipped with C∞ atlases.

Foliations. A co-dimension-one foliation of a (1+d)-dimensional manifold is a decomposition
of M into a union of disjoint subsets Σt, ti ≤ t ≤ t f , called the leaves of the foliation, with the
following property: every point in M has a neighborhood U and a system of local coordinates
y = (y0, y1, . . . , yd) : U → R1+d, such that for each leaf Σt the components of U ∩ Σt are determined
by the equation y0 = t. For t = ti, t f we assume that ∂M = Σti ∪ Σt f is the boundary of M. One may
view y0 as a scalar field y0 : M→ R and write Σt = {y ∈ M | y0(y) = t}. The foliation then consists of
the assignment [ti, t f ] 3 t 7→ Σt (In metric geometry y0 corresponds to a temporal function and the
associated foliations are vorticity-free, see Appendix A.2.). Unless stated otherwise we will assume the
leaves to be compact and closed.

Every leaf is a d-dimensional embedded hypersurface. Recall that an embedded hypersurface of
M is the image of a d-dimensional manifold Σ by some ι : Σ→ M, where ι is one-to-one onto its image
and both ι and ι−1 are continuous. Coordinate systems with the above property are called adapted to the
foliation. By identifying intrinsic local coordinates (x1, . . . , xd) on Σ with (y1, . . . , yd) the embedding
takes the form

ι : Σ −→ M , (x1, . . . , xd) = (t, x1, . . . , xd) =: y(t, x) ∈ M, (A1)

and allows one to identify Σt with ι(Σ), for given y0. Adapted coordinated are not unique. If y
and y′ are two such coordinate systems defined on an open set U ⊂ M, then both are related by a
diffeomorphism of the form y′0 = χ0(y0), y′a = χa(y) = χa(t, x), a = 1, . . . , d. By the implicit function
theorem we also view xa(y) to be locally known and such that yα

0 = yα(t(y0), x(y0)), for all yα
0 . Here

and below we often write yα, α = 0, 1, . . . , d, for y = (y0, ya).
Two foliations [ti, t f ] 3 t 7→ Σt, and [ti, t f ] 3 t′ 7→ Σ′t′ , defined on M and M′, respectively, are

called equivalent if there is a diffeomorphism sending the leaves of one into the leaves of the other.
Diffeomorphisms. For simplicity we consider only analytic, orientation-preserving

diffeomorphisms in the component of the identity, with concatenation as group operation. On foliated
manifolds of the type considered one will want the diffeomorphisms to preserve the boundary,
χ|∂M : ∂M → ∂M. Since the leaves are assumed to be compact no fall-off conditions along
spatial directions are needed. Sequences of diffeomorphisms and the concommitant topological
considerations will also not enter. For short, we just write Diff(M) for the resulting group of
boundary-preserving diffeomorphisms.

We identify points with their coordinates, and write alternatively χ(y) and y′ for the image point
of y ∈ U. The differential Tyχ maps the tangentspace at y into the one at y′ and is written as ∂y′α/∂yγ.
Similarly, for the inverse χ−1 : U′ → U, the image of y′ ∈ U′ is written alternatively as χ−1(y′) and y.
For the differentials one has Ty′χ

−1 = [Tyχ]−1. In the 1+d decomposition we write χ0, χa and (χ−1)0,
(χ−1)a for the projections of χ and χ−1 onto an adapted coordinate basis and whenever unambiguous
we abbreviate those as t′, x′a and t, xa, respectively. In this notation a generic χ ∈ Diff(M) changes
both the leaves of the foliation and the coordinatization of the hypersurfaces:

t 7→ Σt is mapped into t′ 7→ Σ′t′ by t′ = χ0(t, x), x′a = χa(t, x) , (A2)

with χ0(ti, x) = ti, χ0(t f , x) = t f , so as to preserve the boundary. By the above definition two such
foliations are regarded as equivalent. However the adapted coordinates of one are not adapted to
the other.
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This is to be contrasted with the subgroup Diff({Σ}) ⊂ Diff(M) of
foliation-preserving diffeomorphisms

χ ∈ Diff({Σ}) iff t′ = χ0(t) , x′a = χa(t, x) , (A3)

with χ0(ti) = ti, χ0(t f ) = t f . This is the maximal subgroup that maps adapted coordinates of a
given foliation into each other; merely the labeling of the leaves and their coordinization changes. We
reserve the notation Diff(Σ) for the subgroup of t-independent diffeomorphisms x′a = χa(x) of the
unembedded Σ.

The diffeomorphisms in 1+d form a group under concatenation. Concatenating (t′, x′a) =

(χ0(t, x), χa(t, x)) with (t′′, x′′a) = (χ′0(t′, x′), χ′a(t′, x′)) gives (t′′, x′′a) =
(
(χ′ ◦ χ)0(t, x),

(χ′ ◦ χ)a(t, x)
)
, where

(χ′ ◦ χ)0(t, x) = χ′
0(

χ0(t, x), χa(t, x)
)

, (χ′ ◦ χ)a(t, x) = χ′
a(

χ0(t, x), χa(t, x)
)

. (A4)

The defining relations for the inverse χ−1 of χ thus are

(χ−1)0(χ0(t, x), χb(t, x)
)
= t , (χ−1)a(χ0(t, x), χb(t, x)

)
= xa . (A5)

In general the temporal or spatial component of χ−1 also depends on the spatial or temporal
component of χ. An exception are diffeomorphisms trivial in one component, (t, xa) 7→ (χ0(t, x), xa)

or (t, xa) 7→ (t, χa(t, x))) where the inverses depend only parametrically on xa or t, respectively.
Next consider the composition of the differentials. We write the differentials Tyχ and Ty′χ

−1 in
1+d block form as

∂y′α

∂yγ
=


∂t′

∂t
∂x′a

∂t
∂t′

∂xc
∂x′a

∂xc

 ,
∂yγ

∂y′α
=


∂t
∂t′

∂xc

∂t′

∂t
∂x′a

∂xc

∂x′a

 . (A6)

The chain rule Ty(χ′ ◦ χ) = Tχ(y)χ
′ Tyχ reads (∂y′′α/∂yβ) = (∂y′′α/∂y′γ)(∂y′γ/∂yβ) and

decomposes into blocks according to

∂t′′

∂t
=

∂t′′

∂t′
∂t′

∂t
+

∂t′′

∂x′c
∂x′c

∂t
,

∂x′′a

∂t
=

∂x′′a

∂t′
∂t′

∂t
+

∂x′′a

∂x′c
∂x′c

∂t
,

∂t′′

∂xb =
∂t′′

∂t′
∂t′

∂xb +
∂t′′

∂x′c
∂x′c

∂xb ,

∂x′′a

∂xb =
∂x′′a

∂t′
∂t′

∂xb +
∂x′′a

∂x′c
∂x′c

∂xb .

(A7)

As a consequence the inversion formula for the full Jacobian matrices (A6) does not project to the
blocks: ∂t′/∂t 6= (∂t/∂t′)−1, ∂x′a/∂xb 6= [(∂x/∂x′)−1]ba, etc. For the Jacobi determinant one has

det
( ∂yα

∂y′β
)
=
(∂t′

∂t

)−1
det

( ∂xa

∂x′b
)

. (A8)

This can be seen by factorizing ∂yα/∂y′β into a product of triangular matrices. The second factor
then arises from

∂t
∂t′
− ∂xc

∂t′
[( ∂x

∂x′
)−1]a

c

∂t
∂x′a

(A9)

by multiplication with ∂t′/∂t and use of a ‘swapped’ version of the chain rule (A7).
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In summary, the differentials Tyχ of a generic diffeomorphisms χ ∈ Diff(M), admits a block
decomposition whose composition is governed by the relations (A7). The advantage of this crude
decomposition is that no additional structure is required, neither a metric nor a connection. In
adapted coordinates the coordinate derivatives and differentials form an orthonormal basis, (∂/∂y0 =

∂/∂t, ∂/∂ya = ∂/∂xa), (dy0 = dt, dya = dxa), which is however scrambled even by foliation-preserving
diffeomorphisms. We shall later identify the minimal additional structure needed to set up a foliation
adapted frame.

Tensorial realization. Recall that tensor fields on a differentiable manifold carry both a left and a
right action of the diffeomorphism group. The left action is given by the generalized push-forward
χ∗, χ ∈ Diff(M), the right action is given by the generalized pull-back χ∗, χ ∈ Diff(M), and both
are inverses of each other. Conceptually, both actions should be viewed as active transformations
redistributing the fields on the manifold, whose points are (mentally) marked otherwise. As such these
are coordinate-independent notions. Of course for any tensor U, χ∗U and χ∗U can be evaluated in
some coordinate system and the components related to those of U. This gives expressions identical
in form to the familiar transformation laws under passive coordinate transformations. It suffices to
display the formulas for mixed (1

1) tensors, as the generalization to (s
r) tensors is obvious. For the

generalized push-forward one has

(χ∗U)
β
α(χ(y)) = [Tyχ]

β
γ [Tyχ]−1δ

α
Uγ

δ (y) =
∂χβ(y)

∂yγ

∂(χ−1)δ(y′)
∂y′α

∣∣∣
y′=χ(y)

Uγ
δ (y) . (A10)

With respect to composition this is a left action

χ∗2 ◦ χ∗1 = (χ2 ◦ χ1)
∗ , (A11)

which we identify with the tensorial realization of the Diffeomorphism groups, πT(χ)U = χ∗U,
χ ∈ Diff(M). For the generalized pull-back one has

(χ∗U)
β
α(y) = [Tyχ]−1β

γ
[Tyχ]δα Uγ

δ (χ(y)) =
∂(χ−1)β(y′)

∂y′γ
∣∣∣
y′=χ(y)

∂χδ(y)
∂yα

Uγ
δ (χ(y)) , (A12)

and for the composition
(χ1)∗ ◦ (χ2)∗ = (χ2 ◦ χ1)∗ , (A13)

which is a right action. The composition laws reflect the chain rule for the differentials. For
completeness we also note the infinitesmal versions. If χα = yα − ξα(y) + O(ξ2),

(χ∗U)
β
α(χ(y)) = Uβ

α (y) + (LξU)
β
α(y) + O(ξ2) ,

(χ∗U)
β
α(x) = Uβ

α (y)− (LξU)
β
α(y) + O(ξ2) .

(A14)

The vector space of type (s
s) tensor fields on M can be given the structure of an algebra, Tensor(M),

with multiplication declared by pointwise multiplication of the components. The generalized
push-forward and pull-back then define automorphisms of Tensor(M) which commute with
contractions. Schematically,

χ∗, χ∗ ∈ Aut Tensor(M) for all χ ∈ Diff(M) . (A15)

This tensorial realization of the Diffeomorphism group is so predominant that it is hard to imagine
other, remotely natural possibilities. These do exist, however.

Foliation-adapted frame without metric. Recall from (A3) the definition of the
foliation-preserving subgroup Diff({Σ}) ⊂ Diff(M). Such diffeomorphisms map adapted coordinates
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of a given foliation into each other, merely the labeling and the coordinization of the leaves changes.
Nevertheless, the coordinate differentials and vector fields mix under the action of Diff({Σ}):

∂

∂t′
=

∂xa

∂t′
∂

∂xa +
∂t
∂t′

∂

∂t
,

∂

∂x′a
=

∂xb

∂x′a
∂

∂xb ,

dt′ =
∂t′

∂t
dt , dx′a =

∂x′a

∂xb dxb +
∂x′a

∂t
dt .

(A16)

One would want to have an orthonormal frame that transforms without mixing. To this end we
introduce a ‘co-connection’ Na∂/∂xa (Connections are usually defined in terms of one-forms; here
a vector field version is needed. The notation Na of course anticipates the shift of metric geometry.)
transforming according to

N′a
∂

∂x′a
=

∂t
∂t′

Na ∂

∂xa +
∂xa

∂t′
∂

∂xa ,

N′a =
∂t
∂t′
[∂x′a

∂xc Nc − ∂x′a

∂t

]
=

∂x′a

∂xc

[ ∂t
∂t′

Nc +
∂xc

∂t′
]

.

(A17)

In terms of it we define

e0 := ∂t − Na∂a , ea := dxa + Nadt . (A18)

On account of (A17) they transform without mixing under Diff({Σ}) and (dt, ea), (e0, ∂/∂xa) is
the desired orthonormal frame adapted to the given foliation:

dt′ =
∂t′

∂t
dt , e′a =

∂x′a

∂xc ec ,

e′0 =
∂t
∂t′

e0 ,
∂

∂x′a
=

∂xc

∂x′a
∂

∂xc .

(A19)

Tensor components defined with respect to this frame likewise transform without mixing of
blocks under Diff({Σ}).

Appendix A.2. Metric Geometry of the Foliation and Transformation of N, Na, gab, gab

We now assume in addition that the manifold M is equipped with a (pseudo-)Riemannian metric
gµν. For Lorentzian signature global hyperbolicity of (M, g) is the instrumental condition. It ensures
the existence of smooth time functions, the attainability of the Na = 0 gauge, and that the leaves
of the foliation are Cauchy surfaces [33]. A time function T : M → R is for εg = −1 a continuous
map which is strictly increasing on any future directed timelike or null curve. A temporal function
T : M → R is smooth with a timelike past pointing gradient dT. The gradient here is interpreted
as a one-form dT = (∂T/∂yα)dyα. Every temporal function is a time function but not vice versa.
Importantly, any globally hyperbolic spacetime admits a temporal function such that any level surface
Σt = {y ∈ M | T(y) = t} is a Cauchy surface [33]. The terminology notwithstanding, a Cauchy
surface initially only refers to the metric structure not to a system of partial differential equations:
a spacelike hypersurface Σ in (M, g) is called a Cauchy surface if any timelike or null curve without
end points intersects Σ exactly once. The simplest justification of the terminology stems from the
massive, minimally coupled free field: if Σ is a smooth Cauchy surface in the above sense with
future pointing normal vector nµ, nµgµνnν = −1, then the homogeneous wave equation has a unique
solution ϕ with initial data ϕ|Σ = f , nµ∂µ ϕ|Σ = f ′, for given smooth f , f ′ with compact support.
Since any spacetime M which admits a time function also admits a temporal function, little loss
in generality arises from restricting attention to globally hyperbolic spacetimes with the associated
temporal function. In this setting an orthonormal frame exist, called the metric frame, which block
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diagonalizes the metric. Moreover, the defining relations apply to both signatures and we retain the
(εg,+, . . . ,+), εg = ±1, convention.

Metric frame. For a fixed temporal function T and the associated foliation [ti, t f ] 3 t 7→ Σt, one
may identify T with t and write dtµ for the components of dT. In terms of them we set

gµνdtµdtν =: εgN−2 , mµ := εgN2gµνdtν . (A20)

The first equation defines the (metric) lapse N, the second defines a vector conjugate to the
temporal gradient, mµdtµ = 1. Note that N is a scalar and mµ a vector as long as T is held fixed.
Further mµ∂µ has unit coefficient along ∂t and

e0 := mµ∂µ =: ∂t − Na∂a , (A21)

defines the (metric) shift Na. In terms of it one can introduce an orthonormal frame, dubbed the metric
frame via

e0 = ∂t − Na∂a = mµ ∂
∂yµ , ∂a = ∂

µ
a

∂
∂yµ ,

dt = dtµdyµ , ea = dxa + Nadt = ea
µdyµ .

(A22)

The component fields can be described in terms of the imbedding relations as (A1)

dtµ =
∂t

∂yµ , mµ =
∂yµ

∂t
− Na ∂yµ

∂xa , (A23a)

∂
µ
a =

∂yµ

∂xa , ea
µ =

∂xa

∂yµ + Na ∂t
∂yµ , (A23b)

where t(y) is the given temporal function and xa(y) is defined by the implicit function theorem. As
long as the coordinate functions t : M → R and xa : M → Rd are kept fixed the description is
independent of the choice of coordinates yµ. Completeness can be expressed as

dyµ = mµdt + ∂
µ
a ea , ∂µ = dtµ e0 + ea

µ∂a . (A24)

The pairing of one-forms and vector fields provides one notion of orthonormality: dt(e0) = 1,
dt(∂a) = 0, ea(∂b) = δa

b , ea(e0) = 0.
In addition, there is a metric notion of orthonormality. In order to formulate it, the projector

tangential to the leaves of the foliation is defined by

Σ ν
µ := δν

µ − dtµ mν . (A25)

Correspondingly, δν
µ−Σν

µ projects in the direction transversal to the leaves of the foliation. We
write gαβ := Σ µ

α Σ ν
β gµν for the induced metric on Σt. It has rank d and we write gab for the intrinsic

metric on Σt and gab for its inverse. For a fixed temporal function in addition to N, Na also gab is a
scalar. Since mαΣ µ

α = 0, the natural derivative transversal to the leaves of the foliation is Lm = ∂t−L~N ,
where L~N is the d-dimensional Lie derivative in the direction of Na. When acting on scalars e0 = mµ∂µ,
as in (A21). The tangential derivatives acting on scalars are ea

µ∂a = Σ ν
µ ∂ν = ∂µ − dtµe0, ∂a = ∂

µ
a ∂µ,

where the coefficient matrices ∂
µ
a and ea

µ from (A22) reoccur. They are such that

∂
µ
a eb

µ = δb
a , Σ ν

µ = ea
µ ∂ν

a ,

gab∂
µ
b = gµν ea

ν , gµν ∂
µ
a mν = 0 = gµνea

µ dtν ,
(A26)

which express the metric-orthogonality and completeness of the component fields.
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By (A20), (A25) and (A26) the metric and its inverse take the block diagonal form

gµν(y)dyµdyν = εgN2dt2 + gab(Nadt + dxa)(Nbdt + dxb) ,

gµν(y) ∂
∂yµ

∂
∂yν = εgN−2(∂t − Na∂a)2 + gab∂a∂b ,

(A27)

and det g = εgN2 det g. In components

gµν = εgN2dtµdtν + gabea
µeb

ν ,

gµν = εgN−2mµmν + gab∂
µ
a ∂ν

b . (A28)

The metric frame (A22) has been introduced without directly invoking the lapse. For symmetries’
sake often

nµ := εgNdtµ , nµ := N−1mµ , (A29)

are used in the literature; all of the above relations can trivially be rewritten in terms of nµ, nµ; in
particular δν

µ = Σν
µ + εgnµnν. They retain the property of being vorticity free

Σρ
µΣσ

ν (∂ρnσ − ∂σnρ) = 0 , (A30)

expressing the existence of an underlying temporal function. More general ‘fluid foliations’ exist
where (A29) is replaced by a time like (co-)vector field uµ, uµ, with uµuµ = εg, for which the vorticity
is nonzero.

Tensorially induced N, Na, gab, gab transformations. Next, we consider transition to a different
but equivalent foliation. By definition the leaves of the new foliation are then related to those of the
original one by a diffeomorphism that changes the temporal function to t′ = χ0(t, x), see (A2). Note that
in the context of (A30) this ensures that vorticity-free foliations are mapped into each other. The metric
tensor will transform as g′µν = (πT(χ)g)µν = (χ∗g)µν, where the block decomposition (A6) of the
differential can be inserted. This gives rise to expressions for g′00, g′0a, g′ab in the new (t′, x′a) coordinates
in terms of g00, g0a, gab referring to the old (t, xa) coordinates. By inserting the parameterization (A28)
on both sides one can obtain the transformation law relating N′, N′a, g′ab to N, Na, gab. A more elegant
route is via the transformation laws of the above orthonormal frame. We use

εgN−2 = ǧ(dt, dt) , gab = g(∂a, ∂b) ,

εgN−2Na = ǧ(dt, ea − Nadt) , Nbgba = g(∂a, e0 + Nb∂b) ,
(A31)

where g and ǧ refer to the (2
0) and (0

2) tensor fields in (A27). Inserting the block form (A6) of the
Jacobian matrices one finds for the vector fields and 1-forms defining the foliation

e′0 + N′c∂′c=
∂t
∂t′

e0 +
(∂xc

∂t′
+

∂t
∂t′

Nc
)

∂c . (A32a)

∂′a=
∂t

∂x′a
e0 +

( ∂xc

∂x′a
+

∂t
∂x′a

Nc
)

∂c , (A32b)

dt′=
∂t′

∂xc ec +
(∂t′

∂t
− ∂t′

∂xc Nc
)

dt , (A32c)

e′a − dt′N′a=
∂x′a

∂xc ec +
(∂x′a

∂t
− ∂x′a

∂xc Nc
)

dt . (A32d)

Here and later on (un-)primed objects are evaluated at points with (un-)primed coordinates.
Initially, (A32) is just the chain rule for ∂/∂x′a, dt′, dx′a, ∂/∂t′, respectively, and only refers to the
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metric-independent foliations from Appendix A.1. The tautologies arising by adding and subtracting
suitable Na-dependent terms on either side then acquire an interpretation independent of the
coordinates chosen on M. They describe the reshuffling of the 1-forms and vector fields under a generic
change of the metric compatible foliation from t 7→ Σt to t′ 7→ Σ′t′ , where t′ = χ0(t, x), x′a = χa(t, x)
with inverses t = (χ−1)0(t′, x′), xa = (χ−1)a(t′, x′) defined by (A5).

From (A32) one obtains straightforwardly expressions for the metric components in the new
foliation. We first present the results and then comment on the derivation:

N′=
1√

εg
∂t′

∂xc
∂t′

∂xd gcd +
(∂t′

∂t
− ∂t′

∂xc Nc
)2

N−2

, (A33a)

N′a=−

[∂x′a

∂xd
∂t′

∂xc gcd +
(∂x′a

∂t
− ∂x′a

∂xd Nd
)(∂t′

∂t
− ∂t′

∂xc Nc
)

εgN−2
]

∂t′

∂xc
∂t′

∂xd gcd +
(∂t′

∂t
− ∂t′

∂xc Nc
)2

εgN−2
, (A33b)

g′ab=
∂t

∂x′a
∂t

∂x′b
εgN2 +

( ∂xc

∂x′a
+

∂t
∂x′a

Nc
)( ∂xd

∂x′b
+

∂t
∂x′b

Nd
)

gcd . (A33c)

The arguments on the left hand side are (t′, x′) as usual, those on the left hand side are (t, x). We
have not been able to locate these formulas in the literature. The linearization of (A33) is discussed at
the end of this section. Often we regard n = N/

√
g rather than the lapse itself as basic, so we also note

n′ =
n
∣∣∣∂t′

∂t

∣∣∣∣∣∣det
( ∂xa

∂x′b
)∣∣∣ ∣∣∣εgN2 ∂t′

∂xc
∂t′

∂xd gcd +
(∂t′

∂t
− ∂t′

∂xc Nc
)2∣∣∣ . (A34)

For the derivation we proceed from bottom to top using (A31). From (A32b) one gets directly the
expression for g′ab in (A33c). Similarly (A32c) gives (A33a) via

εgN′−2
=

∂t′

∂xc
∂t′

∂xd gcd +
(∂t′

∂t
− ∂t′

∂xc Nc
)2

εgN−2 . (A35)

From (A32c), (A32d) and (A32a), (A32b) one finds, respectively

−εgN′−2N′a =
∂x′a

∂xd
∂t′

∂xc gcd +
(∂x′a

∂t
− ∂x′a

∂xd Nd
)(∂t′

∂t
− ∂t′

∂xc Nc
)

εgN−2 ,

2exN′bg′ba =
∂t
∂t′

∂t
∂x′a

εgN2 +
(∂xc

∂t′
+ ∂t

∂t′ N
c
)( ∂xd

∂x′a
+ ∂t

∂x′a Nd
)

gcd .
(A36)

These can be combined to (A33b). Consistency requires that upon contracting (A33b) with g′ab
using (A33a) one should recover the right hand side of the second equation in (A36). Using the
orthogonality and completeness relations entailed by Ty′χ

−1 = [Tyχ]−1 and (A6) this can indeed be
verified. Finally, the transformation law for n = N/

√
g. can be inferred from det g = εgN2 det g,

det g′ = [det(∂yα/∂y′β)]2 det g, the Jacobian formula (A8), and the known transformation law for N2.
The result is (A34).

We add several comments:
(i) The transformation laws (A33) are tensorially induced in the sense that they express the

g′µν = (πT(χ)g)µν = (χ∗g)µν, transformation law in terms the constituent fields N, Na, gab. As a
consequence they must form group upon iteration

πT(χ2) ◦ πT(χ1) = πT(χ2 ◦ χ1) on N, Na, gab . (A37)
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This also justifies the slight abuse of notation, writing πT(χ)(N), for N′, etc. The group property
can be verified by direct albeit tedious computation. It holds for generic (boundary-preserving)
spacetime diffeomorphisms χ1, χ2 ∈ Diff(M), not just for the foliation-preserving subgroup.

(ii) For later reference we note the analogous transformation law for the inverse of the
spatial metric

g′ab =
1

∂t′

∂xc
∂t′

∂xd gcd +
(∂t′

∂t
− ∂t′

∂xc Nc
)2

εgN−2

{(
gcdge f − gdegc f

)∂x′a

∂xd
∂x′b

∂xc
∂t′

∂xe
∂t′

∂x f

+ εgN−2gcd
[(∂t′

∂t
− ∂t′

∂xe Ne
)∂x′a

∂xd −
∂t′

∂xd

(∂x′a

∂t
− ∂x′a

∂xe Ne
)]

×
[(∂t′

∂t
− ∂t′

xe Ne
)∂x′b

∂xc −
∂t′

∂xc

(∂x′b

∂t
− ∂x′b

∂xe Ne
)]}

.

(A38)

This can be obtained starting from

g′ab
= εgN−2

(∂x′a

∂t
− ∂x′a

∂xc Nc
)(∂x′b

∂t
− ∂x′b

∂xd Nd
)
+

∂x′a

∂xd
∂x′b

∂xc gcd , (A39)

identifying the left hand side with g′ab + εgN′−2N′aN′b, and inserting (A33b) and (A35). An alternative
expression for g′ab is presented in (A51) below.

(iii) The transformation laws (A33) refer to different temporal functions. The interplay with the
scalar transformation law arsing when the temporal function is held fixed can be illustrated with the
first relation in (A20). Expanding gµνdtµdtν in a different coordinate system on M while keeping t
fixed gives

g′00
( ∂t

∂t′
)2

+ 2g′a0 ∂t
∂t′

∂t
∂x′a

+ g′ab ∂t
∂x′a

∂t
∂x′b

. (A40)

Each of the g′00, g′a0, g′ab, then transforms nontrivially. For example, g′00 = εgN′−2, as in (A35),
and g′ab as in (A39). The sum in (A40) however just reproduces εgN−2. The same applies to Na

and gab.
(iv) A considerable simplification of (A33) occurs for foliation-preserving diffeomorphisms (A3).

We note

χ ∈ Diff({Σ}) iff
∂t′

∂xa = 0 =
∂t

∂x′a
, (A41)

but in general ∂x′a/∂t 6= 0, ∂xa/∂t′ 6= 0. Either one of the conditions in (A41) implies the other. For
χ ∈ Diff({Σ}) its temporal component χ0 = χ0(t) is a function of t only which subject to the boundary
conditions χ0(t1) = t1, χ0(t2) = t2, is uniquely determined by ∂2χ0/∂2t. One readily checks that the
frame (A24) transforms without mixing under Diff({Σ}) as in (A19). For the metric constituents one
has for χ ∈ Diff({Σ})

N′ = ∂t′
∂t N ,

N′a =
∂t
∂t′
[∂x′a

∂xc Nc − ∂x′a

∂t

]
=

∂x′a

∂xc

[ ∂t
∂t′

Nc +
∂xc

∂t′
]

,

g′ab =
∂xc

∂x′a
∂xd

∂x′b
gcd .

(A42)

Not incidentally the transformation law of Na matches that in (A18); the spatial metric and the
lapse are however not needed to set up the foliation-adapted frame.
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Invariance of 1+d action. Recall the 1+d form of the Lagrangian pure gravity action

SL∣∣
grav =

1
2κ

∫ t f

ti

dt
∫

Σ
dx
{ 1

4n
e0(gab)G(g)ab,cde0(gcd)− εgng[R(g)− 2Λ]

}
. (A43)

Here we take the lapse density n = N/
√

g as basic, the shift is hidden in e0 = ∂t − L~N ,
where L~N is the spatial Lie derivative. Further 2Gab,cd = gacgbd + gadgbc − 2gabgcd and εg ∈ {±1}
distinguishes Lorentzian from Euclidean signature. The action (A43) is by construction invariant under
(A33). This is manifest for the foliation-preserving subgroup; for the full induced transformation
group (A33) and (A38) the invariance of SL is computationally highly nontrivial. It can however be
readily verified for the linearized transformations (A45) below.

The linearized transformations (A33) are obtained as follows. We write

t′ = t− ξ0(t, x) t = t′ + ξ0(t′, x′)
x′a = xa − ξa(t, x) xa = x′a + ξa(t′, x′) ,

(A44)

and expand the transformation laws to linear order in ξ0, ξa. Writing N′ = N + δξ N, N′a = Na + δξ Na,
g′ab = gab + δξgab, one finds

δξ N=ξρ∂ρN + N∂0ξ0 − NNa∂aξ0

=(∂0 − Na∂a)(ξ
0N) + (ξa + ξ0Na)∂aN , (A45a)

δξ Na=ξρ∂ρNa + ∂0ξa + Na∂0ξ0 − Nb∂bξa + ∂bξ0(εgN2gab − NaNb)

=∂0(ξ
a + ξ0Na) + (L~ξ+ξ0~N

~N)a + εgN2gab∂bξ0 , (A45b)

δξgab=(Lξ g)ab = ξ0∂0gab + Nc(gcb∂aξ0 + gca∂bξ0) + L~ξgab

=ξ0(∂0 −L~N)gab + L~ξ+ξ0~Ngab . (A45c)

In particular, δξ ln
√

g = ξ0∂0 ln
√

g + Na∂aξ0 + L~ξ ln
√

g.
In the same convention (A44) the spacetime metric is transformed by a 1 + d dimensional Lie

derivative term g′αβ = gαβ + Lξ gαβ. To read off the induced variations of the component fields
N′ = N + δξ N, N′a = Na + δξ Na, g′ab = gab + δξgab, the Lie derivative of the inverse is more convenient.
Matching Lξ gαβ = ξρ∂ρgαβ− ∂ρξαgρβ− ∂ρξβgρα against gαβ∂α∂β = εgN−2∂2

t − 2εgN−2Na∂a∂t + (gab +

εgN−2NaNb)∂a∂b, one recovers (A45). The linearization of (A33) thus indeed corresponds to a the
action of an infinitesimal spacetime diffeomorphism by Lie derivative.

Intertwining relations for metric frame. The invariance of the action (A43) only hinges on
the transformation formulas (A33) and (A38). The underlying tensorial transformation law for the
spacetime metric is no longer directly relevant. Further, εgN2, gab and εgN−2, gab can be seen as
the components with respect to the orthonormal frame (e0, ∂a), (dt, ea), which itself depends on Na.
One would therefore expect that the transition from the standard tensorial transformation law to the
induced one (A33) can be coded by the intertwining relations of the orthonormal frame’s components
itself. This is indeed the case. Moreover the same intertwining relations can be used to infer the
nonlinear transformation law of the projected components of any other tensor. The treatments in the
literature usually restrict attention to foliation-preserving diffeomorphisms, where by construction no
mixing of the projected blocks occurs, and the transformations remain (multi-)linear.

In order to derive the intertwining relations for the orthonormal frame (e0, ∂a), (dt, ea), we
return to we return to (A32) and expand each frame field in a general spacetime coordinate basis:
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e0 = mµ ∂/∂yµ, ∂a = ∂
µ
a ∂/∂yµ, dt = dtµdyµ, ea = ea

µdyµ. Then ((A32b) and (A32c)) directly convert
into ((A48b) and (A48c)) below. For the other two relations the nontrivial transformation of Na in (A33)
needs to be taken into account. From (A32a) one finds

e′0 =
De0 + εgN2 ∂t′

∂xa gab∂b

D2 + εgN2 ∂t′

∂xc
∂t′

∂xd gcd
, D :=

∂t′

∂t
− Nc ∂t′

∂xc . (A46)

Note that e′0(t
′) = 1 = e0(t). Similarly, (A32d) converts to

e′a = Xa
b

[
eb − εgN2gbc ∂t′

∂xc

Ddt +
∂t′

∂xd ed

D2 + εgN2 ∂t′

∂xc
∂t′

∂xd gcd

]
,

Xa
b :=

∂x′a

∂xb −
∂t′

∂xb

∂x′a

∂t
− ∂x′a

∂xd Nd

∂t′

∂t
− ∂t′

∂xc Nc
.

(A47)

From here the transformation laws for the components mµ, ea
µ readily follow.

In summary, the intertwining relations for the components of the (e0, ∂a), (dt, ea) orthonormal
frame read:

m′µ=
Dmν + εgN2 ∂t′

∂xa gab∂ν
b

D2 + εgN2 ∂t′

∂xc
∂t′

∂xd gcd

∂y′µ

∂yν
, (A48a)

(∂′a)
µ=
[( ∂xb

∂x′a
+

∂t
∂x′a

Nb
)

∂ν
b +

∂t
∂x′a

mν
] ∂y′µ

∂yν
, (A48b)

(dt′)µ=
[

Ddtν +
∂t′

∂xa ea
ν

] ∂yν

∂y′µ
, (A48c)

e′aµ=Xa
b

[
eb

ν − εgN2gbc ∂t′

∂xc

Ddtν +
∂t′

∂xd ed
ν

D2 + εgN2 ∂t′

∂xc
∂t′

∂xd gcd

]
∂yν

∂y′µ
. (A48d)

As a check, one may verify that the orthonormality relations are preserved:

m′µdt′µ = 1 , (∂′a)
µe′bµ = δb

a , (∂′a)
µdt′µ = 0 , m′µe′aµ = 0 . (A49)

Moreover, only two of the four relations in (A48) are independent, the others can be obtained by
moving indices with the spacetime metric

m′µ = εgN′2g′µν
(dt′)ν , g′ab

∂′
µ
b = g′µνe′aν . (A50)
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This ensures that also the metric orthonormality relations are preserved. In verifying the second
relation in (A50) the following alternative expression for g′ab is useful

g′ab
= Xa

c Xb
d

[
gcd −

εgN2gce ∂t′

∂xe gd f ∂t′

∂x f

D2 + εgN2 ∂t′

∂xe
∂t′

∂x f ge f

]
. (A51)

The advantage of coding the transition between the tensorial action of Diff(M) and the induced
one in terms of the intertwining relations (A48) is that they apply to tensors other than the metric
as well. For the sake of illustration, consider the projected components v̌ := nµVµ = εgNdtµVµ,
v̌a := ea

µVµ of a vector Vµ∂/∂yµ. Then

v̌′ = v + εg
N
D

∂t′

∂xa v̌a ,

v̌′a = Xa
b

[
v̌b − Ngbc ∂t′

∂xc

Dv̌ + εgN
∂t′

∂xd v̌d

D2 + εgN2 ∂t′

∂xc
∂t′

∂xd gcd

]
.

(A52)

Similarly, the projected components v := nµVµ = N−1mµVµ, va := ∂
µ
a Vµ of a covector Vµdyµ

transform according to

v′ =
D2v + εgND

∂t′

∂xd gcdvd

D2 + εgN2 ∂t′

∂xc
∂t′

∂xd gcd

v′a =
( ∂xb

∂x′a
+

∂t
∂x′a

Nb
)

vb + N
∂t

∂x′a
v .

(A53)

Note that the transformation laws (A52) and (A53) are linear in the components (v̌, v̌a) and (v, va)

but nonlinear in N, gab.
The extension to tensors of arbitrary type is straightforward. Given a type (s

r) tensor Uν1 ...
µ1 ... on

M its components transversal and tangential to the leaves of the foliation are defined by nν1 nµ1Uν1 ...
µ1 ...,

etc., eb1
ν1 nµ1Uν1 ...

µ1 ..., etc., nν1 ∂
µ1
a1 Uν1 ...

µ1 ..., etc., eb1
ν1 ∂

µ1
a1 Uν1 ...

µ1 ..., etc. In total these are 2r+s-independent blocks if
the original tensor had no symmetries, otherwise a smaller number of nonredundant blocks arises.
There is a completeness relation that allows one to express the original tensor in term of these blocks.
Starting from Uν1 ...

µ1 ... = δ
ρ1
µ1 δν1

σ1 Uσ1 ...
ρ1 ... and inserting the basic completeness relation δν

µ = Σν
µ + εgnµnν.

Upon factorization of Σν
µ = ∂a

µeν
a this produces the desired expansion:

Uν1 ...
µ1 ... = nµ1 nν1

(
nσ1 nρ1Uσ1 ...

ρ1 ...
)
+ εgnµ1 eν1

b
(
∂b

σ1
nρ1Uσ1 ...

ρ1 ...
)

+ εgnν1 ∂a
µ1

(
eρ1

a nσ1Uσ1 ...
ρ1 ...
)
+ ∂a

µ1
eν1

b
(
eρ1

a ∂b
σ1

Uσ1 ...
ρ1 ...
)

.
(A54)

Clearly, each projected block carries only spatial indices, at most r lower and at most s upper
ones. We combine these spatial indices into a multi-index A. Each multiplet uA, A = 1, . . . , |U| ≤ 2r+s

transforms multilinearly within itself under foliation-preserving diffemorphisms. Under the action
of a generic diffeomorphism the blocks will however mix and the mixing pattern can be obtained
straightforwardly from the intertwining relations (A48). Alternatively, one can model Uν1 ...

µ1 ... as a
tensor product of covectors and vectors. The projected components of the tensor product are then
expressed in terms of the components of the (co-)vectors and the transformation law can be obtained
from (A52) and (A53). It follows that the transformation laws are always linear in the projected
components uA of the tensor, while N, Na, gab may enter nonlinearly.
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Appendix A.3. Gauge Variations of Projected Tensor Components

For many purposes it suffices to restrict attention to infinitesimal diffeomorphism. We
parameterize them as in (A44) and trade (ξ0, ξa) for the alternative descriptors ε0 = Nξ0, εa =

ξa + Naξ0. For example, the linearized transformation law of a scalar fields φ then reads δεφ =

(ε0/N)e0(φ) + L~εφ. For a type (s
r) tensor U the blocks in the metric frame uA will however mix under

generic infinitesimal diffeomorphisms. The crucial property of the projected blocks is that they do not
mix under foliation-preserving infinitesimal diffeomorphisms:

δεu =
ε0

N
e0(u) + L~ε u if ∂a

( ε0

N

)
= 0 . (A55)

for each u = uA, A = 1, . . . , |U|. The mixing will solely occur through terms proportional to ∂a(ε0/N).
For an arbitrary type (s

r) tensor the response under a generic infinitesimal diffeomorphism
yµ 7→ yµ − ξµ(y) +O(ξ2), is given by Lie derivative, Uν1 ...

µ1 ... 7→ Uν1 ...
µ1 ... + (LξU)ν1 ...

µ1 .... So, in order to derive
the mixing pattern one might be tempted to simply apply the projection formalism for Lie derivatives
to the metric frame. That is, the projected components of (LξU)ν1 ...

µ1 ... are expressed in terms of the
projected components of Uν1 ...

µ1 ... and ξµ, where the structure functions of the frame enter. The projected
components of ξµ are indeed the above (ε0, εa), but the projected Lie derivative has in general no simple
relation to the δεuA aimed at. The reason is that the nµ, nµ used in the projection do not transform
tensorially when the temporal function is changed, δξ nµ 6= Lξ nµ, etc. This in turn originates from the
unusual gauge variations of lapse and shift in (A45). The N, Na-dependent projected components will
respond to δξ N, δξ Na in a way that falls outside the scope of the projected Lie derivative formalism.
The correct way to proceed is to interpret (δξU)ν1 ...

µ1 ... as (LξU)ν1 ...
µ1 ... in a coordinate basis, and to use

δξ N, δξ Na from (A45) to compute the gauge variations of the projected components. Since the metric
now also co-determines the foliation we initially take Uν1 ...

µ1 ... to be a metric-independent tensor, arising
for example from matter fields and Lie derivatives. This restriction will be lifted in a second step.

In adapted coordinates the δξ = Lξ identification gives for a vector Vµ = (V0, Va) and a covector
Vµ = (V0, Va)

δξV0 = ξ0∂0V0 + ξc∂cV0 − ∂0ξ0V0 − ∂cξ0Vc ,

δξVa = ξ0∂0Va − ∂0ξaV0 + L~ξVa ,

δξV0 = ξ0∂0V0 + ξc∂cV0 + ∂0ξ0V0 + ∂0ξcVc ,

δξVa = ξ0∂0Va + ∂aξ0V0 + L~ξVa .

(A56)

Here δξV0 := (LξV)0, etc., and L~ξ is the intrinsic d-dimensional Lie derivative. The counterparts
for higher rank tensors can be anticipated by forming tensor products, VµWν + VνWµ, etc. Next, we
form the projected components

v̌ := nµVµ = εgNV0 ,

v̌a := e a
µ Vµ = Va + NaV0 ,

v := nµVµ = N−1(V0 − NaVa) ,

va := ∂
µ

a Vµ = Va .

(A57)

In each case the rightmost expression refers to adapted coordinates, using nµ = εgNδ0
µ, nµ =

N−1(δ
µ
0 − δ

µ
a Na), e a

µ = δa
µ + δ0

µNa, ∂
µ
a = δ

µ
a Na, Σ µ

a = δ
µ
a . The completeness relation is generates as

in (A54) and reads
Vµ = εgnµv + ea

µ va , Vµ = εgnµv̌ + ∂
µ
a v̌a . (A58)
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Combining (A56) with the lapse and shift transformation (A45) one readily computes the
transformations of the projected components (A57). The result is best expressed in terms of ε0 := Nξ0

and εa := ξa + Naξ0. One finds

δεv̌ = ε0

N e0(v̌) + L~εv̌− εgN∂b

(
ε0

N

)
v̌b ,

δεv̌a = ε0

N e0(v̌a) + L~εv̌a + N∂b

(
ε0

N

)
gbav̌ ,

δεv = ε0

N e0(v) + L~εv− εgN∂a

(
ε0

N

)
gabvb ,

δεva = ε0

N e0(va) + L~εva + N∂a

(
ε0

N

)
v .

(A59)

We add some remarks: (i) The variations (A59) are the linearized forms of (A52) and (A53). In
contrast to (A56) the transformation laws (A59) explicitly depend on the spatial metric. The latter
enters through the shift dependence of the projectors and the formula for δξ Na from (A45b). (ii) The
transformation laws (A59) are consistent with contractions: VµWµ = εgv̌w + v̌awa must transform
like a scalar, and it does based on (A59). (iii) As noted after (A20) and (A29) the foliation descriptor
nµ transforms like a vector as long as the temporal function T is held fixed. This is not the case in
the setting underlying (A56), so δξ nµ 6= Lξ nµ. As a consequence v = εg, va = 0 is not a consistent
specialization of (A59). On the other hand, based on the induced gauge variation of N in (A45), the
zero-vorticity property of nµ = εgNδ0

µ should be preserved. In view of δεnµ = (N−1δεN)nµ, this is
indeed the case.

The results for higher rank tensors can be obtained from (A59) by taking tensor products. This
follows from the corresponding property of the Lie derivative and the induced δξ variations of the
nonaligned components generalizing (A56). Since the Lie derivative commutes with contractions the
resulting δε variations of the projected components will also be compatible with contractions. Further,
as long as the initial tensor U is metric-independent, the spatial metric gab will enter the transformation
formulas only through δεNa and hence through the inverse, see (A45).

For later reference we note the explicit formulas for the projections of (symmetric) second rank
tensors of contravariant, mixed, and covariant type, Tµν, T ν

µ , and Tµν, respectively. We begin with a
symmetric Tµν and note the projections

τ̌ := nνnνTµν = N2T00

τ̌a := ea
µnνTµν = εgN(T0a + NaT00) ,

τ̌ab := ea
µeb

νTµν = Tab + T0aNb + T0bNa + NaNbT00 .

(A60)

This is such that
Tµν = nµnν τ̌ + εgnµ∂ν

b τ̌b + εgnν∂
µ
a τ̌a + ∂

µ
a ∂ν

b τ̌ab . (A61)

One finds

δετ̌ = ε0

N e0(τ̌) + L~ετ̌ − 2εgN∂a

(
ε0

N

)
τ̌a ,

δετ̌a = ε0

N e0(τ̌
a) + L~ετ̌a − εgN∂b

(
ε0

N

)
τ̌ba + N∂b

(
ε0

N

)
gbaτ̌ ,

δετ̌ab = ε0

N e0(τ̌
ab) + L~ετ̌ab + N∂c

(
ε0

N

)
(gcaτ̌b + gcbτ̌a) ,

(A62)
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For a mixed tensor Tν
µ the independent blocks are

t := nνnµ Tν
µ = εg

(
T 0

0 − NaT 0
a
)

,

ťa := ea
νnµTν

µ = N−1(Ta
0 − NcTa

c + NaT0
0 − NaNcT0

c
)

,

ta := ∂
µ
a nνTν

µ = εgNT 0
a ,

tb
a := ∂

µ
a eb

νTν
µ = Tb

a + T0
a Nb .

(A63)

These are such that

Tν
µ = nµnν t + εgnµ∂ν

b ťb + εgnνea
µ ta + ea

µ∂ν
b tb

a . (A64)

The induced gauge variations are

δεt = ε0

N e0(t) + L~εt− εgN∂a

(
ε0

N

)
[gabtb + ťa] ,

δε ťa = ε0

N e0(ťa) + L~ε ťa + N∂b

(
ε0

N

)[
gbat− εggbcta

c
]

,

δεta = ε0

N e0(ta) + L~εta + N∂a

(
ε0

N

)
t− εgN∂b

(
ε0

N

)
tb
a ,

δεtb
a = ε0

N e0(tb
a) + L~εtb

a + N∂a

(
ε0

N

)
ťb + N∂c

(
ε0

N

)
gcbta .

(A65)

For a symmetric co-tensor Tµν we set

τ := nνnνTµν = N−2(T00 − 2NaT0a + NaNbTab
)

,

τa := ∂
µ
a nνTµν = N−1(Ta0 − NbTba) ,

τab := ∂
µ
a ∂ν

b Tµν = Tab .

(A66)

The completeness relation reads

Tµν = nµnν τ + εgnµeb
ν τb + εgnνea

µ τa + ea
µeb

ν τab . (A67)

The induced gauge variations come out as

δετ = ε0

N e0(τ) + L~ετ − 2εgN∂a

(
ε0

N

)
gabτb ,

δετa = ε0

N e0(τa) + L~ετa − εgN∂b

(
ε0

N

)
gbcτca + N∂a

(
ε0

N

)
τ ,

δετab = ε0

N e0(τab) + L~ετab + N∂a

(
ε0

N

)
τb + N∂b

(
ε0

N

)
τa .

(A68)

The results for Tν
µ are consistent with the specialization to δν

µ, resulting in εg, δb
a as the

nonzero projected components. Further, all variations are consistent with taking tensor products
and contractions.

Rank two tensors are of primary interest as they include the metric, the energy–momentum
tensor, and the gravitational field equations. The gauge transformation of the metric is given by the
Lie derivative gαβ 7→ Lξ gαβ, and the induced δξ g00, δξ ga0, δξ gab variations are equivalent to those of
N, Na, gab in (A45). Since N, Na also define the projectors via nµ, nµ a consistency condition arises
for the variation of the projectors and that of the projected metric components. The metric frame
components of the co- and contrametric are (τ = εg, τa = 0, τab = gab) and (τ̌ = εg, τ̌a = 0, τ̌ab = gab),
respectively. These are indeed consistent specializations of (A68) and (A62). They reduce to to
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δεgab = (ε0/N)e0(gab) + L~εgab and δεgab = (ε0/N)e0(gab) + L~εgab, respectively, which is indeed the
correct transformation law for the spatial metric, see (A45). As a consequence the initial restriction
to metric-independent tensors U can now be lifted. For illustration and later use we present three
examples of such gauge variations:

Gradient of a scalar. The gradient of a scalar field ∂µφ has metric frame components v =

N−1e0(φ), va = ∂aφ, and transforms according to the second set of relations in (A59). After raising an
index gµν∂νφ the metric frame components are v̌ = εge0(φ), v̌a = gab∂bφ. They transform according
to the first set of relations in (A59). Only (A45) and the basic δεφ = (ε0/N)e0(φ) + L~εφ enter
the verification.

Energy–momentum tensor. For energy–momentum tensors like the one of a self-interacting
scalar field, Tµν = ∇µφ∇νφ− (1/2)gµν∇ρφ∇ρφ− gµνU(φ), the components (A66) are traditionally
denoted by E, Pa, Sab, see, e.g., [39], where we replace the latter by by Tab. Explicitly, this gives for the
scalar field

E = 1
2

(
e0(φ)

N

)2
− εg

2 gcd∂cφ∂dφ− εgU(φ) ,

Pa = e0(φ)
N ∂aφ ,

Tab = ∂aφ∂bφ− gab[gcd∂cφ∂dφ + 2U(φ)]− εggabE .

(A69)

As an instance of (A68) one then has

δεE = ε0

N e0(E) + L~εE− 2εgN∂a

(
ε0

N

)
gabPb ,

δεPa = ε0

N e0(Pa) + L~εPa − εgN∂b

(
ε0

N

)
gbcTca + N∂a

(
ε0

N

)
E ,

δεTab = ε0

N e0(Tab) + L~εTab + N∂a

(
ε0

N

)
Pb + N∂b

(
ε0

N

)
Pa .

(A70)

This highlights that spatial homogeneity of the scalar field, Pa ≡ 0, is a
foliation-dependent condition.

Einstein tensor. The same transformation formulas also apply to the projected components of the
Einstein tensor. Recall

Gµν := Rµν −
1
2

gµν(R− 2Λ) , (A71)

where Rµν is the Ricci tensor of the spacetime metric gµν and Λ is the cosmological constant. For
a conventionally normalized energy momentum tensor Tµν then Gµν = κTµν are the gravitational
field equations, see (11). The projected components of Gµν are proportional to the scalar constraint,
the vector constraint, and the evolution equations, respectively. We define G := nµnνGµν, Gα :=
Σ µ

α nνGµν, Gαβ := Σ µ
α Σ ν

β Gµν. In terms of the variations of the 1+d pure gravity action SL|grav in (A43)
the projected components can be expressed as

G =
κ

g
δSL

δn

∣∣∣
grav

, Ga =
κ
√

g
δSL

δNa

∣∣∣
grav

, Gab = −εg
2κ

ng
δSL

δgab

∣∣∣
grav
− εggab

κ

g
δSL

δn

∣∣∣
grav

. (A72)

These projected components are again subject to the transformation law (A68). Note that a direct
verification of this fact would be exceedingly tedious. It follows that in the Lagrangian formalism
the gauge variations of the constraints G, Ga mix with the evolution equations Gab. In contrast, in the
Hamiltonian framework the (secondary) constraints close among themselves off shell. Both results are
consistent because the Hamiltonian gauge variations differ from the Lagrangian ones by an equations
of motion symmetry.
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