
symmetryS S

Article

Scheduling Randomization Protocol to Improve
Schedule Entropy for Multiprocessor Real-Time Systems

Hyeongboo Baek 1 and Chang Mook Kang 2,*
1 Department of Computer Science and Engineering, Incheon National University (INU),

Incheon 22012, Korea; hbbaek@inu.ac.kr
2 Department of Electrical Engineering, Incheon National University (INU), Incheon 22012, Korea
* Correspondence: mook@inu.ac.kr; Tel.: +82-32-835-8437

Received: 08 March 2020; Accepted: 14 April 2020; Published: 6 May 2020
����������
�������

Abstract: Because most tasks on real-time systems are conducted periodically, its execution pattern
is highly predictable. While such a property of real-time systems allows developing the strong
schedulability analysis tools providing high analytical capability, it also leads that security attackers
could analyze the predictable execution patterns of real-time systems and use them as attack surfaces.
Among the few approaches to foil such a timing-inference security attack, TaskShuffler as a schedule
randomization protocol received considerable attention owing to its simplicity and applicability.
However, the existing TaskShuffler is only applicable to uniprocessor platforms, where the task
execution pattern is quite simple to analyze when compared to multiprocessor platforms. In this study,
we propose a new schedule randomization protocol for real-time systems on symmetry multiprocessor
platforms where all processors are composed of the same architecture, which extends the existing
TaskShuffler initially designed for uniprocessor platforms.

Keywords: real-time systems, security, schedule randomization protocol, multiprocessor platforms

1. Introduction

The primary concerns in designing safe critical real-time systems are to develop a methodology
to effectively allocate limited computing resources (e.g., memory and CPU (central processing unit))
to multiple real-time tasks (e.g., motor control and sensing), and to derive a mathematical analysis
mechanism. This mechanism would ensure every operation conducted by real-time tasks are completed
within predefined time units (called deadlines) to satisfy real-time requirements [1]. The former and
latter, which are respectively referred to as real-time scheduling algorithms and schedulability analysis,
have been extensively studied over the past several decades in the field of real-time systems [2–4].

Unlike conventional research, which mostly focuses on the timing guarantees under various
computing environments with different operational constraints, recent studies have focused on the
security aspect because the modern real-time systems are exposed to unknown security attacks.
For instance, modern real-time systems are increasingly being connected to unsecured networks
such as the Internet, which allows the sophisticated adversaries to launch security attacks on UAVs
(unmanned aerial vehicles) [5], industrial control systems [6], and automobiles [7,8].

Predictability, which is a key property of real-time systems, facilitates the development of several
effective schedulability analysis mechanisms, but causes an increase in the success ratio of security
attacks because of easy timing inferences [9–11]. Because most of the real-time tasks are conducted
periodically, the execution patterns can be highly predictable, and most of the strong schedulability
analysis mechanisms such as deadline analysis (DA) [12] and response-time analysis (RTA) [13] exploit
such a property to judge whether each real-time operation can be completed within the deadline
on the target environment. Such a seemingly advantageous property plays a double-edged sword

Symmetry 2020, 12, 753; doi:10.3390/sym12050753 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-9518-3556
https://orcid.org/0000-0003-2467-2074
http://www.mdpi.com/2073-8994/12/5/753?type=check_update&version=1
http://dx.doi.org/10.3390/sym12050753
http://www.mdpi.com/journal/symmetry

Symmetry 2020, 12, 753 2 of 14

because the security attackers can analyze the predictable execution patterns of real-time systems and
use them as attack surfaces. For example, recent studies have shown that an adversary can launch
cache-based side-channel attacks by collecting information about important tasks or set up new covert
channels [9,14]. The success ratio of such attacks is quite high because the periodic execution of
real-time tasks results in repeated (based on the hyper-period of all real-time tasks on the system)
scheduling patterns. After observing the real-time task schedules on the target systems, the adversary
can predict future schedules of the system.

The main challenge in preventing such timing inference-based security attacks on real-time
systems is making the initially predictable schedule unpredictable, while simultaneously satisfying the
real-time constraint. Among the few proposed mechanisms that have been used to address the problem
of the uniprocessor system, TaskShuffler (a schedule randomization protocol) has received considerable
attention owing to its simplicity and applicability [15]. TaskShuffler exploits the notion of priority
inversion budget, defined as the time interval between the finishing time of worst-case operation and
deadline, of each task. Priority inversion budget value of each task implies that the task can complete
its execution even if the other tasks execute for the amount of worst-case inversion budget instead
of the task. Utilizing the calculated priority inversion budget value of each task, the TaskShuffler
effectively selects random tasks at each schedule point and dynamically manages the value to induce
uncertainty and satisfy the real-time constraint simultaneously.

As multiprocessor platforms have been increasingly adopted modern real-time systems to conduct
highly resource-consuming tasks, the state-of-the-art techniques need to be tailored for multiprocessor
platforms. For example, the latest embedded platforms developed for autonomous driving car
consist of multiple CPUs to execute heavy-load tasks such as multiple sensing and image processing
(e.g., NVIDIA Drive AGX Pegasus with 8-core “Carmel" CPUs based on ARM architecture) [16].
However, the existing TaskShuffler is only applicable to uniprocessor platforms, where the task
execution pattern is quite simple to analyze when compared to multiprocessor platforms.

In this study, we propose a new schedule randomization protocol for real-time systems on
symmetry multiprocessor platforms where all processors are composed of the same architecture,
which extends the existing TaskShuffler initially designed for uniprocessor platforms. To develop a
schedule randomization protocol for multiprocessor platforms, we need to address the following issues:

(i) How to define the problem of improving the security (i.e., uncertainty of schedules) of
real-time systems and satisfying the schedulability simultaneously on multiprocessor platforms,
differentiating it from the uniprocessor case (Section 2),

(ii) How to calculate the priority inversion budget value for each task on multiprocessors (Section 4.1),
(iii) How to utilize the calculated priority inversion budget values in randomized schedules effectively,

to improve uncertainty (Section 4.2), and
(iv) How to satisfy the real-time requirement after applying the proposed schedule randomization

protocol (Section 4.2).

To address point (i), we first recapitulate the underlying idea and purpose of the existing
TaskShuffler designed for the uniprocessor case. Then, we define the problem for the multiprocessor
case, which is addressed in this study. To address point (ii), we investigate each task’s surplus
computing power allowed for lower-priority tasks without missing its corresponding deadline.
To address point (iii), such lower-bound computing power is effectively utilized by the new schedule
randomization protocol proposed in this study. In addition, we demonstrate that if the task set
is schedulable with the fixed-priority (FP) preemptive scheduling, then it is schedulable with the
proposed schedule randomization protocol; this addresses point (iv). Using experimental simulations,
we then discuss various factors affecting the uncertainty of new schedules.

2. Problem Definition

TaskShuffler assumes that the attacker knows task sets’ parameters as well as scheduling policy
of the target system [15]. The attacker aims at gleaning sensitive data such as the victim task’s private

Symmetry 2020, 12, 753 3 of 14

key in shared resources such as DRAM (dynamic random access memory). Figure 1 briefly presents a
scenario where the attacker launches a cache side-channel attack exploiting the scheduling pattern of
real-time systems. The attacker first hijacks a task taskA consecutively executing with a victim task
taskV ; it assumes that taskA is relatively easy to hijack compared to taskV because taskA is not related
to the security operation. Then, the attacker fills all cache sets with taskA’s data before taskV executes.
Thereafter, taskV operates a cryptographic operation with a private key. Here, all cache sets were
already filled with taskA’ data, and thus some cache sets are replaced by taskV ’ data. Later, taskA reads
cache sets and measures the latencies. Some cache sets used by taskV result in slow latencies because
of cache misses for taskA. The attacker collects such timing information and reasons the location of the
private key in the shared memory.

taskA

taskV

taskA

1. Fill cache sets
3. Fill cache sets again
and measure latencies

2. Conduct crypto operation

time

Figure 1. Cache side-channel attack scenario.

To make such an attack scenario feasible, the attacker should monitor the execution pattern of the
target system for a long time to catch the proper timing to launch the attack. Because the same execution
pattern of real-time systems is (mostly) repeated, the success ratio of the attack would increase. Figure 2
presents the scheduling pattern of τ = {τ0(T0 = 5, C0 = 1, D0 = 5), τ1(8, 2, 8), τ2(20, 3, 20)} scheduled
by a fixed-priority scheduling (τ0 and τ2 have the highest and lowest priorities, respectively) without
(Figure 2a) and with (Figure 2b) TaskShuffler on a uniprocessor platform. It shows which task executes
in 200 time slots, and the number in each rectangle presents the task index executed at the time slot.
As shown in Figure 2a, the scheduling pattern is repeated every 40 time units because the least common
multiple of periods of tasks in τ is 40. On the other hand, the scheduling pattern is obfuscated by
TaskShuffler (most importantly) without schedulability loss (Figure 2b). That is, every task both in
Figure 2a,b completes its execution without any deadline miss. It implies that TaskShuffler could
improve potential durability against timing-inference attacks by obfuscating the scheduling pattern of
real-time systems without schedulability loss.

In this study, we aim to develop a new schedule randomization protocol for multiprocessor
platforms by extending the existing TaskShuffler initially designed for uniprocessor platforms.
To achieve this, we first recapitulate the underlying idea and purpose of the existing TaskShuffler
designed for the uniprocessor case. Then, we define the problem for the multiprocessor case, which is
addressed in this study.

The key property of real-time systems is that most of the tasks operate repetitively at
periodic intervals. This indicates that the same scheduling pattern for a certain period of time
(e.g., one hyper-period of all tasks) can be exhibited in the next period. Although such property
aids in developing better-performing analysis techniques that can easily judge the schedulability of
real-time systems, an adversary can launch timing-inference attacks by collecting information about
important tasks or set up new covert channels.

The TaskShuffler compensates for such shortcoming of real-time systems by reducing the
predictability of schedules for real-time tasks. Therefore, even if an observer can record the exact
schedule for a certain time period, the same will not be exhibited in the next period under the
TaskShuffler. The underlying idea of the existing TaskShuffler is to pick up a random task from the
ready queue, unlike most of the real-time systems where the highest priority task is selected for
scheduling. Such counterintuitive mechanisms lead to the priority inversion problem and deadline
misses, placing system safety at risk. To solve this problem, the TaskShuffler only allows limited

Symmetry 2020, 12, 753 4 of 14

priority inversion for each task. That is, it restricts the use of priority inversion so that every task meets
the original real-time constraint (i.e., meeting deadlines). To this end, it calculates the lower-bound
amount of priority inversion that each task can tolerate, using the TaskShuffler protocol. When the
priority inversion limit is reached during execution, the lower-priority task stops running, and the
highest priority task is selected to be scheduled.

0 1 1 2 2 0 2 1 1 0 0 1 1 0 2 2 2 1 0 1 0 1 1 0

0 1 1 2 2 0 2 1 1 0 0 1 1 0 2 2 2 1 0 1 0 1 1 0

0 1 1 2 2 0 2 1 1 0 0 1 1 0 2 2 2 1 0 1 0 1 1 0

0 1 1 2 2 0 2 1 1 0 0 1 1 0 2 2 2 1 0 1 0 1 1 0

0 1 1 2 2 0 2 1 1 0 0 1 1 0 2 2 2 1 0 1 0 1 1 0

40

(a) Fixed-priority scheduling

1 1 0 2 2 2 1 0 0 1 1 1 0 2 2 2 0 1 0 1 1 1 0 0

2 2 2 1 0 0 1 1 1 0 0 1 1 0 2 2 2 1 0 1 1 1 0 0

0 1 1 0 2 2 0 2 1 1 1 1 0 2 2 2 0 1 0 1 0 0 1 1

2 2 2 0 1 0 1 1 1 0 0 1 1 0 2 2 2 1 0 1 0 0 1 1

2 2 2 1 0 1 0 0 1 1 0 0 1 1 1 1 2 2 0 2 0 0 1 1

40

(b) Fixed-priority scheduling with TaskShuffler

Figure 2. Scheduling pattern of τ = {τ0(T0 = 5, C0 = 1, D0 = 5), τ1(8, 2, 8), τ2(20, 3, 20)} scheduled by
fixed-priority scheduling without and with TaskShuffler on a uniprocessor platform.

Then, the TaskShuffler achieves the following goal G.

G. Suppose that a task set τ is scheduled by a given FP scheduling algorithm S, and its schedulability
is guaranteed by a given schedulability analysis A. Then, τ’s schedulability is still guaranteed by
a given schedulability analysis A′ when it is scheduled by the FP algorithm S′ incorporating the
TaskShuffler protocol of uniprocessors.

Let λ(S) be the set of schedulable task sets scheduled by FP scheduling, and λ(A) be the set of
task sets each of whose schedulability is guaranteed by a given schedulability analysis supporting
FP scheduling. In addition, λ(S)′ denotes the set of schedulable task sets scheduled by FP scheduling
incorporating TaskShuffler, and λ(A′) is the set of task sets each of whose schedulability is guaranteed
by a given schedulability analysis supporting FP scheduling incorporating TaskShuffler. Figure 3a
shows the regions of task sets covered by λ(S), λ(A), λ(S′), and λ(A′) for uniprocessor platforms.
λ(S) = λ(A) in Figure 3a indicates a well-known fact that every schedulable task set τ ∈ λ(S)’s
schedulability is guaranteed by the given exact schedulability analysis (e.g., RTA supporting FP
scheduling) [13]. Then, the TaskShuffler targets task sets belonging to λ(A) (= λ(S)) and applies the
TaskShuffler protocol; note that task sets out of λ(A) has nothing to do with the goal G. It utilizes
a specialized schedulability analysis A′ to support the FP scheduling S′ incorporating the TaskShuffler
protocol. When A′ is conducted for each task τi ∈ τ, the lower-bound amount of priority inversion for
each task is calculated, and the TaskShuffler exploits it without compromising the schedulability of
task sets τ ∈ λ(A). Therefore, it achieves λ(S) = λ(A) = λ(A′) = λ(S′) as shown in Figure 3a.

For multiprocessor platforms, there is no exact schedulability analysis for our system model [17],
which provides λ(S) 6= λ(A) as shown in Figure 3b. Therefore, we target (λ(A) (λ(S)) in which
tasks’ schedulabiliy are guaranteed by the DA schedulability analysis and aim at achieving the goal G
on multiprocessors.

Symmetry 2020, 12, 753 5 of 14

λ(S) = λ(A)
= λ(A’) = λ(S’)

λ(S)

(a) Uniprocessor case (b) Multiprocessor case

λ(A) = λ(A’)
= λ(S’)

Figure 3. The regions covered by each technique.

3. System Model

We consider a task set τ the Liu and Layland task (and system) model (considered as the de-fecto
standard in the field of real-time scheduling theory) in which every task τk ∈ τ is scheduled by global,
preemptive and work-conserving FP real-time scheduling algorithm on m identical multiprocessors [1].
A scheduling algorithm is called global, preemptive and work-conserving if a task migrates from one
processor to another, a lower-priority task is preempted by a higher-priority one, and the processor is
never idle when there are jobs to be executed, respectively. In FP scheduling, the priority is assigned to
each task such that all jobs invoked by the same task have the same priority. The Liu and Layland model
assumes that tasks are independent, no synchronization is needed, and resources (except processors
or cores) are always available. According to the task model, we assume that all processors share
the common cache and main memory. A task τk periodically invokes a job Jk in every Tk time units,
and each job is supposed to execute for at most Ck time units (also known as the worst-case execution
time (WCET)) to declare its completion. Every job invoked by τk should complete its execution in
Dk time units as a real-time constraint. j-th job invoked by a task τk is denoted by Jj

k, and it is invoked

at the release time rj
k and should finish its execution within the absolute deadline dj

k = rj
k + Dk. We use

the notation Jk when it indicates an arbitrary job of a task τk. A job Jk is said to be schedulable when it
finishes its execution before its absolute deadline dj

k. Further, a task τk is said to be schedulable when all
jobs invoked by τk are schedulable, and a task set τ is said to be schedulable when all tasks τk ∈ τ are
schedulable. lp(τk) and hp(τk) represent the set of tasks whose priorities are lower than that of τk and that
whose priorities are higher than that of τk, respectively. We consider online scheduling algorithms and offline
schedulability analysis (in online scheduling algorithms and offline schedulability analysis, the priorities
of pending or executing jobs (i.e., scheduled by the given scheduling algorithm) are determined after the
system starts, while the schedulability of the given task set is judged before the system starts.)

4. Schedule Randomization Protocol for Multiprocessors

The key idea of our schedule randomization protocol is to select random jobs from the ready
queue rather than the originally prioritized ones that are supposed to be selected by a given algorithm.
This operation inevitably causes priority inversions for some tasks, which can induce an additional
execution delay when compared to the existing schedule. This can result in a deadline miss in the
worst case, even if the task is deemed schedulable by a given schedulability analysis. To avoid such
situations, we should employ bounded priority inversions (calculated by the schedule randomization
protocol) so that every task completes its execution before its corresponding deadline.

In this section, we first calculate the upper bound of allowed priority inversions for each task
(in the first subsection), and then present how to effectively utilize such calculated priority inversions
budget values in a schedule randomization protocol for multiprocessors.

4.1. Priority Inversion Budget Calculation

As an offline step of our schedule randomization protocol for multiprocessors, the maximum
number of time units that are allowed for jobs of tasks in lp(τk) to execute when a job of the task τk

Symmetry 2020, 12, 753 6 of 14

waits for another job to complete should be calculated (we use a subscript ‘k’ if the notation is related to a
task whose schedulability will be judged. We use a subscript ‘i’ if the notation is related to higher priority
tasks of τk.). We refer such time units as the priority inversion budget, Vk, which will be utilized in the
online step of randomization protocol. We define the worst-case inversion budget as follows.

Definition 1. (Priority inversion budget Vk) The priority inversion budget Vk of a task τk is defined as the
maximum amount of time units in [rk, dk) that is allowed for jobs of tasks in lp(τk) to execute while a job Jk of a
task τk waits on multiprocessors, which ensures schedulability of τk.

Thus, Vk can be lower-bound by calculating the allowable limit for delay in execution of Jk caused
by lower-priority jobs in [rk, dk) without missing deadlines. To achieve this, we exploit the underlying
mechanism of a well-known schedulability analysis called DA, which uses two notions of interference
defined as follows.

Definition 2. (Worst-case interference Ik on τk) The worst-case interference Ik on a task τk in an interval
[rk, dk) on multiprocessors is defined as the maximum cumulative length of all the intervals in which Jk is ready
to execute but cannot be scheduled because of higher-priority jobs.

Definition 3. (Worst-case interference Ik←i of τi on τk) The worst-case interference Ik←i of a task τi on a task
τk in an interval [rk, dk) on multiprocessors is defined as the maximum cumulative length of all the intervals in
which Jk is ready to execute but cannot be executed on any processor when the job Ji of the task τi is executing.

Using the definition of Ik, Vk is calculated as follows.

Vk = Dk − (Ck + Ik). (1)

For a job Jk to interfere at a time unit in [rk, dk), there are m jobs at the time unit. By the definition
of Ik←i, Ik is calculated as follows.

Ik =
∑τi∈hp(τk)

Ik←i

m
. (2)

To upper bound Ik←i, we use the concept of workload of a task τi in an interval of length `, which is
defined as the maximum amount of time units required for all jobs released from τi in the interval of
length `. As shown in Figure 4, the left-most job (called the carry-in job) of τi starts its execution at t
(i.e., the beginning of the interval) and finishes it at t + `. That is, it executes for Ci without any delay.
Thereafter, the following jobs are released and executed without any delay. By calculating the number
of jobs executing for Ci and the other jobs executing for a part of Ci, the workload of τi in an interval of
length ` (i.e., Ik←i) is calculated by [18].

Ik←i =

⌈
Dk + Di − Ci

Ti

⌉
Ci + min

(
Ci, Dk −

⌈
Dk + Di − Ci

Ti

⌉
Ti

)
. (3)

job release/deadline

𝐷𝑖

𝑇𝑖

𝐶𝑖

ℓ

𝐽𝑖
𝑗 𝐽𝑖

𝑗+1
𝐽𝑖
𝑗+2

t t+ℓ

Figure 4. The worst-case scenario in which the workload of τi is maximized in an interval of length `.

Symmetry 2020, 12, 753 7 of 14

Figure 5 illustrates the underlying idea of DA with an example in which the target task τk’s
schedulability is judged considering its four higher priority tasks τi ∈ hp(τk) on m = 3. In the interval
[rj

k, dj
k), there is only one job J j

k of τk, and there is no deadline miss if J j
k’s execution is not hindered by

more than Dk − Ck + 1. As seen in Figure 5, Ik←i can be larger than Dk − Ck + 1, and some portion of
that inevitably executes in parallel with J j

k since we assume that each job cannot execution in parallel on
more than one processor. Thus, DA limits the amount of Ik←i to Dk −Ck + 1, which refines Equation (2)
as follows.

Ik =
∑τi∈hp(τk)

min
(

Ik←i, Dk − Ck + 1
)

m
. (4)

job release/deadline

𝑟𝑘
𝑗

𝑑𝑘
𝑗

𝐶𝑘

𝐷𝑘

𝐷𝑘 - 𝐶𝑘 +1
𝐼𝑘←𝑖

𝑚
𝐽𝑘
𝑗

Figure 5. An example of deadline analysis (DA) for four higher-priority tasks τi and a target task τk

Theorem 1. Suppose that τk ∈ τ scheduled by a given fixed-priority scheduling algorithm is deemed
schedulable by DA, and tasks in lp(τk) do not delay τk more than Vk. Then, τk is still schedulable with
the randomization protocol.

Proof. By the definition τk is schedulable if every job J j
k released by τk at rj

k can finish its execution
within Dk. From Equation (1), we have

Ck + Ik + Vk = Dk. (5)

The worst-case execution for J j
k is upper bounded by Ck, and the time in which J j

k is hindered by
higher-priority jobs is upper bounded by Ik according to Equation (4). Therefore, if the tasks in lp(τk)

do not delay τk for more than Vk, then every job J j
k of τk can finish its execution within Dk.

4.2. Schedule Randomization Protocol

Based on the mechanism to calculate the priority inversion budget of each task τi explained in
the previous section, we illustrate how the new schedule randomization protocol for multiprocessors
operates in this section. Let Qr = (J(1), J(2), · · · , J(|Qr |)) be the ready queue in which active jobs are
sorted in decreasing order of priority. It implies that J(1) and J(|Qr |) are the highest- and lowest-priority
jobs in Qr, respectively. We assume that TaskSuffler operates only when Qr is greater than m because
all active jobs will be selected for schedule, otherwise.

The TaskSuffler for multiprocessor conducts Algorithm 1 for Qr > m at every scheduling decision.
It first adds J(1) to the candidate list, Lc (Line 1). If its remaining inversion budget v(1) is equal to zero,
then it returns J(1) and (m− 1) highest-priority jobs in Qr (Lines 2–4). Otherwise, with letting J(i) be the
job in the current iteration, it iterates the following for J(2) through J(|Qr |) (Lines 5–11). If the remaining

Symmetry 2020, 12, 753 8 of 14

inversion budget v(i) of J(i) is larger than zero, it adds J(i) to the candidate list Lc and considers the
next job (Lines 6–7). Otherwise, it adds J(i) to the candidate list Lc and stops the iteration (Lines 8–9).
Then, if |Lc| is smaller than or equal to m, it returns all jobs in Lc and (m− |Lc|) highest-priority jobs in
Qr. Otherwise, it returns randomly selected m jobs in |Lc|. After Algorithm 1 is conducted, the selected
m jobs execute until the next scheduling decision.

Algorithm 1 TaskSuffler for multiprocessors.

1: Lc ← J(1)
2: if v(1) ≤ 0 then
3: return J(1) and (m− 1) highest-priority jobs in Qr
4: end if
5: for each J(i) ∈ Qr for i from 2 to |Qr| do
6: if v(i) > 0 then
7: add J(i) to Lc
8: else
9: add J(i) to Lc and goto Step 12

10: end if
11: end for
12: if |Lc| ≤ m then
13: return all jobs in Lc and (m− Lc) highest-priority jobs in Qr
14: else
15: return randomly selected m jobs in Lc
16: end if

Let τb denote the task of the lowest-priority job among selected jobs, and τu denote the set of
tasks that were not selected. The next schedule decision is made at

t′ = t + min(vi|τi ∈ (hp(τb) ∩ τu)), (6)

unless a new job arrives or any of the selected jobs finishes its execution before t′. Thus, the remaining
inversion budget of every released job belonging to a task τi ∈ (hp(τb) ∩ τu) is deducted by one at
each time unit until the next schedule decision will be made, a new job arrives, or any of the selected
jobs finishes its execution before t′. The remaining priority inversion budget vi of each job Ji is set to Vi
when Ji is released.

Theorem 2. Suppose that τk ∈ τ scheduled by a given fixed-priority scheduling algorithm is deemed schedulable
by DA schedulability analysis, then it is still schedulable under the schedule randomization protocol.

Proof. By Theorem 1, τk is schedulable if its execution is not hindered for more than Vk by
lower-priority tasks. τk’s execution is interfered by lower-priority tasks only when τk’s priority is
lower than that of τb, and the amount of interference from lower-priority tasks cannot be larger than
Vk since the next scheduling decision is made before vk becomes zero owing to Equation (6).

To implement TaskShuffler to the existing scheduler, the system should be capable for tracking
tasks’ remaining execution times and priority inversion budgets. Such monitoring ability is already
commonly available on many real-time systems, whose aim is to guarantee that they do not exceed
their execution allowances [19,20]. Utilizing such the ability, TaskShuffler may impose additional
scheduling decisions according to the policy of TaskShuffler, compared to the vanilla scheduling
algorithms (e.g., rate monotonic). It naturally increases scheduling costs such as preemption (or context
switching) and migration costs. The system designers should consider how much such scheduling
costs will happen for their target systems when TaskShuffler is considered to improve the schedule
entropy without schedulability loss.

Symmetry 2020, 12, 753 9 of 14

4.3. Schedule Entropy for Multiprocessors

Because our goal is to improve the uncertainty in scheduling to foil the fixed schedule pattern
of real-time scheduling, we need to evaluate the improvement in the uncertainty of our proposed
schedule randomization protocol. To overcome this issue, we use the concept of schedule entropy
initially designed for a uniprocessor [21–23]. The underlying idea of schedule entropy is to measure
randomness (or unpredictability) of schedule at each time unit, called slot entropy, and derive the
summation of all slot entropies over a hyper-period L (defined as the least common multiple of Ti of all
tasks τi ∈ τ). The slot entropy Hτ(t) at a time slot t for a task set τ is calculated as follows.

Hτ(t) = − ∑
τi∈τ

Pr(τi, t)log2Pr(τi, t), (7)

where Pr(τi, t) is the probability mass function of a task τi appearing at time t. Pr(τi, t) is obtained
empirically by observing multiple hyper-periods [15]. Then, the schedule entropy Hτ is calculated by
the summation of all slot entropies over a hyper-period L as follows.

Hτ =
L−1

∑
t=0

Hτ(St). (8)

According to the considered task model, we assume that all processors share the common cache
and main memory. Then, it also implies that which processor is assigned to a task τi does not affect
the level of scheduling entropy. That is, the level of scheduling entropy is influenced by whether τi is
scheduled or not in a time slot. Such the assumption is the limitation of our study, and thus it should
be considered as potential future work.

5. Evaluation

In this section, we evaluate the performance of our schedule randomization protocol with
randomly generated synthetic task sets to understand the effect of our approach on various factors
more fully.

We randomly generated even task sets from nine system utilization groups, [0.01 + 0.1 · i, 0.09 +
0.1 · i] for i = 0, · · · , 8, that is, 100 instances per group. The system utilization of a task set is defined as
the sum of the utilizations of all tasks (∑τi∈τ(Ci/Ti)) in the task sets. We considered three different
numbers of processors m = 2, 4 and 8. Each system utilization group has five sub-groups, each of
which has a fixed number of tasks; for m = 2, 4 and 8, the number of tasks for five sub-groups are
{5, 7, 9, 11, 13}, {6, 9, 12, 15, 18} and {7, 11, 15, 19, 23}. Each task period Ti was randomly selected from
{20, 40, 80, 160, 320, 640, 1280, 2560}, and each WCET Ci was selected from min([1, 50], Ti). A total of 100
task sets were generated for each sub-group, and thus 7 · 3 · 5 · 100 = 10,500 task sets were generated in
total. As our goal is to improve the uncertainty of the schedule without compromising schedulability,
we only selected the task sets whose schedulability is guaranteed by DA schedulability. We used
rate-monotonic (RM) scheduling as our base scheduling algorithm in which our proposed schedule
randomization was applied. To obtain the converged schedule entropy of each task set, we conducted
a simulation for 10,000 hyper-periods of the task set as it ensures less than 0.01% (recommended to
obtain the converged schedule entropy [15]) of difference in schedule entropy between those from
9999 and 10,000 hyper-periods.

Figure 6 shows the plot of average schedule entropy of each sub-group’s task sets (i.e., 100 task
sets for each sub-group) over varying system utilization groups for m = 2, 4 and 8 (Due to limited
space on x-axis, [0.01 + 0.1 · i, 0.09 + 0.1 · i] for i = 0, · · · , 8 is represented as [0.0, 0.1], [0.1, 0.2], · · · ,
[0.7, 0.8], [0.8, 0.9].). As shown in Figure 6a, the schedule entropy of a task set is high on average when
it consists of a large number of tasks (System utilization group [0.8, 0.9] exhibits an exceptional result
because of heavy utilization of its task set, which result that most of the task sets exhibit zero schedule
entropy). This is because a higher number of tasks with our schedule randomization protocol possibly

Symmetry 2020, 12, 753 10 of 14

provides larger options for tasks to be randomly selected in every time slot. For example, the schedule
entropy Hτ(t) at a time slot t of a task set τ having two tasks τi ∈ τ each of whose Pr(τi, t) is 1/2 is 1,
while Hτ(t) is 2 if τ has four tasks τi ∈ τ each of whose Pr(τi, t) is 1/4. This implies that a larger number
of tasks for each task set can improve schedule entropy. In addition, Figure 6a demonstrates that task
sets included in the groups whose system utilization is low or high (e.g., [0.0, 0.1], [0.1, 0.2], [0.7, 0.8] or
[0.8, 0.9]) result in relatively low average schedule entropy while the others (e.g., [0.2, 0.3]–[0.6, 0.7])
results in high average schedule entropy. Because the task sets with low system utilization have less
WCET, no process operates (i.e., processors are idling) in most of the time slots. When it comes to high
utilization, most of the tasks have low Vi values; therefore, the chances of tasks to be randomly selected
are quite low. Therefore, a low schedule entropy results in both cases.

 0

 200

 400

 600

 800

 1000

 1200

 1400

[0.0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5] [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9]

A
v
e
ra

g
e
 s

c
h

e
d
u

le
 e

n
tr

o
p

y

Utilization

13 Tasks

11 Tasks

9 Tasks

7 Tasks

5 Tasks

(a) for m = 2

 0

 200

 400

 600

 800

 1000

 1200

 1400

[0.0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5] [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9]

A
v
e
ra

g
e
 s

c
h

e
d
u

le
 e

n
tr

o
p

y

Utilization

19 Tasks

16 Tasks

13 Tasks

10 Tasks

7 Tasks

(b) for m = 4

 0

 200

 400

 600

 800

 1000

 1200

 1400

[0.0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5] [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9]

A
v
e
ra

g
e
 s

c
h

e
d
u

le
 e

n
tr

o
p

y

Utilization

26 Tasks

22 Tasks

18 Tasks

14 Tasks

10 Tasks

(c) for m = 8

Figure 6. Average schedule entropy for m = 2, 4 and 8.

From Figure 6a–c, we can observe that the average schedule entropy of task sets decreases as
the number of processors m increases. This is mainly due to the underlying pessimism of the DA
schedulability analysis in calculating Ik in Equation (4). As Figure 5 implies, the DA schedulability
analysis assumes that the execution corresponding to Ik←i is performed as much as possible in the
interval [rj

k, rj
k + Dk−Ck + 1) to upper bound Ik. However, this does not happen in most cases since two

jobs released consecutively from the same task may execute at intervals from each other, which implies
that the amount of execution contributing to Ik is overestimated under the DA schedulability analysis.
Such pessimism of the DA schedulability analysis increases for a larger value of m. As our schedule
randomization protocol is based on the DA schedulability analysis to derive Vi, task sets with a lower
value of Vi (from a larger value of m) results in a lower average schedule entropy.

While Figure 6 presents the average schedule entropy over varying system utilization groups,
Tables 1–3 show the maximum schedule entropy obtained from each setting. As the minimum schedule
entropy of every setting is zero, Tables 1–3 also represent the range of schedule entropy that can be
obtained from each setting. “-” in the tables represents a value lower than 0.1, and we exclude rows of
the tables if all values corresponding to the row are “-”. The trends shown in Figure 6a–c also appear
in Tables 1–3, but the maximum schedule entropy of task sets in the high system utilization group
are relatively high compared to the average schedule entropy of those task sets. This indicates that
a very low number of task sets in the high system utilization group shows exceptionally high schedule
entropy from a certain task parameter setting following the considered task set generation method,
and the other task sets are with zero schedule entropies.

One may wonder whether much additional scheduling overhead is required to apply our
schedule randomization protocol into the existing scheduling algorithm. Note that the schedule
decision on preemptive scheduling algorithm (basically considered in our paper) without the schedule
randomization protocol is made only when a job finishes its execution or a new job is released.
In addition, an additional schedule decision stemming from the schedule randomization protocol is
made when vi (i.e., the remaining priority inversion budget value of Vi) of a job becomes zero. Figure 7
shows the ratio between the number of schedule decisions made by naive RM and that made by
RM with the schedule randomization protocol. As shown in Figure 7, for task sets with high system
utilization or for larger m shows less schedule decision ratio. With high system utilization or larger m,

Symmetry 2020, 12, 753 11 of 14

each task has a lower priority inversion budget as aforementioned, and the schedule randomization
protocol works rarely with such settings. Overall, a high schedule decision ratio implies a larger
scheduling overhead, and thus the system designers should carefully consider the trade-off between
scheduling overhead and the degree of security they want to achieve for their target system.

 1

 1.2

 1.4

 1.6

 1.8

 2

[0.0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5] [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9]

S
c
h

e
d
u

le
 d

e
c
is

io
n
 r

a
ti
o

Utilization

13 Tasks

11 Tasks

9 Tasks

7 Tasks

5 Tasks

(a) for m = 2

 1

 1.2

 1.4

 1.6

 1.8

 2

[0.0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5] [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9]

S
c
h

e
d
u

le
 d

e
c
is

io
n
 r

a
ti
o

Utilization

19 Tasks

16 Tasks

13 Tasks

10 Tasks

7 Tasks

(b) for m = 4

 1

 1.2

 1.4

 1.6

 1.8

 2

[0.0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5] [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9]

S
c
h

e
d
u

le
 d

e
c
is

io
n
 r

a
ti
o

Utilization

26 Tasks

22 Tasks

18 Tasks

14 Tasks

10 Tasks

(c) for m = 8

Figure 7. Schedule decision ratio for m = 2, 4 and 8.

Table 1. m = 2.

5 Tasks 7 Tasks 9 Tasks 11 Tasks 13 Tasks

[0.0, 0.1] 434.2 612.9 727.2 801.1 967.8
[0.1, 0.2] 597.0 853.8 1357.3 1575.6 1599.9
[0.2, 0.3] 930.4 1269.4 1811.5 1901.7 2166.2
[0.3, 0.4] 1166.0 2008.1 2082.4 2280.5 2784.5
[0.4, 0.5] 2049.6 2038.7 2152.4 2112.5 2659.2
[0.5, 0.6] 1626.3 1754.0 2221.2 2211.9 2674.5
[0.6, 0.7] 1659.7 1084.8 1583.9 2372.3 2529.1
[0.7, 0.8] 981.1 1978.5 1802.6 2280.7 1915.0
[0.8, 0.9] 1332.2 2229.9 2043.6 2183.4 1952.1

Table 2. m = 4.

6 Tasks 9 Tasks 12 Tasks 15 Tasks 18 Tasks

[0.0, 0.1] 257.3 695.5 845.2 1147.1 1321.0
[0.1, 0.2] 377.6 977.1 1441.6 1556.8 1602.6
[0.2, 0.3] 669.6 1023.0 1584.3 2196.7 1712.7
[0.3, 0.4] 409.5 997.6 1416.2 1752.8 1875.8
[0.4, 0.5] 428.2 652.6 1567.5 1327.4 1462.2
[0.5, 0.6] 480.8 416.3 430.4 735.3 1184.2
[0.6, 0.7] - 401.7 67.4 - 1208.2

Table 3. m = 8.

7 Tasks 11 Tasks 15 Tasks 19 Tasks 23 Tasks

[0.0, 0.1] 144.9 583.9 861.4 878.6 1014.1
[0.1, 0.2] 126.8 357.6 789.5 811.4 1196.0
[0.2, 0.3] 45.3 - 343.3 470.8 728.3
[0.3, 0.4] - - - 643.5 -

6. Related Work

The problem of information leakage for real-time systems has been addressed in several studies.
Mohan et al. considered real-time tasks with different security levels and focused on information
leakage on shared computing resources (e.g., RAM and cache). They proposed a mechanism for
FP scheduling to flush the status of shared resources conditionally, which reduces the chances of
an attacker from obtaining sensitive information of the resources [24]. Because they incorporated
a security mechanism into the existing FP scheduling, an additional timing overhead was inevitably

Symmetry 2020, 12, 753 12 of 14

required. Therefore, they proposed a new sufficient schedulability analysis to accommodate that fact.
In [25], an exact schedulability was proposed to improve the analytical capability. In addition, this work
was extended to mixed-criticality systems in [26]

The aforementioned studies addressed the issues only for non-preemptive scheduling; therefore,
Pellizzoni et al. extended this work to preemptive scheduling [27]. They extended it to a more general
task model, and proposed an optimal priority assignment method that determines the task preemptibility.

Another approach to improve the security of real-time systems is to randomize the schedules
without compromising schedulability. TaskShuffler addressed in this study was proposed by Yoon et al.
for a preemptive FP scheduling algorithm [15]. The goal of TaskShuffler is to improve uncertainty in
schedule and reduce the success ratio of timing inference attacks simultaneously. Kr¨uger et al. proposed
an online schedule randomization protocol for time-triggered systems [28]. While the aforementioned
two approaches are applicable to uniprocessor platforms, we focus on multiprocessor platforms.

7. Conclusions

In this study, we aimed to develop a new scheduling randomization protocol for symmetry
multiprocessors to improve the security and conserve schedulability of real-time systems
simultaneously, by extending the existing TaskShuffler initially designed for uniprocessors. To this end,
we first define the problem of improving the security of real-time systems and satisfying the
schedulability simultaneously on multiprocessor platforms, differentiating it from the uniprocessor
case. Then, we employed DA schedulability to derive priority inversion budget values for each task,
and proposed an algorithm to effectively utilize the calculated priority inversion budget values in
randomized schedules to improve uncertainty. Based on the simulation results, we investigated the
effect of our approach on various factors. Non-preemptive [29] or partitioned [2] scheduling will be
considered in our future work.

As our study adopts a fundamental task model (of the Liu and Lyland) assuming no consideration
of task dependency, resource consideration and scheduling costs (e.g., migration or preemption cost),
it cannot be directly applied to actual real-time systems without relieving the assumptions. We also
leave it as our promising future work.

Author Contributions: Conceptualization, H.B.; software, H.B.; data curation, H.B.; writing—original draft
preparation, H.B. and C.M.K.; writing—review and editing, C.M.K.; supervision, C.M.K.; project administration,
H.B.; funding acquisition, H.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Incheon National University (International Cooperative) Research Grant in 2019.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, C.; Layland, J. Scheduling Algorithms for Multi-programming in A Hard-Real-Time Environment.
J. ACM 1973, 20, 46–61. [CrossRef]

2. Brandenburg, B.B.; Gul, M. Global scheduling not required: Simple, near-optimal multiprocessor real-time
scheduling with semi-partitioned reservations. In Proceedings of the IEEE Real-Time Systems Symposium
(RTSS), Porto, Portugal, 29 November–2 December 2016; pp. 1–15.

3. Melani, A.; Bertogna, M.; Bonifaci, V.; Marchetti-Spaccamela, A.; Buttazzo, G. Schedulability Analysis of
Conditional Parallel Task Graphs in Multicore Systems. IEEE Trans. Comput. 2016, 66, 339–353. [CrossRef]

4. Biondi, A.; Buttazzo, G.C.; Bertogna, M. Schedulability Analysis of Hierarchical Real-Time Systems under
Shared Resources. IEEE Trans. Comput. 2016, 65, 1593–1605. [CrossRef]

5. Shepard, D.; Bhatti, J.; Humphreys, T. Drone Hack: Spoofing Attack Demonstration on a Civilian Unmanned
Aerial Vehicle. GPS World 2012, 23, 30–33.

6. Russotto, B.F. W32.stuxnet Dossier. Available online: http://www.symantec.com/content/en/us/
enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf. (accessed on 6 March 2020).

http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1109/TC.2016.2584064
http://dx.doi.org/10.1109/TC.2015.2444833
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf

Symmetry 2020, 12, 753 13 of 14

7. Koscher, K.; Czeskis, A.; Roesner, F.; Patel, S.; Kohno, T.; Checkoway, S.; McCoy, D.; Kantor, B.; Anderson, D.;
Shacham, H.; et al. Experimental Security Analysis of a Modern Automobile. In Proceedings of the IEEE
Symposium on Security and Privacy, Berkeley, CA, USA, 16–19 May 2010; pp. 447–462.

8. Checkoway, S.; Mccoy, D.; Kantor, B.; Anderson, D.; Shacham, H.; Savage, S.; Koscher, K.; Czeskis, A.;
Roesner, F.; Kohno, T. Comprehensive Experimental Analyses of Automotive Attack Surfaces. In Proceedings
of the Usenix Security Symposium, San Francisco, CA, USA, 8–12 August 2011; pp. 1–16.

9. Son, J.; Alves-Foss, J. Covert Timing Channel Analysis of Rate Monotonic Real-Time Scheduling Algorithm
in MLS Systems. In Proceedings of the IEEE Information Assurance Workshop, West Point, NY, USA,
21–23 June 2006; pp. 361–368.

10. Yoon, M.K.; Mohan, S.; Choi, J.; Sha, L. Memory Heat Map:Anomaly detection in real-time embedded
systems using memory behavior. In Proceedings of the 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), San Francisco, CA, USA, 8–12 June 2015; pp. 1–6.

11. Zadeh, M.M.Z.; Salem, M.; Kumar, N.; Cutulenco, G.; Fischmeister, S. SiPTA: Signal processing for trace-based
anomaly detection. In Proceedings of the ACM & IEEE International Conference on Embedded Software,
Jaypee Greens, India, 12–17 October 2014; pp. 1–10.

12. Bertogna, M.; Cirinei, M.; Lipari, G. Schedulability Analysis of Global Scheduling Algorithms on
Multiprocessor Platforms. IEEE Trans. Parallel Distrib. Syst. 2009, 20, 553–566. [CrossRef]

13. Joseph, M.; Pandya, P. Finding response times in a real-time system. Comput. J. 1986, 29, 390–395. [CrossRef]
14. Volp, M.; Hamann, C.J.; Hartig, H. Avoiding timing channels in fixed-priority schedulers. In Proceedings

of the ACM Symposium on Information, Computer and Communication Security, Tokyo, Japan,
18–20 March 2008; pp. 1–10.

15. Yoon, M.; Mohan, S.; Chen, C.; Sha, L. TaskShuffler: A Schedule Randomization Protocol for Obfuscation
against Timing Inference Attacks in Real-Time Systems. In Proceedings of the IEEE Real-Time Technology
and Applications Symposium (RTAS), Vienna, Austria, 11–14 April 2016; pp. 1–12.

16. NVIDIA. Drive AGX Pegasus. Available online: https://developer.nvidia.com/drive/drive-agx (accessed on
8 April 2020).

17. Fisher, N.; Goossens, J.; Baruah, S. Optimal Online Multiprocessor Scheduling of Sporadic Real-Time Tasks
is Impossible. Real-Time Syst. 2010, 45, 26–71. [CrossRef]

18. Bertogna, M.; Cirinei, M. Response-Time Analysis for globally scheduled Symmetric Multiprocessor
Platforms. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS), Tucson, AZ, USA,
3–6 December 2007.

19. Bernat, G.; Burns, A. New results on fixed priority aperiodic servers. In Proceedings of the IEEE Real-Time
Systems Symposium (RTSS), Phoenix, AZ, USA, 1–3 December 1999; pp. 68–78.

20. Zabos, A.; Davis, R.; Burns, A.; Harbour, M.G. Spare capacity distribution using exact response-time analysis.
In Proceedings of the Conference on Real-Time and Network Systems, Paris, France, 26–27 October 2009;
pp. 97–106.

21. Cachin, C. Entropy Measures and Unconditional Security in Cryptography. Ph.D. Thesis, ETH Zurich,
Zurich, Switzerland, 1997; pp. 1–143.

22. Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
23. Dodis, Y.; Smith, A. Entropic security and the encryption of high entropy messages. In Proceedings of the

International Conference on Theory of Cryptography, Cambridge, MA, USA, 10–12 February 2005; pp. 1–22.
24. Mohan, S.; Yoon, M.K.; Pellizzoni, R.; Bobba, R. Real-Time Systems Security through Scheduler Constraints.

In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS), Madrid, Spain, 8–11 July 2014;
pp. 129–140.

25. Baek, H.; Lee, J.; Lee, Y.; Yoon, H. Preemptive Real-Time Scheduling Incorporating Security Constraint for
Cyber Physical Systems. IEICE Trans. Inf. Syst. 2016, E99-D, 2121–2130. [CrossRef]

26. Baek, H.; Lee, J. Incorporating Security Constraints into Mixed-Criticality Real-Time Scheduling. IEICE Trans.
Inf. Syst. 2017, E100.D, 2068–2080. [CrossRef]

27. Pellizzoni, R.; Paryab, N.; Yoon, M.; Bak, S.; Mohan, S.; Bobba, R. A generalized model for preventing
information leakage in hard real-time systems. In Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), Seattle, WA, USA, 13–16 April 2015; pp. 271–282.

http://dx.doi.org/10.1109/TPDS.2008.129
http://dx.doi.org/10.1093/comjnl/29.5.390
https://developer.nvidia.com/drive/drive-agx
http://dx.doi.org/10.1007/s11241-010-9092-7
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1587/transinf.2015EDP7493
http://dx.doi.org/10.1587/transinf.2016EDP7447

Symmetry 2020, 12, 753 14 of 14

28. Krüger, K.; Völp, M.; Fohler, G. Vulnerability Analysis and Mitigation of Directed Timing Inference Based
Attacks on Time-Triggered Systems. In Proceedings of the Euromicro Conference on Real-Time Systems
(ECRTS), Barcelona, Spain, 3–6 July 2018; pp. 1–17.

29. Baek, H.; Jung, N.; Chwa, H.S.; Shin, I.; Lee, J. Non-Preemptive Scheduling for Mixed-Criticality Real-Time
Multiprocessor Systems. IEEE Trans. Parallel Distrib. Syst. 2018, 29, 1766–1779. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPDS.2018.2806443
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Definition
	System Model
	Schedule Randomization Protocol for Multiprocessors
	Priority Inversion Budget Calculation
	Schedule Randomization Protocol
	Schedule Entropy for Multiprocessors

	Evaluation
	Related Work
	Conclusions
	References

