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Abstract: Dirac and Weyl semimetals are three-dimensional electronic systems with the Fermi level
at or near a band crossing. Their low energy quasi-particles are described by a relativistic Dirac
Hamiltonian with zero effective mass, challenging the standard Fermi liquid (FL) description of
metals. In FL systems, electrical and thermo–electric transport coefficient are linked by very robust
relations. The Mott relation links the thermoelectric and conductivity transport coefficients. In a
previous publication, the thermoelectric coefficient was found to have an anomalous behavior
originating in the quantum breakdown of the conformal anomaly by electromagnetic interactions.
We analyze the fate of the Mott relation in the system. We compute the Hall conductivity of a Dirac
metal as a function of the temperature and chemical potential and show that the Mott relation is not
fulfilled in the conformal limit.
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1. Introduction

Dirac semimetals are three-dimensional (3D) crystals with band crossings near the Fermi level.
In a low energy continuum description their quasi particles obey the massless Dirac equation and
the interacting system is identical to massless quantum electrodynamics (QED). The low energy
bands in Dirac semimetals are four fold degenerate (two spins, two chiralities). Breaking inversion
or time-reversal symmetry gives rise to Weyl semimetals subjected to many interesting transport
phenomena related to the chiral anomaly [1–3]. After their synthesis in 2015, Dirac and Weyl
semimetals have evolved to become a main topic in condensed matter physics. In addition to their
interest as material realization of high energy phenomena [4], they present exceptional thermoelectric
properties [5].

Leaving aside the important technological applications, thermal and electro–thermal transport
are very useful tools to characterise the physical properties of new materials [6]. In standard
metals where almost free quasiparticles transport both electric charge and entropy, there are tight
relations between the transport coefficients [7–9]. The experimental confirmation of these relations
are used to characterize the low energy electronic nature of new materials and their possible phase
transitions as a function of temperature or doping. Dirac materials in two (graphene) [10–14] and three
dimensions [15–22] have been extensively analyzed under the theoretical and experimental points of
view. These materials have zero density of states when the Fermi level is at the Dirac point, Coulomb
interactions are poorly screened and, in very clean samples, a hydrodynamic regime with breakdown
of the thermoelectric relations has been experimentally established [17,23–28].
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In a recent publication [29], it was shown that the conformal anomaly [30], related to metric
deformations, gives rise to a special contribution to the Nernst signal which remains finite at zero
temperature and chemical potential, a very unusual property. This result was later confirmed with a
more standard Kubo calculation in [31]. In this work we analyze the validity of the phenomenological
thermoelectric relations in Dirac and Weyl semimetals in the conformal limit (zero temperature and
chemical potential).

We perform an explicit calculation of the Hall conductivity in the conformal limit and, combining
it with the thermoelectric coefficient of ref. [31], we see that the Mott relation, an easy to measure
property, is violated in the conformal limit. Since the density of states is zero at the neotrality point
we cannot use a Boltzmann formalism, and the calculation is done with a Kubo formula. Extending
the calculation to include a finite temperature and chemical potential, we see that the Mott relation
is recovered at finite temperature and chemical potential. This result implies the singularity of the
conformal point and the fact that, as it was well known in graphene, its physics can not be reached by
taking the µ→ 0 limit of a doped system.

2. Thermoelectric Relations

Applying an external electric field E = ∇V or a temperature gradient ∇T to a conductor, induces
electric J and heat currents Jε that, in linear response, can be written as [16]:(

Ji

Ji
ε

)
=

[
σij αij

Tᾱij κij

](
Ej
−∇jT

)
, (1)

where σ, and κ are the electric and thermal conductivity tensors respectively, and α is the thermoelectric
coefficient. i and j index spatial dimensions, i.e., i, j = x, y, z. In the presence of a magnetic field (in the
chosen z-direction along OZ axis, the various tensors in (1) can have time-reversal odd off-diagonal
components as the Hall conductivity σxy or the transverse components of αxy.

The best known phenomenological laws used in thermo–electrical transport are the
Wiedemann-Franz (WF) law and the Mott relation [32,33]:

σij = TLκij, αij = TLe
(dσij

dµ

)
µ=εF

. (2)

The first one establishes that the ratio of the thermal to the electrical conductivity is the
temperature times a universal number, the Lorenz number L = π2k2

B/3e2, where kB and e are the
Boltzmann constant and the unit charge respectively. The Mott relation relates the tensor α̂ with
the temperature times the value of the derivative of the electrical conductivity with respect to the
chemical potential at the Fermi level. In the presence of magnetic fields magnetization currents can
arise. The Mott relation holds for transport currents only [34–37]. The validity of these laws has been
established for any system which can be described as a Fermi liquid, provided the quasiparticles do not
exchange energy during collisions. It has also been proven to be valid when a semiclassical description
of the electronic system is allowed. Deviations from these phenomenological relations in conventional
matter are normally attributed to electron–electron interactions inducing departures from Fermi liquid
behavior or to the emergence of a new phase regime [26,27,38].

An interesting question arose associated to the thermoelectric relations in topological materials.
These materials have anomalous conductivities (particularly Hall conductivity) similar to that occurring
in ferromagnetic materials induced by the Berry curvature of the bands. The question of whether or
not these anomalous transport coefficients obeyed the WF and Mott relations, arose soon after the
recognition of topological properties. The validity of the Mott relation for the anomalous transport
phenomena was observed experimentally in films of Ga1−x Mnx As, a ferromagnetic semiconductor
in [39]. Berry curvature effects were cleverly added in the Boltzmann transport formalism in a way to
fulfil the rules [10,40] but the experimental answers to these question are more diverse [2,39,41,42].
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Typically Dirac materials in two and three dimensions are expected to follow the standard relations
in the low T regime and deviate from it at larger temperatures [18,28,43]. Violations of the WF law
have been described in these systems associated to the presence of a hydrodynamic regime where
departures from the standard FL behavior are also found [17,27]. The thermoelectric properties of
Dirac and Weyl semimetals are a very active field of actual research [21,43–45]. The influence of lattice
deformation on the thermoelectric transport properties in Weyl semimetals has been discussed in [22].

3. Thermoelectric Coefficient in the Conformal Invariant Point in Dirac Semimetals

In the next section we will analyze the Mott relation at the light of the results in [29,31] that we will
summarize here. Close to a two bands band crossing in three spacial dimensions, the dispersion relation
of an electronic system can be linearized giving rise to the effective low energy Hamiltonian [46]

Hs = svFσ · k. (3)

where s = ± is the chirality (left, right) of the band, σ are the three Pauli matrices, and k is the
momentum of the quasiparticles. These two 2-dimensional Hamiltonians emerge from a 4-dimensional
massless Dirac equation.

The action associated to this Hamiltonian in the presence of a background electromagnetic
potential Aµ is

S = exp{−ih̄
∫

L(x)d4x}, L(x) = Ψ̄γµ(∂µ + ieAµ)Ψ, (4)

where Ψ̄ ≡ Ψ+γ0 and γµ are four dimensional Dirac matrices. Aside from the fact that the Fermi
velocity replaces the speed of light in the space components of the current, this is the action of massless
quantum electrodynamics (QED). Since the action has not dimension–full parameters, it is invariant,
at the classical level, under a scale transformation: x → λx, Ψ → λ−3/2Ψ, Aµ → λ−1 Aµ. By the
Noether theorem there is an associated dilatation current: dµ = xνTµν whose conservation implies the
vanishing of the trace of the stress tensor: Tµ

µ = 0. After quantizing the action, the scale invariance
acquires a quantum anomaly proportional to the electromagnetic field strenght [47]. This anomaly
was shown to give rise, in the context of high energy physics, to the scale magnetic effect, an electric
current perpendicular to an applied magnetic field and a gradient of the conformal factor [30]. In [29],
the scale magnetic effect was promoted to a contribution to the Nernst effect in the material realization
of conformal QED provided by Dirac or Weyl semimetals. A non-zero thermoelectric coefficient was
predicted at zero temperature and chemical potential where the theory is scale invariant at the classical
level. A Kubo formula calculation of the thermoelectric coefficient extended the calculation to finite
temperature and chemical potential and gave the same result in the conformal limit [31].

Chosing the magnetic field to point in the OZ direction (Bz), and the temperature gradient in the
OY direction ∇yT, the induced thermoelectric current points in the OX direction. In this geometry,
the expression (1) reads

Jx = αxy∇yT.

The coefficient αxy for a single Dirac cone at zero chemical potential ad in the limit ∇T/T = 0
was obtained to be

αxy =
e2vFB
4π2h̄T

. (5)

4. The Hall Conductivity

In order to analyze the Mott relation (second equation in (2)), we need to compute the derivative of
the Hall conductivity as a function of the chemical potential. The appropriate expression (1) reads now

Jx = σxyEy.
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In most works on topological metals, the Hall conductivity is calculated using a Boltzmann
formalism for the electronic transport. Since in Dirac semimetals the density of states at the neutrality
point is zero, a Boltzmann approach does not seem reliable.

In this work the Hall conductivity is computed with a Kubo formulation as the one done in [31] for
the thermoelectric coefficient. In the Kubo approach, the conductivity tensor is given by the expression:

σij(ω, q) = − 1
ωV (2π)3

∫
dt′

1
h̄

Θ(t− t′) ·
〈[

Ji(t, q), J j(t′,−q)
]〉

, (6)

where V is the volume of the system and the current operator associated to the action (4) is given by

Ji = vFΨ̄γiΨ, (7)

where (i = x, y, z). We will compute the Hall component of the conductivity tensor σxy(ω, q) for a
Weyl semimetal in an external magnetic field in the 0Z direction.

The magnetic field is coupled to the Hamiltonian (3) by a Peierls substitution k→ (k + A). In the
Landau gauge Ax = −By, the spectrum of the system is:

En(kz) = sign(n)vF

[
2eh̄B|n|+ h̄2k2

z

]1/2
n ∈ Z, n 6= 0 , (8)

E0s(kz) = svFh̄kz, (9)

The presence of the zeroth Landau level (LL) (9) is one of the most prominent characteristics of
Dirac matter in applied magnetic field. This one-dimensional chiral fermion is ultimately responsible
for the chiral anomaly and the anomalous Hall conductivity in the materials [48]. It has a linear
dispersion and a constant density of states at fixed magnetic field. Figure 1 shows the Landau level
(LL) structure of a single chirality in a Dirac or Weyl semimetal.
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Figure 1. Landau level structure of a single chirality in a Dirac semi-metal. The green straight line
represents the chiral zeroth LL. The inset shows the thermoelectric coefficient χxy = αxy/T computed
in ref. [31].

The green straight line represents the chiral zeroth order LL. The inset shows the zero temperature
thermoelectric coefficient χ = α/T normalized to the value χ0 = vFe2B/4(2π)2h̄ as a function of the
chemical potential computed in ref. [31]. The function has a constant value when µ lies in the interval
between the first Landau levels n = ±1. We will compute the Hall conductivity as a function of the
chemical potential in the same conditions as described here.
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The Landau eigenfunctions are:

ϕkns(r) =
1√

LxLz

eikx xeikzz√
α2

kzns + 1
e−(y−kx l2

B)
2/2l2

B


αkzns√

2N−1(N−1)!π1/2lB
HN−1

[
y−kx l2

B
lB

]
1√

2N N!π1/2lB
HN

[
y−kx l2

B
lB

]
 , (10)

with

αkzns =
−
√

2eBh̄|n|
Ekzns/svF − h̄kz

. (11)

Capital letters refer to the absolute value of Landau levels, Hn(x) are Hermite polynomials, and

the factor
√

α2
kzns + 1 comes from the wave-function normalization.

In the Landau level basis and using the Lehman representation of the Green’s function, the Hall
conductivity in the local and zero frequency limit is given by the expression:

σxy = lim
η→0

∑
m,n

1
4
√

2π2

e2

h̄lB

∫
dκz

−2α2
κzms

(α2
κzms + 1)(α2

κzns + 1)
nκms − nκns

(εκzms − εκzns + ih̄η)2 . (12)

In (12) the sum runs over the Landau level index and is restricted to |m| = |n| ± 1. lB is the
cyclotron length, and nκms is the Fermi–Dirac distribution function which depends on the Landau
level m, and the chirality s through the dispersion relation. The integral is written in terms of the
dimensionless variables

√
2eBh̄κz = h̄kz, εκzms = Ekzms/h̄ωc (ωc is the cyclotron frequency) and the

factor e−ηt has been introduced to guarantee the convergence of the time integral.
For completeness we have also performed the calculation at finite chemical potential and

temperature. These variables enter the Kubo expression (12) through the Fermi–Dirac distribution
function. Our results are summarized in Figure 2.
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Figure 2. The Hall conductivity σxy computed in this work as a function of the chemical potential in
the range −h̄ωc ≤ µ ≤ h̄ωc for various values of the temperature. At T = 0, the conductivity is linear
in µ.

Figure 2 shows the the Hall conductivity σxy as a function of the chemical potential for the
interval −h̄ωc ≤ µ ≤ h̄ωc and for various values of the temperature. The chosen interval is the
same used in Figure 1 and corresponds to the quantum limit where only the zeroth Landau level is
filled. The conductivity is normalized to the value σ0 = 1√

24π2
s2e2

h̄lB
. For T = 0, the conductivity is

linear in µ. As the temperature increases, the slope decreases and the function becomes smoother due
to the contribution of the thermally activated carriers at higher Landau levels. The behavior of the
conductivity is smooth at the neutrality point µ = 0.
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In the next section we will analyze the Mott relation.

5. The Mott Relation

The Mott relation (2) can be written as

(α/∂µσ)µ=EF = LT. (13)

where L is the Lorenz number appearing in the Wiedemann-Franz law. Given the finite value of
the thermoelectric coefficient χ at T = 0, µ = 0 and with our result on the smooth behavior of the
conductivity at this point, it is clear that the relation does not hold at the conformal point.

We have analyzed the situation at finite chemical potential and finite temperature performing a
numerical calculation of the expression (12).

Inserting the thermoelectric conductivity αxy in (2) we get:

χxy
(

∂σxy

∂µ

)−1

µ=EF

= RT2. (14)

The ratio χij/∂µσij as a function of the dimensionless temperature variable T̃ = kBT/h̄ωc is
plotted in Figure 3 for different values of the chemical potential. We notice that at zero temperature
and for µ = 0 (red points) the relation is not satisfied, the function presenting a finite value at T = 0.
As the temperature increases, it follows a quadratic behaviour for all values of µ.
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Figure 3. Behaviour of χij/∂µσij as a function of the temperature. The Mott relation is not satisfied for
T = 0, where the ratio presents a finite value.

Figure 4 shows a fit of the numerical values computed at various temperatures (exact results)
to a continuum function providing the expression f (T̃) = 1 + 9.29T̃2, where is the dimensionless
temperature variable defined above: T̃ = kBT/h̄ωc.

Restoring the units we get, away from T = 0, the coefficient of the parabola R = 2.32(kB)
2/e,

which coincides with the standard value of the Lorenz number L = 2.44(kB)
2/e [49] to a great accuracy.



Symmetry 2020, 12, 814 7 of 10

f(T
˜
) = 1 + 9.29 T

˜2

Exact result

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

5

10

15

20

T
˜

χ
xy
/∂

μ
σ
xy

[ℏ
ω
c
χ
0
/σ
0
]

Figure 4. Temperature dependence of the Mott ratio between the thermoelectric response function χxy

and the derivative of the electric conductivity ∂µσxy at µ = 0. Red dots are the numerical calculation
and the blue line is the fit to the function f (T̃) = 1 + 9.27T̃2. The deviation is smaller than the size of
the points.

6. Discussion

The main conclusion of this work is the violation of the Mott relation at the conformal point of
Dirac matter. In particular, a previous calculation [29,31] showed an unexpected finite term in the
thermoelectric coefficient in this limit. In order to fulfill the Mott relation at the conformal point,
the Hall conductivity should have developped a singular behavior at T = 0, µ = 0. Our explicit Kubo
calculation (12) shows a smooth behavior of the conductivity in that limit, implying that charge and
heat transport are not related by the standard quasiparticle description in the neutral system.

Our results show that, as also happens in graphene, the µ = 0 point in clean Dirac semimetals is a
singular point (the physical properties of the system cannot be obtained as the limit µ→ 0 of the finite
µ system) and away from it, the materials show standard Fermi liquid behaviour. It is also interesting to
note that lattice effects occurring at higher energies [18] do not alter significantly the general behavior
of the thermoelectric coefficients. Our work points, in general, to the singular behavior of Dirac
materials when the Fermi energy lies close to the Dirac point. This is where the correspondence with
the high energy counterparts works better. In our case, the non zero thermoelectric coefficient found
in [31] and the consequent breakdown of the Mott relation at the neutrality point analyzed in this work
has its root in the conformal anomaly described in quantum field theory. It is interesting to note that the
conformal anomaly is a part of the gravitational anomalies whose influence in the thermal transport is
a very hot subject in todays condensed matter experiments [50–52]. The analysis of the present work
deepens the relation between the high and low energy phenomena manifested in these materials.
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