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Abstract: Nonlinearity in Quantum Mechanics may have extrinsic or intrinsic origins and is a liable
route to a chaotic behaviour that can be of difficult observations. In this paper, we propose two
forms of nonlinear Hamiltonian, which explicitly depend upon the phase of the wave function and
produce chaotic behaviour. To speed up the slow manifestation of chaotic effects, a resonant laser
field assisting the time evolution of the systems causes cumulative effects that might be revealed,
at least in principle. The nonlinear Schrodinger equation is solved within the two-state approximation;
the solution displays features with characteristics similar to those found in chaotic Classical Mechanics:
sensitivity on the initial state, dense power spectrum, irregular filling of the Poincaré map and
exponential separation of the trajectories of the Bloch vector ¢ in the Bloch sphere.
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1. Introduction

The theory of chaos gained the role of a new paradigm of Science for explaining a large variety of
phenomena by introducing the concept of unpredictability within the perimeter of Classical Physics.
Chaos occurs when the trajectory of a particle is sensitive to the initial conditions and is produced by a
nonlinear equation of motion [1]. As examples we quote the equation for the Duffing oscillator (1918)

mi + qx + rx> = Fcos(wrt) 1)

or its elaborated form
mi + % + kx + rx® = Fcos(wt) (2)

that are among the most studied equation of mathematical physics [1,2] and, as far as we know,
cannot be analytically solved. These equations model complex systems with a huge number
of microscopic interactions hidden in the chosen value of the phenomenological parameters v,
k and r. The equations share a relevant property: ranges of the numerical value of the parameters
and of the initial conditions exist, which make the prediction of the final output of the motion
useless, since any two trajectories starting from close initial conditions exponentially separate with
time. What we are saying is that the study of complex systems, in which the dynamics are only
partially known, may require models with nonlinear equations of motions and ensuing emergency
of chaos. Only nonlinear systems can lead to chaos although not all nonlinear systems are chaotic.
Two trajectories of a physical system in the chaotic regime must be aperiodic, must not intersect in
phase space {g;,4;,t} for t < 400 and must exponentially diverge when starting with close initial
conditions [3,4]. As far as we know, no general rule is known proving the chaotic nature of a physical
system, although an interesting model displaying these characteristics can be constructed [4] where
such a proof exists.

Almost by definition, Quantum Mechanics lays its foundation in the study of experimental
unpredictability by describing the outcome of a measurement act with its probability.
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However, the evolution of the wave function is ruled by the linear Schrodinger equation
that permits the superposition principle: the sum of two different solutions is still a solution.
Moreover, in Quantum Mechanics the concept of trajectory needs to be handled with care since
it cannot be seen in the same way as in Classical Physics: determined by the knowledge of initial
position and velocity, although a proxy of the classical concept may be recovered by use of the Ehrenfest
theorem. These characteristics forbid the observation of chaos in the same fashion as in Classical
Physics: the time evolution of the wave function is predictable. Thus, the quest for chaos within
Quantum Mechanics requires some slight modification of paradigm.

However, also in Quantum Mechanics, when dealing with many interacting quantum particles or
complex systems, nonlinear equations are found. As examples, they are obtained in the self-consistent
Hartree-Fock method [5] or in the study of the motion of an excitation along one-dimensional molecular
chains [6,7]. In principle these equations might display chaotic behaviour when opportune physical
parameters are chosen. We may say that nonlinearity in these approaches is of extrinsic origin for it
lays its ground on the linear Schrodinger equation and appears as a way to deal with complex systems
in which dynamics are only partially known.

Indeed, examples of chaotic comportment are present in Quantum Mechanics. Experiments on
the ionization of hydrogen atoms in a microwave field [8,9] showed a dependence upon the intensity
of the driving field, which can be explained by the insurgence of chaos. Moreover by using Bohm'’s
formulation of the theory one can obtain a trajectory-based representation of a quantum mechanical
system completely equivalent to the one based on the wave function obtained from the linear
Schrodinger equation [10-12]. These trajectories manifest chaotic behaviour [11,13-17]. The reason
for this feature is that in Bohm mechanics, the quantum evolution assumes a hydro-dynamical form,
which has chaotic solutions. The surprising point in Bohm'’s picture of Quantum Mechanics is that
the underlying chaos does not emerge in the standard linear Schrodinger picture as if, apparently,
washed out in the transition to the standard form of the theory. This, we believe, is as yet a not well
understood issue, requiring in-depth analysis.

From the ontological point of view, the linearity of the Schrodinger equation has been questioned
by the introduction of an intrinsic nonlinearity term in the Hamiltonian [14,18-21]. In this paper,
we explore two different nonlinear Hamiltonians; they may be considered as the model of collective
and complex interaction much in the same way as the rationale for Equations (1) and (2) otherwise
they can be seen as a possibility for a basic nonlinear Schrodinger equation.

Chaos is an asymptotic effect and might appear after a long period of time; it is important in this
condition to introduce an external field, which enhances the dynamics of the system and forces chaos
to emerge through cumulative effects. Thus, in this paper, we study the evolution of a quantum system
governed by a nonlinear Schrodinger equation and driven by a resonant laser of angular frequency
wy,; in fact, resonance is the most efficient coupling between radiation and matter and mostly apt to
cause rapid modifications of the dynamics.

If a nonlinear Hamiltonian rules the time evolution of a system, then the final wave function
contains this information and leads us to the question if the information can be extracted from the
measurement of opportune final physical quantities. We believe that a positive answer to this question
would be important as it would relate final measured quantities to initial measured quantities without
a detailed analysis of the time evolution of the wave function.

To provide a reliable answer to the question is an important goal. We believe that the results
of this paper suggest that a positive answer is possible. Of course this is not, as yet, the definitive
statement, and efforts and researches are still needed.

Before entering the full description of the theory, we should ask ourselves on the necessity of
looking for a fundamental presence of nonlinearity and insurgence of chaos in Quantum Mechanics
for, at the moment, it does not appear a cogent reason for it. In Classical Mechanics, chaos is present
and the impression that it rules the evolution of the majority of phenomena is unavoidable; then why
does it appear to be marginal in Quantum Mechanics since the correspondence principle asks for it?
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Actually, to challenge linearity could also require the challenging of the corresponding principle which,
after all, was formulated when chaos was little more than Poincaré’s intuition. Nonetheless, curiosity
compels the investigation of the issue.

2. Two Routes to Chaos

The presence of a laser field to drive quantum systems introduces a wealth of phenomena,
which are of interest in fundamental and applicative physics. Among these phenomena, the process of
high order harmonic generation (HHG) is relevant here; it occurs when a quantum object driven by
the laser field at frequency wy, irradiates electromagnetic radiation in which the spectrum is formed
by a very large plateau of odd multiples of wy; the absence of even harmonics being motivated by
symmetry properties of the Hamiltonian. For simplicity sake, in what follows, we refer to the systems
as an atom. The radiation is the result of a strong acceleration of the atomic charges, which is highly
nonlinear with the laser-atom interaction energy Uy and provides a benchmark for testing nonlinear
phenomena and ground to new high frequency lasering devices [22-24]. Moreover, the radiation,
produced by the field where the active charges are present, carries relevant information of the local
status of the charges; thus, HHG can be an efficient spectroscopic tool for observing features otherwise
undetectable [25-27]. The purpose of this paper is to exploit the fast modification of the wave function
of the atom to explore a form of nonlinearity different from the one above mentioned and due to a
dependence of the quantum Hamiltonian upon the wave function of the system. We show that the
presence of the laser makes apparent a chaotic quantum behaviour.

To recognise chaotic behaviour, the Poincaré map is useful. The nature of a motion driven by a
force with period T is conveniently studied by plotting in the configuration space the stroboscopic point

P(nT) = (q1(nT),q2(nT), ..., 41(nT),42(nT),...) ®)

with integer n; the distribution of the points gives qualitative information on the chaotic nature of the
problem [1]. The best, quantitative, method for diagnosing chaos is to compute the Lyapunov exponent
A. It provides the degree of divergence of two chaotic orbits with a nearby starting point [2,28]; if D(t)
is the distance between the orbits at a time t, then D(t) = D(0)2*. If A > 0, then the motion is chaotic.
We consider a laser driven quantum system in which the evolution is governed by a nonlinear
Hamiltonian H (t); the nonlinearity might have intrinsic (i.e., fundamental) or extrinsic (i.e., external)
origin. Coherently with the resonant assumption, we adopt a two level scheme for the atom,
scheme which was used in the past for similar purposes [29]; thus the equation of the system is

ihe(t) = H(t)e(t) 4)

with the nonlinear Hamiltonian H(t) a 2 x 2 matrix and

o(t) = (2;’8) . 5)

Many forms for the nonlinear Hamiltonian can be conjectured and often a dependence upon the
square modulus of the wave function [18,30] is assumed. Here we wish to explore a dependence upon
the phase of the wave function that might describe the de-coherence produced by a sudden interaction
between the active atom and the environment.

We introduce two Hamiltonians. The first Hamiltonian is

A h ( —wy  2w1c§cr 0 sin(th)> ©)

== t
172 2@1coc] wp ) + Uof(*) <sin(th) 0
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which explicitly contains the phase difference between the two bare eigenstates through cq(t)cj (t).
In the absence of a laser in this Hamiltonian, the two levels remain stationary: if ¢o(0) = 0 or c;(0) =0
then the Hamiltonian is diagonal and there is no free decay from upper to lower level.

The second Hamiltonian is

N N —wp 2ayet(P1—$0) 0 sin(wp t)
H2 B 2 <2(D2ei(4’0—471) wo + U(]f(t) sin(th) 0 (7)

where ¢o(t) and ¢ (t) are the phase of the ground and the excited state. In this way, the nonlinear
term depends only upon the relative phases of the states. The value of the nonlinear parameters @,
does not depend upon the laser. In both Hamiltonians, the laser-atom interaction energy is the term
containing Uy.

Moreover, in this delicate field at issue, it is of paramount importance to make clear our operational
steps to define as chaotic the evolution of the atom.

(i) For our purposes, the first, fundamental step is to plot selected final physical quantities as
a function of initial physical quantities. By inspection we infer if they can be caused by a
chaotic behaviour. Of course we are aware that this is a qualitative method that can lead
to misjudgements.

(ii) In general, a dense power spectrum of a physical quantity is considered an indication. In our
analysis we use the power spectrum of the electric dipole moment, the choice is motivated by
the fact that the dipole moment is related to the electromagnetic radiation from an atom.

(iii)  In the search for chaos, the Poincaré section is a very important tool. We use it as a flag of chaos.
(iv)  Since all the previous points provide only a qualitative characterisation of chaos, as a final step
we calculate the Lyapunov exponent of the orbits of the Bloch vector.

2.1. First Hamiltonian

For the first Hamiltonian, we adopt the following value for the physical parameters: the energy
separation between the two levels is iwy = 4 eV while the laser photon is taken fiw; = hwy/4
corresponding to a laser optical cycle Ty ~ 4.1 x 10~1° 5. The laser pulse has been taken as purely
sinusoidal with sudden on-off switching (f(t) = 1) with duration t; = 212 optical cycles (oc)
corresponding to ty = 1.6 X 10711 s; the reason of such a long pulse is given by the awareness
that chaos might appear after a long time. The laser-atom interaction energy is Uy = 5 x 10! au.
The numerical integration of the nonlinear Schrodinger equation with Hamiltonian (6) has been always
carried out with 2!! integration steps per oc. For physical reasons, the nonlinearity term must be small
and is always @; = 1.5 x 102 au.

An important issue is the free decay time of an excited system, which, for an atom, is of the order of
7, ~ 1078 5. Any use of a longer integration time should take into consideration the incoherent mixing
of the two states introduced by the decay; in other words, the relation 7; > t; should be satisfied.
This is the case in the present calculation and leaves room to further increases of the pulse duration.
However, physical examples are known with a very long decay time; for example, the radiative life
time of 2Th is of the order of 10* s [31] while the natural lifetime of the 2F, /2 state of 71Yp* is of the
order of 1y [32]; both transitions can be coupled with a laser. Of course, such long living states would
unburden the experimenter from free decay impediments.

In Figure 1, we plot several final quantities as a function of the initial population of the excited
level: no relation appears to exist between the points; this means that the final value of any quantity
can be known only after an explicit numerical calculation is performed. According to our scheme,
this is a candidate chaotic case.

In Figure 2, we show the population of the upper state as a function of the relative phase between
the two states; the points are taken at intervals of 1 oc and lie on a regular curve: they are not chaotic.
The HHG spectrum is formed of well resolved lines. In Classical Physics, the presence of a broad
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spectrum in the Fourier transform suggest chaos [2]; this is not the case here: the reason is that the
spectrum contains many discrete lines, and the evolution has a quasi-periodic nature. Thus, the first
Hamiltonian presents chaotic solutions but suggests care in the choice of the examined quantities.

"
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Figure 1. First Hamiltonian. First row: final population of the upper level Py(ts) = |c1(t f)|2 as a
function of its initial population P; (0) and relative phase between the two states ¢(t7) /7 = [¢1(tf) —
¢o(ts)]/m vs. P1(0). Second row ¢o(ts)/ 7 and ¢y (tf) vs. Py(0). Third row Py(tf) vs. ¢(ts)/m. All
plots contain 100 points.

Within the limits of two-state systems, any linear operator can be written as a sum of the Pauli o,
and unit matrices. Thus, the three dimensional vector ¢ (t) with components (0;)(t) = (c(t)|o;|c(t))
contains all information on the evolution of any observables; therefore, o proves to be an important
concept in the detection of quantum chaos. As well known, ¢ is a unit vector lying on the surface of a
unit sphere (Majorana or Bloch sphere).

In Figure 3, we plot the three (0;) (nT) when the initial state is the ground one: they are located
on a regular curve. No chaotic motion is observed.

In Figures 4 and 5, we show similar plots when the initial state has Py(0) = 0.6. Now the
stroboscopic points are scattered over an irregular area and the spectrum is continuous. In Figure 6,
the projection of the points on the Poincaré section ({0 ), (¢y/)) is shown. Thus, the initial wave function
with Py(0) = 0.6 displays chaotic characteristics.

To prove that the behaviour is authentically chaotic we now evaluate the time evolution of the

distance D(t) = \/ AoZ(t) + Ao (t) + Ao (t) between two trajectories on the Bloch sphere with a
nearby starting position. We note that the same procedure was adopted by Bliimel and Esser [33].
In Figure 7 we show log, (D(t)/D(0)) between the two orbits starting at Py(0) = 0.6 and
Py(0) = 0.6001 versus time: we see that D(t) is exponentially divergent with exponent A = 1.4 oc .
Before reaching the maximum distance D = 2, D(t) displays two more exponential growths with the
same value of A. In the inset, we show in linear scale D(t): fast oscillations are clearly visible. A similar
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calculation, not shown here, performed for Py(0) = 0 where chaotic traits are not present does not
present any exponential separation of the orbits. We conclude that the first Hamiltonian induces a
chaotic evolution of the system.
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Figure 2. First Hamiltonian. First row: P;(nTy) vs. ¢(nTL) /7 where n is an integer and Ty the laser
period. Second row, spectrum emitted by the atom. The atom starts from the ground state.
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Figure 3. First Hamiltonian. The vector (o) stroboscopically plotted at t = nTy.
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Figure 4. First Hamiltonian. First row: Py (nTy) vs. ¢(nT)/ 7 where n is an integer and T}, the laser

period. Second row, spectrum emitted by the atom. The initial population of the ground state is
Py = 0.6.
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Figure 5. First Hamiltonian. The vector (o) stroboscopically plotted at t = nTy.
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Figure 7. First Hamiltonian. Plot of log, (D(t)/D(0)) vs. T/ Ty, of two orbits that start with close initial
conditions. For the first orbit Py(0) = 0.6 and for the second orbit Py(0) = 0.6001. The value of the
Lyapunov exponent is A 2 1.4 oc ™. In the inset, the time evolution of D(t) is shown in linear scale for

the first 28 oc.

2.2. Second Hamiltonian

An inspection of the form of the second Hamiltonian tells that the nonlinearity parameter @,
now plays a larger role than the one played by @; in the first Hamiltonian. This happens because
always @|cjc1| < @. Thus, chaotic behaviour should be found more easily in the second case. We shall
see that the prediction is accomplished in a large measure. The value of the physical constants of
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the problem is unchanged with the exception of a smaller nonlinearity parameter, which now is
@ =10x102<® =15x10"2au.

In Figure 8, we show the (0;) (nTr) when the initial population of the ground state is Py = 0.5.
The filling of the Bloch surface by the stroboscopic points seems uniform and no pattern can be
recognized. This is a flag of chaos.

P,=0.5

(o)

(o)

Figure 8. Second Hamiltonian. The vector (o) stroboscopically plotted at t = nTy.

In Figure 9, we show Py (nTy) vs. ¢(nTy)/ 7 and the power spectrum of the dipole moment when
the initial population is Py = 0.5. The stroboscopic points are distributed in a random fashion and the
power spectrum of the dipole moment is densely filled with unresolved lines. These features suggest
that the evolution may be chaotic.

In Figure 10, we show the equivalent of Figure 1. The chaotic nature of the system is confirmed
by the first two rows of plots. However, the last row is very surprising: the plot contains few
stroboscopic points and not 100 as should be expected. Apparently the final phase difference and the
final populations are correlated.

After these analyses, we resort again to the Lyapunov exponent to check that the second
Hamiltonian introduces a bona fide chaotic evolution. In Figure 11, we show D(t); we notice an
exponential divergency in the time interval 4-7.5 oc where A 2 1.9 (oc)~!. In the full plot of D(t),
the maximum distance is reached after 20 oc and then fluctuates in a quick way not seen in the
calculations for the first Hamiltonian. Again, we may say that the Lyapunov exponent confirms the
qualitative conclusion that the motion is chaotic.
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Figure 9. Second Hamiltonian. First row: P;(nTy) vs. ¢(nTr)/m where n is an integer and Ty the
laser period. Second row, spectrum emitted by the atom. The initial population of the ground state is

Py = 0.5.
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Figure 10. Second Hamiltonian. First row: final population of the upper level Py (tf) as a function of the
its initial population Py (0) and relative phase between the two states ¢(t7) /7 = [p1(tf) — ¢o(tf)]/ 7
vs. P1(0). Second row ¢ (ts)/ 7 and ¢;(tf) vs. P1(0). Third row Py (tf) vs. ¢(ts)/ 7. All plots contain

100 points.
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Figure 11. Second Hamiltonian. Plot of log, (D(t)/D(0)) vs. T/ Ty, of two orbits that start with close
initial condition. For the first orbit Py(0) = 0.5 and for the second orbit Py(0) = 0.5001. The value of the
Lyapunov exponent is A = 1.9 oc 1. In the inset the full time evolution of D(t) is shown in linear scale.

3. Final Remarks and Conclusions

In this paper we showed that the presence of a laser field may unveil and make detectable the
presence of a small nonlinearity in the quantum Hamiltonian. We have argued that the nonlinearity
may have different sources and the most probable one being extrinsic, caused by the need of modelling
systems in which the dynamics are not fully known. In Classical Physics this is the main origin of
nonlinearity; meteorology, fluid vortices, dissipative electric circuits, solar system and galaxy stability
being the most common instances.

However, the possibility that a small intrinsic nonlinearity is present in the problem cannot be
ignored. This second instance is a harbinger of many fundamental issues and is of deep debate.
For example, the superposition principle is rudely put at stake as the superposition of two
solutions of the nonlinear Schrodinger equation is not automatically a solution. Of course, also the
essential technique of expanding the wave function as a linear combination of eigenstates is to be
questioned and the use of a two-level atom used in the present calculations might lose validity
and become a mere practical tool to be used because a fundamental theory is not available.
However, qualitative information is important even more when a coherent theory is not known,
at least in order to gain an idea on the phenomena to be looked at. We stress that it is legitimate to look
for chaos in dealing with nonlinearity of extrinsic origin exactly in the same way as it has been done in
Classical Physics.

Perhaps the connection between the nonlinear Schrodinger equation and the relativity principle
represents the most important weakness for the research of intrinsic nonlinearity; in fact, almost from
the beginning it has been realised that the presence of nonlinearity in Quantum Mechanics, at the
least in the proposed forms, can be exploited for superluminal transmission of information [34-37];
thus an intrinsic nonlinear Schrédinger equation might be impossible. However, we believe that the
nonlinear equations proposed up to now were meant with indicative meaning and that the relativity
principle can be reconciled by a future fundamental theory of nonlinear Quantum Mechanics hopefully
formulated in a relativistically covariant form. In this perspective, the finding of chaos in simple
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quantum systems may prove its importance. As yet much guessing work is required on the possible
form of a quantum nonlinear Schrodinger equation; however, the actual form might be not really
important because the emerging effect might be similar.
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