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Abstract: Cyber security has recently received enormous attention in today’s security concerns, due
to the popularity of the Internet-of-Things (IoT), the tremendous growth of computer networks, and
the huge number of relevant applications. Thus, detecting various cyber-attacks or anomalies in a
network and building an effective intrusion detection system that performs an essential role in today’s
security is becoming more important. Artificial intelligence, particularly machine learning techniques,
can be used for building such a data-driven intelligent intrusion detection system. In order to achieve
this goal, in this paper, we present an Intrusion Detection Tree (“IntruDTree”) machine-learning-based
security model that first takes into account the ranking of security features according to their importance
and then build a tree-based generalized intrusion detection model based on the selected important
features. This model is not only effective in terms of prediction accuracy for unseen test cases but also
minimizes the computational complexity of the model by reducing the feature dimensions. Finally, the
effectiveness of our IntruDTree model was examined by conducting experiments on cybersecurity
datasets and computing the precision, recall, fscore, accuracy, and ROC values to evaluate. We also
compare the outcome results of IntruDTree model with several traditional popular machine learning
methods such as the naive Bayes classifier, logistic regression, support vector machines, and k-nearest
neighbor, to analyze the effectiveness of the resulting security model.

Keywords: cybersecurity; cyber-attacks; anomaly detection; intrusion detection system; machine
learning; network behavior analysis; cyber decision making; cybersecurity analytics; cyber threat
intelligence

1. Introduction

In recent days, the demand for cyber security and protection against various types of cyber-attacks
has been ever increasing. The main reason is the popularity of Internet-of-Things (IoT), the tremendous
growth of computer networks, and the huge number of relevant applications that are used by
individuals or groups for the purpose of either personal or commercial use. Cyber attacks such
as the denial-of-service (DoS) attack [1], computer malware [2], or unauthorized access [1] led to
irreparable damage and financial losses in large-scale networks. For instance, according to [3], in May
2017, one ransomware virus brought huge losses to many organizations and industries, including
finance, medical care, energy, and universities as well, causing a loss of 8 billion dollars. Other statistics
have estimated that on average, a data breach costs an affected organization 3.9 million USD, and 8.19
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million USD to the United States [4]. Thus, the demand for cyber security and protection against
various types of cyber-attacks is increasing day-by-day according to today’s needs in the cyber world.

A cyber security system typically consists of a network security system and a computer
security system. Although various systems, such as firewall and encryption, are designed to handle
Internet-based cyber-attacks, an intrusion detection system (IDS) is more capable of resisting the
computer network from external attacks [5]. Thus, the main purpose of an IDS is to detect various types
of malicious network communications and computer systems usage for prevention. The conventional
solutions, e.g., firewalls, are unable to perform the tasks well [6–8]. An IDS conducts the process of
identifying malicious cyber-attack behavior on a network while monitoring and evaluating the daily
activities in a network or computer system to detect security risks or threats such as denial-of-service
(DoS). An intrusion detection system also helps to discover, determine and identify unauthorized
system behavior such as unauthorized access, or modification and destruction [9–11]. Therefore,
detecting various types of cyber-attacks and anomalies in a network and to build an effective IDS that
performs an essential role in today’s network security is needed to facilitate a system’s security.

Intrusion detection systems could be different categories according to the usage scope.
For instance, the most common types of intrusion detection systems are host-based and network-based,
which are in the scope of single computers to large networks [12]. A host-based intrusion detection
system (HIDS) relies on an individual system and monitors important operating system files for
suspicious or malicious activities, which is very limited to detect unknown malicious code [12]. On the
other hand, in a network intrusion detection system (NIDS), the system analyzes and monitors network
connections for suspicious traffic. Similarly, based on detection approach, the most well known variants
are misuse or signature-based, and anomaly-based detection that have been studied worldwide by
the security research community for many years [13]. In a signature-based IDS, a specific pattern is
identified as the detection of corresponding attacks. For instance, a byte sequence in a network traffic,
or known patterns or sequences used by malware could be considered as a signature. Anti-virus
software uses such types of patterns as a signature in order to the detect the attacks by matching.
This signature-based intrusion detection system is capable of easily detecting known attacks; however,
it is challenging to detect new unseen attacks using such known signature for which no pattern is
available [14]. On the other hand, an anomaly-based intrusion detection system examines the behavior
of the network and finds patterns, automatically creates a data-driven model for profiling the normal
behavior, and thus detects deviations in the case of any anomalies. The main advantage of this
anomaly-based IDS over a signature-based IDS is that it can detect attempts to exploit new and unseen
vulnerabilities or cyber-threats. However, it may produce high false alarm rates considering previously
unseen system behaviors as anomalies [10]. Thus, a machine learning based effective detection approach
is needed to minimize these issues, in which we are interested in this paper.

Developing computational security models to analyze different cyber incident patterns
and eventually predict the threats utilizing cybersecurity data can be used for building a data-driven
intelligent IDS. Thus, the knowledge of artificial intelligence, particularly machine learning techniques
that can learn from a security dataset well, can play a key role in this [14,15]. Among the machine
learning techniques, a tree-based method performs well in the area of predictive analytics [16,17].
However, effectively modeling cyber-attacks or anomalies is challenging as today’s security datasets
may contain high dimensions of security features that may include features with less importance or
not important at all. Thus, a security model with these features may cause several issues such as
high variance that usually causes over-fitting in a tree-based model as it learns from only one pathway
of decisions, high computational cost and time for model training, lack of generalization in the model,
and consequently, may decrease the prediction accuracy for unseen test cases. Therefore, the research
question addressing in this paper is - “RQ: How can we minimize these security issues and build an effective
data-driven intrusion detection model in the domain of cybersecurity?”

In order to answer this research question, in this paper, we present an Intrusion Detection Tree
(“IntruDTree”) machine-learning-based security model that minimizes the above mentioned issues.
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In our approach, we first took into account the ranking of security features according to their importance
in modeling. We then build a tree-based generalized intrusion detection model based on the selected
important features. Once the complete tree has been built by utilizing the training security data, the test
data is used to validate the model. This approach is not only effective in terms of prediction accuracy
for unseen test cases by minimizing the over-fitting in modeling but also minimizes the computational
complexity of the model by reducing the feature dimensions while building the resultant model.

The contributions of this work can be summarized as follows:

• We first highlight the importance of security features for high dimensions in a machine
learning-based intrusion detection model.

• We then present an intrusion detection tree “IntruDTree” machine-learning-based security model
that first takes into account the ranking of security features according to their importance and then
build a tree-based generalized model based on the selected important features.

• Finally, we conduct experiments to evaluate the effectiveness of our intrusion detection model
IntruDTree. The experimental results show that our IntruDTree model significantly outperforms
previous ones for detecting cyber intrusions in various unseen test cases.

The rest of the paper is organized as follows. Section 2 provides the background and related work
of intrusion detection techniques. In Section 3, we present our intrusion detection tree IntruDTree
machine-learning-based security model by taking into account feature importance. We evaluate
the resultant security model and report the experimental results by conducting experiments on
cybersecurity dataset in Section 4. Finally, Section 5 concludes this paper and highlights the
future work.

2. Background and Related Work

An intrusion detection system is typically used to identify malicious cyber-attack behavior on a
network while monitoring and evaluating the daily activities in a network or computer system to detect
security risks or threats [9,11]. A number of research has been conducted in the area of cybersecurity
with the capability of detecting and preventing cyber attacks or intrusions. Signature-based network
intrusion detection is one of the well known systems used in the cyber industry [14]. This system
takes into account a known signature and has seen widespread adoption including commercial
success in recent time. On the other hand, the anomaly-based approach has advantage over the
signature-based approach for detecting unseen attacks, including the ability to identify unknown or
zero-day attacks [10,18]. This approach monitors network traffic and finds attack behavioral patterns
by analyzing the relevant security data. Various data mining and machine learning techniques are used
to analyze such security incident patterns for making useful decisions [5,16,19]. The main drawback
of the anomaly-based approach is that it may produce high false alarm rates as it may categorize the
previously unseen system behaviors as anomalies [10]. Thus, limiting the false positive rates of an
intrusion detection system must be a top priority [13]. Therefore, a machine learning-based effective
detection approach is needed to minimize these issues.

The area of machine learning is typically considered as a branch of artificial intelligence, which
is closely related to computational statistics, data mining and data science, and mainly focuses on
making computers to learn from data [19,20]. It has strong ties to mathematical theories, methods,
statistical analysis, optimization, and various real-world application domains in the field. Thus, in the
area of cybersecurity, machine learning is a type of data-driven method in which understanding
the raw security data is the first step to build an intelligent security model for making predictions
about future incidents. Although, the association analysis is popular in machine learning techniques
to build rule-based intelligent systems [21–23], in this work, we primarily focus on classification
learning techniques [16,24] that are typically used to build a predictive model by utilizing a given
training dataset. For instance, to build a data-driven predictive model, several popular techniques
such as the probability-based naive Bayes classifier, hyperplane-based support vector machines,
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instance-learning-based k-nearest neighbors, the sigmoid function based logistic regression technique,
as well as rule-based classification like decision trees have been used [16,19].

In the domain of cybersecurity, particularly for detecting intrusions or cyber-attacks, a number
of researchers used the machine-learning classification techniques mentioned above. For instance,
Li et al. [25] presented an approach to classify the predefined attack categories such as DoS, Probe or
Scan, U2R, R2L, as well as normal traffic utilizing the most popular KDD’99 cup dataset by using the
hyperplane-based support vector machine classifier with a RBF kernel. In [26], Amiri et al. used a
least-squared support vector machine classifier to train the model utilizing large data sets to create a
faster system. In [27], Hu et al. used a variation of the support vector machine classifier in their study
in order to classify the anomalies. Wagner et al. [28] employed a one-class support vector machine
classifier in their study for the purpose of anomaly detection and different types of attacks such as
NetBIOS scans, DoS attacks, POP spams, and Secure Shell (SSH) scans. The authors in [29] used this
support vector machine classifier for the purpose of detecting unknown computer worms’ activity.
Similarly, Kotpalliwar et al. [30], Saxena et al. [31], Pervez et al. [32], Li et al. [25], Shon et al. [33], and
Kokila et al. [34] used a support vector machine classifier in their studies for the purpose of building
intrusion detection systems.

In addition to the support vector machine classifier discussed above, several other classifiers are
used to detect intrusions. For instance, Kruegel et al. [35] used a probability-based Bayesian network
to classify the events that process TCP/IP packets. A denial-of-service (DoS) intrusion detector using
the same Bayesian network has been described by Benferhat et al. in their study [36]. Panda et al. [37]
have employed the probability-based naïve Bayes classifier for the purpose of analyzing the KDD’99
cup data set, in which the data consist of four categories of attacks—Probe or Scan, DoS, U2R, and R2L.
Koc et al. [38] used the same naive Bayes classifier in order to build a multi-class intrusion detection
system. An instance-based learning algorithm, the KNN, is another popular machine learning method
in which the classification of a point is determined by the k-nearest neighbors of that data point.
Shapoorifard et al. [39], Vishwakarma et al. [40], and Sharifi et al. [41] used KNN classification technique
in their studies for the purpose of intrusion detection systems. Several research studies [42,43] have
been done using the logistic regression model as well for identifying malicious traffic and intrusions.
In addition to these approaches, authors in [44] considered neural classifier, and those in [45] considered
wavelet transform for anomaly detection, particularly DoS attacks.

Among the machine learning techniques, a tree-based method known as decision tree is
considered as one of the most popular machine learning classification methods for the purpose
of building predictive models. The best known methods for automatically building decision trees are
the ID3 [46] and C4.5 [47] algorithms. Recently, a behavioral decision tree algorithm called BehavDT
for analyzing behavioral patterns was proposed by Sarker et al. [48]. A significant amount of research
in the domain of cybersecurity, such as Ingre et al. [49], Malik et al. [50], Relan et al. [51], Rai et al. [52],
Puthran et al. [53], Moon et al. [54], Balogun et al. [55], and Sangkatsanee et al. [56] used the decision
tree classification approach in their studies for the purpose of building intrusion detection systems.
However, with the high dimensions of security features, a decision tree model may cause several issues
such as high variance with over-fitting, high computational cost and time, and low prediction accuracy.

Unlike the above approaches, in this work, we present a machine learning-based security model
“IntruDTree” that first takes into account the ranking of security features according to their importance
and then build a generalized tree for detecting intrusions based on the selected important features
in order to resolve the issues highlighted above.

3. Materials and Methods

In this section, we present our machine learning-based cyber security intrusion detection model
IntruDTree. This comprised of several processing steps: exploring the security dataset, preparing raw
data, determining feature importance and ranking, and building the resultant tree-like model. In the
following section, we briefly discuss these steps one by one in order to achieve our goal.
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3.1. Exploring Security Dataset

Security datasets typically represent a collection of information records consisting of several
security features and related facts that can be used for the purpose of building a data-driven
cybersecurity intrusion detection model [15]. Thus, it is important to understand the nature of
raw cybersecurity data and the patterns of security incidents in order to detect malicious behavior
or anomalies. In this work, we used an intrusion dataset consisting of two categories of class
variables—normal and anomaly—publicly available in Kaggle [57], the world’s largest machine
learning and data science community. The dataset consists of a total of 41 features, among them,
3 features are qualitative, the protocol_type, f lag, and the other 38 features are quantitative, including
duration, logged_in, srv_serror_rate, dst_host_count, dst_bytes. Table 1 shows all the security features,
including their value type. The dataset contains more than twenty five thousand instances that were
collected from a wide variety of intrusions simulated in a military network environment. To collect
these raw data, including TCP/IP dump data for a network, an environment was created by simulating
a typical US Air Force local area network. The network was created like a real cyber environment and
blasted with multiple cyber-attacks that are known as anomalies [57].

Table 1. Dataset features with value type.

Feature Name Value Type Feature Name Value Type

dst_host_srv_count Integer same_srv_rate Float
f lag Nominal dst_host_same_srv_rate Float

srv_serror_rate Float dst_host_srv_serror_rate Float
dst_host_serror_rate Float count Integer

protocol_type Nominal logged_in Integer
dst_host_same_src_port_rate Float dst_host_srv_di f f _host_rate Float

rerror_rate Float src_bytes Integer
dst_host_srv_rerror_rate Float service Nominal

srv_rerror_rate Float dst_host_rerror_rate Float
dst_host_count Integer dst_host_di f f _srv_rate Float

srv_count Integer wrong_ f ragment Integer
serror_rate Float num_compromised Integer

srv_di f f _host_rate Float dst_bytes Integer
hot Integer di f f _srv_rate Float

duration Integer is_guest_login Integer
root_shell Integer land Integer

urgent Integer num_ f ailed_logins Integer
su_attempted Integer num_root Integer

num_ f ile_creations Integer num_shells Integer
num_access_ f iles Integer num_outbound_cmds Integer

is_host_login Integer - -

All the security features mentioned in Table 1 are not identical in terms of data distribution, and
vary from feature to feature. For instance, Figure 1 and Figure 2 show the data distribution for two
different features, duration and dst_bytes, respectively. In order to build our machine learning-based
intrusion detection model, we first prepared the raw dataset with the feature values mentioned
above. Effectively processing and ranking these security features according to the requirements,
building a target machine-learning based detection model, and eventually, data-driven pattern-based
decision making, could play a role in providing intelligent cybersecurity services, particularly detecting
anomalies or intrusions.



Symmetry 2020, 12, 754 6 of 15

Figure 1. Data distribution of the secuity feature ‘duration′.

Figure 2. Data distribution of the secuity feature ‘dst_bytes‘.

3.2. Preparing Raw Security Data

Data preparation comprises both feature encoding and scaling according to the characteristics of
the given intrusion dataset.

• Feature encoding: As mentioned earlier, the dataset contains both the numeric and nominal values
of the given security features. Although most of the features are numerically valued, several
are nominally valued, such as protocol_type, service, f lag, shown in Table 1, and the class value
[anomaly, normal] as well. Thus, it is needed to convert all the nominal valued features into
vectors in order to fit these data to the target machine learning-based intrusion detection model.
Although, “One Hot Encoding” is a popular approach, we used “Label Encoding” in this work.
The reason is that, in one hot encoding technique, a significant number of feature dimensions
increase. On the other hand, the label-encoding approach directly converts the feature values into
particular numeric values. Let us consider an example in terms of the feature protocol_type. Label
encoding can turn the values [tcp, udp, icmp, udp, icmp] into vectors [0, 1, 2, 1, 2].

• Feature scaling: In data pre-processing, feature scaling is also known as data normalization.
The values of the security features are in different ranges that vary from feature to feature.
For instance, Figure 1 and Figure 2 show the data distributions of two different features, duration
and dst_bytes, respectively. For some data points, the value is very low while for some data points,
it is much higher, as shown in Figures 1 and 2. Thus, data scaling method is used to normalize the
range of the feature values, known as the independent variables as well. In order to do this, we
used a Standard Scaler that normalizes the security features with the mean value = 0 and standard
deviation = 1. The normalized values are then ready for further analysis in order to build the
security model.

3.3. Determining Feature Importance and Ranking

In our approach, once the data exploration and preparation have been done, we calculate the
importance score of each security feature discussed above and rank them according to their importance
score, in order to select a set of significant features for further processing. Generally, feature importance
provides a score that indicates how useful or valuable each feature in a cybersecurity dataset, to build a
tree-based intrusion detection model. Feature importance is estimated as the decrease in node impurity



Symmetry 2020, 12, 754 7 of 15

weighted by the probability of reaching that node. The node probability is simply calculated by the
number of instances that reach a particular node divided by the total number of instances. The higher
the value, the more important the feature. The value varies from 0 to 1. A value of 0 means that the
output of the model does not depend on the feature at all and 1 means that the output of the model is
directly associated with the feature. Thus, the importance of each feature is derived from how “pure”
it is.

In statistics and data mining, “Gini Index” is a well known measure of the impurity of a node
that typically measures how often a random element would be wrongly detected [19]. Thus, it is the
probability of wrongly classifying a randomly chosen element in a security dataset according to the
class distribution in the dataset. For a binary split, the Gini Index [19] of a node n can be expressed as -

IG(n) = 1−
c

∑
i=1

pi
2 (1)

∆IG(np) = IG(np)− pl IG(nl)− pr IG(nr) (2)

where pi represents the probability of an element being classified to a particular security class and
pl and pr are the proportions of examples in node np that are assigned to child nodes nl and nr,
respectively. Therefore, how much each feature decreases the impurity is then computed using the
Gini impurity formulas defined above. The more a feature decreases the impurity, the more important
the feature is. We then rank the security features according to their calculated importance score. Thus,
after ranking the features, our approach is capable of selecting the top n security features according to
their importance score values for the purpose of building an effective tree-based security model by
taking into account the selected n features. This thus enables us to identify correlations and patterns in
a security data set to transform them into significantly lower dimension datasets without loss of any
significant information for modeling.

3.4. Designing Intrusion Detection Tree

Once the security features are ready to process, we design a tree-like model in order to make
decisions in a data-driven intelligent intrusion detection system. In our model, we take into account
the selected security features that are determined according to their importance score and ranking,
rather than using all the features available in the given dataset. To design a tree-like model, we start
from a root node. It breaks down a given training dataset into smaller subsets and an associated
branch of the tree is incrementally created. To identify the attribute for the root node in each level,
the “Gini Index” [19] defined in the earlier section is used. An attribute with a lower Gini index is
selected to incrementally develop the tree. Thus, we expand the tree by creating the required number
of branches consisting of internal and leaf nodes and their connecting edges or arcs. Internal nodes
are labelled with the security features selected earlier and each leaf node of the tree is labelled with a
target class, either anomaly or normal in this work. The arcs of the tree coming from a node are labeled
with each of the possible values of the relevant feature. The final result is a multi-level tree with a
number of terminal or leaf nodes that includes anomaly or normal, as shown in Figure 3. Overall,
our intrusion detection model IntruDTree takes into account mainly two properties, (i) reducing
the feature dimensions by determining the feature importance and ranking, and (ii) to construct a
multi-level tree by taking into account the selected important features. Figure 3 shows an example
of an IntruDtree considering several features like f lag, service, duration, logged_in and their sample
values in a given intrusion dataset.

The overall process for building an IntruDTree is set out in Algorithm 1. Given a training intrusion
dataset, DS = {X1, X2, ..., Xm}, where m represents the data size. Each instance is represented
by n-dimensional features. The training data also belong to diverse cyber-attack classes CA =

{normal, anomaly}. The outcome is an IntruDTree, which is a rule-based classification tree associated
with DS. For instance, according to Figure 3, an example rule with single feature could be “if the flag
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value is RSTR, then the outcome is anomaly”. Similarly, another rule with multiple features could be
“if flag value is SF, service is f tb, and duration <= 4, then the outcome is anomaly”. Thus, a number
of security rules can be extracted by traversing the generated IntruDTree, that can be used to detect
whether the test case is normal or an anomaly.

Figure 3. An example of an IntruDTree considering several features.

Algorithm 1: IntruDTree Induction
Data :Dataset: DS = X1, X2, ..., Xm // each instance Xi contains a number of features and

corresponding cyber-attack class CA
Result: An IntruDTree

1 Procedure IntruDTree (DS, f eature_list, CAs);
2 //calculate feature importance score
3 impscore ← calculateScore( f eature_list)
4 //select important features
5 imp_ f eature_list← selectFeatrues( f eature_list, impscore, n)
6 TreeGen(DS, imp_ f eature_list, CAs)
7 N ← createNode() //create a root node for the tree
8 if all instances in DS belong to the same class CA then
9 return N as a leaf node labeled with the class CA.

10 end
11 if imp_feature_list is empty then
12 return N as a leaf node labeled with the majority class in DS; // majority voting
13 end
14 identify the highest precedence feature Fsplit for splitting and assign Fsplit to the node N.
15 foreach feature value val ∈ Fsplit do
16 create subset DSsub of DS containing val.
17 if DSsub 6= φ then
18 attach the node returned by TreeGen(DSsub, {imp_ f eature_list− Fsplit}, CAs)) to node

N;
19 end
20 attach a leaf labeled with the majority class in DS to node N;
21 end
22 return N

4. Experimental Results and Discussion

In this section, we briefly analyze and report the experimental results of this work. For this, we
first setup our experiments to evaluate our IntruDTree cyber security model, and then discuss the
experimental results in various dimensions related to our analysis.
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4.1. Experimental Setup

In order to evaluate our IntruDTree cyber security model, we aim to answer the following
three questions:

• Question 1: Does the feature importance score and corresponding ranking strategy in IntruDTree
model simplify the security dataset by reducing the negligible features, and help to build a
generalized data-driven security model?

• Question 2: Is the IntruDTree machine-learning-based security model able to effectively detect
cyber intrusions and to provide significant outcome results for unseen test cases?

• Question 3: How effective is our IntruDTree model compared to traditional machine learning
classification-based methods?

In answering these questions, we have conducted experiments on a security dataset consisting
of the anomalies and normal classes discussed in an earlier section. We implemented all the
methods in Python programming language, in which we used Scikit-learn, the most popular machine
learning library for predictive data analysis, and executed them on a Windows PC. In the following
subsections, we first define the evaluation metrics that are taken into account to evaluate our security
model and then discuss the experimental results that answer the above questions identified for this
experimental analysis.

4.2. Evaluation Metric

In order to measure the effectiveness of our IntruDTree cyber security model, we compute the
outcome results in terms of precision, recall, fscore, ROC value, and overall accuracy, defined as
below [19]

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Fscore = 2 ∗ Precision ∗ Recall
Precision + Recall

(5)

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

where, TP denotes true positives, FP denotes false positives, TN denotes true negative, and FN denotes
false negatives in these above formal definitions of precision, recall, fscore, and overall accuracy.
In addition to these evaluation metrics, we also take into account the ROC (Receiver Operating
Characteristic) curve that is created by plotting the true positive rate (TPR) against the false positive
rate (FPR) of the resultant security model.

4.3. Effect of Feature Importance Score and Ranking

In order to answer the first question highlighted above, we show the importance score of each
feature in the dataset and the significance of this score in our IntruDTree model in this experiment.
For this, Figure 4 shows the calculated importance score for various features utilizing the given security
dataset. If we observe this figure, we see that the calculated score of all features is not identical in
a given dataset and may vary from feature-to-feature according to their effect on the target class.
According to Figure 4, the feature src_bytes has the highest score of 0.258 (around 25%), whereas
another feature is_host_login has a score closer to the value 0 for this dataset. In order to show the
comparative significance of each feature, Figure 4 shows their importance score values in a descending
order, where the values are arranged from the largest to the smallest number. The higher the value,
the more important the feature in our IntruDTree model. Thus, based on the score values, we can
conclude that all the features in a given security dataset might not be similar significant to build a
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data-driven security model and a number of features comparatively with very low score values, less
than a threshold t, can be reduced to simplify the dataset. In this experiment, we have selected all the
features to build the model that satisfy the threshold value t = 0.02. As a result, we finally selected
the top 14 features according to their importance score values shown in Table 2. Therefore, according
to the results shown in Figure 4 and Table 2, we can conclude that the feature importance score and
corresponding ranking strategies in our IntruDTree model is able to simplify the security dataset by
reducing the negligible features. Consequently, it can help to build a generalized data-driven security
model with a smaller number of security features.

Figure 4. The importance of the features in terms of score values.

Table 2. Top ranked features with corresponding importance score values for a given security dataset.

Ranking Security Feature Name Importance Score

01 src_bytes 0.258093
02 dst_bytes 0.129825
03 f lag 0.073396
04 dst_host_same_srv_rate 0.059504
05 dst_host_srv_count 0.053630
06 dst_host_di f f _srv_rate 0.046281
07 di f f _srv_rate 0.041144
08 count 0.040548
09 same_srv_rate 0.036620
10 protocol_type 0.031650
11 dst_host_same_src_port_rate 0.025566
12 service 0.023904
13 serror_rate 0.023188
14 logged_in 0.020901

4.4. Outcome Results of IntruDTree Model

In order to answer the second question highlighted above, in this experiment, we show the
outcome results of our machine learning-based cyber security intrusion detection model IntruDTree.
To calculate the outcome results for unseen test cases, we first built the model using a subset of 80% data
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of the given dataset and used the remaing 20% data for testing the model. The results are calculated by
generating a confusion matrix that reports the number of false positives, false negatives, true positives,
and true negatives. Based on these values, Table 3 reports the prediction results in terms of precision,
recall, fscore, and accuracy for each individual class, either normal or anomaly, utilizing the given
dataset, in order to show the outcome results of our IntruDTree model. If we observe Table 3, we see
that for each class, this model gives significant results of the precision, recall, fscore, and accuracy,
that ensures the model effectiveness while predicting anomalies or intrusions. In addition, Figure 5
shows the outcome results as an ROC curve that represents the TPR (true positive rate) against the
FPR (false positive rate) of our IntruDTree model. From Figure 5, we can see that the true positive rate,
i.e., correctly classified, is high close to the maximum value 1, while the false positive rate, i.e., falsely
classified, is low. Thus, from the overall experimental results shown in Table 3 and Figure 5, we can
conclude that our machine learning-based IntruDTree cyber security intrusion detection model is able
to effectively detect either the anomalies or normal class according to their occurring patterns in the
security dataset and consequently gives a significant outcome for unseen test cases.

Table 3. The outcome results of our IntruDTree model for each individual class.

Class Precision Recall FScore Accuracy

Normal 0.98 0.98 0.98 0.98
Anomaly 0.98 0.98 0.98 0.98

Figure 5. The ROC curve representing TPR (true positive rate) against FPR (false positive rate) of our
IntruDTree model.

4.5. Effectiveness Comparison

In order to answer the third question, in this experiment, we compute and compare the
effectiveness of our cyber security intrusion detection model IntruDTree, with the traditional popular
machine learning-based methods. To show the effectiveness of various machine learning-based security
models, we first select several popular baseline methods, such as NaiveBayes (NB), Logistic Regression
(LR), K-Nearest Neighbor (KNN), and Support Vector Machines (SVM) for the purpose of comparison.
For each model, we compute the outcome results utilizing the same security datasets, in order to
compare the models fairly.

To compare the effectiveness mentioned above, Figure 6 shows the relative comparison of
precision, recall, fscore and accuracy, utilizing the security datasets discussed in earlier section. For each
machine learning-based model, we use the same training and testing set of data, where 80% data
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are used to train the security model and the rest 20% data are used for testing the model. If we
observe Figure 6, we see that our IntruDTree model has a better outcome than the traditional models.
The reason is that in our IntruDTree model, we first determined the important features and then built
the intrusion detection tree by taking into account the selected features. As a result, it minimizes the
model variance and over-fitting issues, and generalizes the security model as well by considering
the important features. Thus, the model is able not only to increase the prediction results for unseen
test cases but also to minimize the computational complexity of the resultant data-driven security
model. Therefore, according to the results shown in Figure 6 and the above experimental analysis,
we can conclude that our IntruDTree model is more effective than the traditional machine learning
classification based methods while analyzing the cybersecurity data.

Figure 6. Effectiveness comparison in terms of precision, recall, fscore, and accuracy of different
machine learning based security models.

5. Conclusions

In this paper, we have presented an intrusion detection tree IntruDTree machine-learning-based
security model. In our approach, we have first taken into account the ranking of security features
according to their importance and then built a tree-based generalized intrusion detection model
based on the selected important features. We have done this to make the security model effective
in terms of prediction accuracy for unseen test cases, and efficient by reducing the computational
cost with the processing of less number of features while generating the resultant tree-like model.
Finally, the effectiveness of our IntruDTree model was examined by conducting a range of experiments
on cybersecurity datasets. We have also compared the outcome results of IntruDTree model with
several traditional popular machine learning methods to analyze the effectiveness of the resulting
security model.

Future work could assess the effectiveness of the IntruDTree model by collecting large datasets
with more dimensions of security features in IoT security services, and measuring its effectiveness at
the application level in the domain of cybersecurity.
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