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Abstract: Our work is based on the multiple inequalities illustrated in 1967 by E. K. Godunova and
V.1 Levin, in 1990 by Hwang and Yang and in 1993 by B. G. Pachpatte. With the help of the dynamic
Jensen and Holder inequality, we generalize a number of those inequalities to a general time scale.
In addition to these generalizations, some integral and discrete inequalities will be obtained as special
cases of our results.

Keywords: opial-type inequality; dynamic inequality; convexity; time scale

MSC: 26D10; 26D15; 26E70; 34A40

1. Introduction

The following inequality [1] is well-known in the literature as Opial’s inequality.

Theorem 1. If § is an absolutely continuous function on [0, h|g with 6(0) = 6(h) = 0, then

/;5 18 ()] dt < - /y(s’ (1) Pt 1)

In 1967 E. K. Godunova and V. L. Levin [2] proved the following two theorems which are a
generalization of Opial’s inequality (1).

Theorem 2. Let ¢ be real-valued absolutely continuous function on [a, b]g with 6(a) = 0. Let f be real-valued
convex and increasing function on [0, 00)g with f(0) = 0. Then, the following inequality holds

[ rsonsmiass( [ o).

Theorem 3. Let 6 be real-valued absolutely continuous function on [a, blg with é(a) = 5(b) = 0. Assume f
and g are real-valued convex and increasing functions on [0, 00)g with f(0) = 0. Further let p > 0 on [a, b
and f p(t)dt = 1. Then, the following inequality holds

[ rasie )\dt§2f<gl< /fpu)g('f;([})')dt)). ®
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In 1990, Hwang and Yang [3] established the following result:

Theorem 4. Assuming f > 0 and g > 0 are continuous functions on [0,00)g with f(0) = 0 such that
f'' > 0and g > 0 exist and non-decreasing continuous functions on [0, c0)r. Suppose x and y are absolutely
continuous functions on [a, t|g, and x(a) = y(a) = 0. Then, for all m > 1, we get

[T TS (re 1 O + g0 £ (80118 (0)]"]de
<§f<AATw%deQg<ALTw%deQ,

where A = (T —a)™ 1.

®)

S. Hilger [4], suggested time scales theory to unify discrete and continuous analysis.
Continuous calculus, discrete calculus, and quantum calculus can be said as the three most common
examples of calculus on time scales i.e., for continuous calculus T = R, for discrete calculus T = hZ and for
quantum calculus T = g% = {4 : z € Z} U {0} where g > 1. The book due to Bohner and Peterson [5]
on the subject of time scales briefs and organizes much of time scales calculus. For some Opial-type
integral, dynamic inequalities and other types of inequalities on time scales, see the papers [6-32].
More results on inequalities see, [33-53].

The following essential relations on some time scales such as R, Z, hZ and q7 will be used in the
following section. Note that:

() If T =R, then
p B
o=t =0, ¥O=y®, [ poar=["pwa @
(i) If T = Z, then
A p =
o) =t41, pO=1 9O =i+ -9, [TeOs=Ty0. 6

(iii) If T = hZ, then

o) =t+n p)=n 90 =L Py o ¥ g @

(iv) I T = gZ, then
o)) =gt ()=~ Dt 90 =1L [Ppwar= -0 G e )

Next is Holder’s and Jensen’s inequality:

Lemma 1 (Holder’s inequality [5]). Leta, b € T. For f, g € C,y(T,R), we have

Amemxﬂfﬁmq;M%mm$,

wherep > land 1/p4+1/4 = 1.
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Lemma 2 (Jensen’s inequality [16]). Let a, b € T and c, d € R. Assume that § € C,4([a, b]1, [c,d]) and
r € Cuy([a, b], R) are nonnegative with fub r(t)At > 0. If ® € C,4((c,d),R) is a convex function, then

v

q)(ffru)g(tw) _ L rmdem)ar
[Prmar ) [Prar

Lemma 3 (Chain rule [5]). Assume g: R — R, is continuous, g : T — R is delta-differentiable on T*, and
f : R — Ris continuously differentiable. Then there exists c in the real interval [t, o (t)] with

(fo8)2(t) = f'(3(c))g™ (D). ®)
In the proofs of our results, the following inequality will be used:
a* + b < (a+b)F <21+ b, ifa>0,b>0andk > 1. ©)

In this article, we prove some dynamic Opial-type inequalities involving convex functions
on time scales. Our results generalize some of the mentioned results of Pachpatte [54,55], E. K.
Godunova and V. I. Levin [2] and Hwang and Yang [3], in time scales. Furthermore, our results extend
some existing dynamic Opial-type inequalities in the literature, and give some integral and discrete
inequalities as special cases.

2. Main Results

Theorem 5. Assuming T is a time scale with I', « € T, g > 0and f > 0 are continuous functions on
[0, 00)g with f(0) = 0 such that g’ > 0and f' > 0 exist and non-decreasing continuous functions on [0, o).
Suppose x and y are rd-continuous functions on [«, T, and x(«) = y(a) = 0. Then, for all m > 1, we get

[ [F=@I) (@) @) + s(y(0)1 ") (x(0)1") 1 )| "] a6
< /\11f<)\1 AryxA(9)|mA9>g<A1 /;yyﬂ(eﬂmAe),

where Ay = (T — o)™~ 1.

(10)

Proof. For t € [a,T|r. Define ¢(t) := [[x2()"A0 and ¢(t) := [!|y*(8)|" A6 so that g (t) =

‘xA(t)’m and Y2 (t) = |yA(t)|m. Thus,
/;xA(e)Ae‘m < (/atyxA(e)wa)m,

wor = | [ veose] < ([reise)”

()" =

(11)

Next, applying the dynamic Holder’s inequality (1) on (11) with indices m and ™5, we get

< (t—a)" ( / t!xA(e) |’”A9) (12)
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and similarly
(O™ < Ap(t). (13)

Since f >0, f' > 0,¢ > 0,and g’ > 0 are non-decreasing continuous on [0, c0)g. Since o'(t) > t,
we get g(A19) < ¢7(Aq1), and we find that

[ [F@IM) (@) @) + s(y(0)1") f (0)1") ¢ 0)|"] a0
< [ [Fa9(@)g (19(0)820) + (3 (@) f (19(6)) 9 (@)] A0 (14)
< [ [Fa0@)g (19(0)8°@) + 8 (Map(0)) ' (M1(0)) 9 60)] 40

From Lemma 3 for ¢ € [t,0(t)]g, we get

%fA(/\lqv)(t) = f'(M19(e)p®(t) = f'(Mo()9(1), (15)

and similarly
1 '
78 (Mp(1) = g Ap ()R (1), (16)
Then, by substituting (15) and (16) into (14), we get
r
| [F1@m8 (@) ")y @)™ + g (1v(@) )1 (1x(@) ") [+ 6)[ "] 0
< / (M19(0))g' (Map(0))9(0) +5° (A1 (0)) ' (M19(6)) 9™ (60) | A0
=+ [ g0 @
1 m r m
=5t (30 [ s )s(n [ 1vte)"ae),
which is the desired inequality (10). This proves our claim. [
Remark 1. When T = R in Theorem 5, then, by the relation (4), we obtain Hwang and Yang inequality (3).

Corollary 1. If we take T = hZ in Theorem 5, then, by the relation (6), inequality (10) becomes

=

W (£ () ™ + g (™) (o)) [ ]

n=

==

r
r1

< Ailf <hA1 EZ |Ax(nh) |’">g<h)\1 521|Ay(nh) |’”> .

—
=y

Remark 2. In Corollary 2, if we take h = 1, then inequality (10) becomes

5 (£l ™) )] + Qo)) () ") [
< 11f(/\1 Zi:JAx(nﬂm)g(Al 11;2_1|Ay(n)|m>.
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Corollary 2. If we take T = g% in Theorem 5, then, by the relation (7), inequality (10) becomes

(logqr)—l
@y X )[f(lx(q )IM)g (g™ [Ay(a")|" + & (@) £ (1x(g") ") [ax(g")|"|q"
n=(log, a
(log, T)-1 (log, T)-1
1 . ny\|Mm n - g ny|Mm _n
SM(”””Z_E&“)'M(”’ 0" )s((a oh L el )

Remark 3. If g = m =1, and x = y in inequality (10), then, we obtain

/f 1x(0 |A9<f</ |5 )|A9) (17)

with weak conditions for f.
Remark 4. If T = R, then inequality (17) gives E. K. Godunova and V. I. Levin’s inequality in [2].

Corollary 3. Assuming f(t) = tﬁflm, g=1x=yand ¢ > 0in Theorem 5. Then, from (10), and Lemma 1
with indices ”Tm and ”7’”, we obtain

L+m
T T m
TAIYPNT m_ 1 Agy|™
/a 1x(0) ][22 (0)|" A6 < Mm()‘l/a |x5(0)] AQ)
a2 r
< - l/ |x8(0)[ ™ a0 (18)
£+

om- “ / ‘x f—&-m
E + m
Corollary 4. When m = 1 and £ = 1 in (18), we obtain the following inequality
r _ r
/ 1x(0)[|x2(6) |26 < (FZJ/ 1x8(6)2a0. (19)
14 o
Corollary 5. When T =R, m = 1 and o = 0 in (18), we obtain the inequality of Hua [56]
r rt r
[apwi < / (41
| @[ @)]ae < g [T 0)] b, 0)
Moreover, in (20), equality holds if and only if x(t) = ct.

Corollary 6. If T = R, then (18), gives the inequality of Yang [57].

/|x W'[¥©)]"de < (T~ ) /;x )™ de. (21)

Corollary 7. Assuming p > 0 is rd-continuous on [, T with | ar A—e < oo, and let q > 0 is non-increasing

bounded on [w,T|p. By using f(t) = t, g(t) = 1, m = 1 and x( =y(t) = [1/q(0)|z2(0)|A0 and
A(t) = /q(t)|z2(t)|. Then, we get from Theorem 5, the following mequalzty

2./;</:\/q(7§)|xA(§)‘A§)\/q(79)‘z \A9<(/ NG yAe)
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However, since

/{: Va(6)|z5(6)[46 > \/q(it)/‘:|zA(9)|A9 > oz
2w s ([ e es)

By applying the Cauchy—Schwarz inequality, we get that

it follows that

/arq (0)1]x(8)]26 < 2/ 8)q(6)|x*(6)|* 6. (22)

Remark 5. When T = R, the inequality (22), reduces to Yang inequality [57]

r ) 1 T do (T o2
| a@Ix@) K @)ldo < 5 [T [ p@)g(e)]x ()b,
« 2 Ju p(6) Ju
Corollary 8. Take f(t) = t2, ¢(t) = 1,m = 1 and x = y in Theorem 5, the inequality (10) becomes
r 2
/ ()] x5 (6 ]A9<;</ |xA(9)yA9)
N | z
([ rew @ elao) .

From Lemma 1 with indices ¥, fi such that % + % =1, we obtain

[ @@ < ([ o0 ([ vl oa0) @)

Remark 6. If T = R, then (23), gives the inequality of Maroni [58].

/: 1x(0)]|x2(0)|do < ;(/ar pl—ﬁ(e)cw) ' (/; p(9)|x’(9)|Vd9) %. (24)

Theorem 6. Under the hypotheses of Theorem 5. Let p* > 0and p > 0 be defined on [, T'| with f“r p(0)A0 =
1 and f’XF p*(0)A8 = 1. Further, let y > 0 be convex and increasing on [0,00)g. Then, for all m > 1, the
following inequality holds

N =

[ U@ (w0) )|y )" + gy @) ((0)1") [ 0) "] a0
A m
< if(ZAm_l <Arp(9)n<|x2;9g| )AG)) 5)
[t 2 (0)]™
><g<2?\177 1(/“ p (9)17< 27 (6) >A9>>,

where A1 defined as in Theorem 5.




Symmetry 2020, 12, 842 7 of 18

Proof. Dynamic Jensen inequality (2) provides

m r ECIE
( / P |A9> /‘Xp(ﬂ)iy(zp(g))AQ.

Further, since 7 is increasing, we have

m af (f |x2(6)|™
/ 15(6)]"A0 < 27 1(/‘1 p(9)17< ) )AG). 26)

Similarly, we have

/ A O)ma0 < 25! ( / o) (W) A6>- 27)

This gives our claim. [
Remark 7. When T = R in Theorem 6, then, by the relation (4), we get the inequality of Hwang and Yang [3].

Corollary 9. If we take T = hZ in Theorem 6, then, by the relation (6), inequality (25) becomes

hzwnh ") (k) ) [ Ay | + () ) (1) ) [ ]
%71 x(n m
< %f <2M1771 <n_? p(nh)y <|A2p((n}2)| )))
%_1 m
X g(ZhAln_l <nzi p*(nh)y (m)))

Remark 8. In Corollary 10, if we take h = 1, then inequality (25) becomes
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Corollary 10. If we take T = q7 in Theorem 6, then, by the relation (7), inequality (25) becomes
(logq r-1

(=1 Y [FUx@)™& (@)™ [ay@)|"™ + g (y@)™) £ (Ix(a)™) |ax(g") "] 4"

n:(logq )

1 {ogg 1)1 |Ax(g")|"
—1 n X
< Alf(z(q—l)Am <n_(§gqmq p(q")y <(q)>>>

ot D)1 |Ay(q")]™
% _ -1 N % ( N .
g<2(q DAy (n:%gqa)q P )’7( 2p* (4" )))

Remark 9. When T = R, if we take m = 1 and p(t) = p*(t), in the inequality (25), we get Pachpatte
inequality [54]

/ar [F(x @)D (ly@) DIy (0)] + g(ly(O)D F (1x(0)])|x'(9)]] A6
< f(’?l (/ar p*(0)n ( |;;((Z))| ) d9>) 28)
x g (171 (/r p*(0)y < |z;((?)| ) d9> ) -
Remark 10. Tuking f(6) = g(0) and x(0) = y(0) in inequality (28), we get the Pachpatte inequality [54]
2
1 =V [%(0)]
Sl ([ v han) ) |

Corollary 11. Suppose T is a time scale, «, B, («+B)/2 € T, and f, g are defined as in Theorem 5.
Furthermore, Assume x and y are rd-continuous functions on |, BT such that x(a) = y(a) = 0 and

x(B) = y(B) = 0. Then, we get

[ FUx@DF (<@ )]0 <

/f LF(x(@)™)g" (ly(0) ")y (@)™ + g(|ly(8) ") £ (|x(6) ") |x>(8) "] A
< 26’(21 mftz/ 7t |mA9> (29)
atB
X [f(zlm/\z/a R )|mA9> +f<21 "2 f;| A(9)|mA9>],

where Ay = (B — )"~ 1.

Proof. Let I' € [a,B]r, the functions x and y satisfy the conditions of Theorem 5 on [«,T|r.
Thus, inequality (10) holds. Next, in the interval [T, ,B}T, the functions x and y are rd-continuous,
and x(B) = y(B) = 0. Thus, by defining ¢(t) = ft |x2(0)"A8, $(t) ft ly2(0)|"A0 t € [T, B], and

following an argument similar to Theorem 5, we obtain
p
/r L (1x(0)1™)8' (y @)™y ©)™ + g (I (O)[")f (|x(0) ") |x*(9) "] A0

/\i <A3/ 16 |’”A9> <A3/ A ( |mA9>

(30)
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where A3 = (B —T)"~1. A combination of the inequalities (10) and (30), we get
/j LF(Ix(@) ™) (y @)™ Iy O)1" + g Iy (@) ™) £ ([x(8)|™) [x* (6) "] A6

LF(x(@)™)g" (ly (@)™ ly™ @)™ + gy (8) ™) £ (|x(6) ") |x>(8) "] A

/f[f(lﬂ Mg (™) A O)1™ + |y (8)™) f' (|x(8)]™) x> (8) "] A6 31)

silf(;\l/ 1A ( ’"AG) ( me)
+/\13f< / 1x2(0)[™ A0 <A3/ (6 me),
A

forT = © ﬁ, we find that Ay = A3 = ﬁT) , where Ay = (B—a)""!, then Ay = A3 = ST
Then, by substituting in (31), we get

/f [F(1x(0)™)g' (ly ()™ |y™ (0) ™ + g (ly(0) ™) £ (1x(6)™)|x(6)[™] A6
m—1 # #
< 2)\ f<21mA2/o¢ xA(9)|mA6>g<21mA2/IX ’yA(9)|mA9> 32)

2
+m1f<21 "y /ﬁﬁ| A(9)|’%9> <21 mAz/ﬁH A(G)’”AG).

Since g is non-decreasing function, we have

/f LF(x(@)1™)8" (y @)™y @)I" + g (ly (@) ") £ ([« (£)") [x* () "] A6

2m1 1-m p A m 1-m # A m
< Ss 27 [Tt mae ) [ £( 2 [T o) mae

This gives our claim (29). O
Corollary 12. If we take T = hZ in Corollary 11, then, by the relation (6), inequality (29) becomes
-1

i) [f(x(nh)[™)g" (ly () |"™)| Ay (nh)[™ + g (ly (nh)[™) £ (|2 (nk)|™) | Ax (nh) "]

=

=
==

om—1 é*1
< )\2g<21 "MAsh 2 |Ay(nh)|™ >

n=g

1x+/571 gfl
(2 T st ) (2 maan i) |

n=4% _atp
h n="5
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Remark 11. In Corollary 12, if we take h = 1, then inequality (29) becomes

p—1
Y. FUx(m) ™) (ly(m) ™) Ay ()" + g (ly(m)[™) £ (|x(m) ") |Ax(n) "]

n=u«

271171 1 p—1
< ng 277"\ Z |Ay(n)|™

n=u«

X lf(Zlm)tz 2 |Ax(n)|m> +f<21m)lz 2 |Ax(”)m>]'

n=u _atp
n==

Corollary 13. If we take T = q7 in Corollary 11, then, by the relation (7), inequality (29) becomes

(logq /S)_l

(7—1) (Z )[f(IX(LI”)Im)g’(ly(q”)\m)lAy(q”)lm+g(|y(q”)|m)f’(|x(t7”)\m)IAX(q”)Im]tJ”
n=(log, a

(log, p)—1

271171 B
< /\zg<21 "Aa(g—1) Y IAy(q”)l’”q”>

n:(logq o)

(log, “37) -1

le(Zl‘mAz(q—l) )3 IAX(q”)Imq”>

n:(logq o)
(1qu B) -1

+f<21m)\2(q—1) Y IAx(q”)l"’q”ﬂ'
n:(logq#)

Corollary 14. In Corollary 11. For m = 1, we can get the following inequality
B
/a [ (x@)g" (ly@DIy*©)| + g Iy (M) (|x(0)])|x*6]] A6

< 2f(§ / ﬁ|xA<9>|Ae>g<§ /[ |yA<e>|Ae>.

Proof. By substituting in (32) by m = 1, we get

(33)

/f £ (1x@)D8' (1y(@)D)1y>(0)] + g (ly@) )£ (|x(0) ) |x*(6)]] a6
+B

< f( 7 |xA<e>|Ae>g( L7 |yA<9>|Ae> 9
+f< I, xA<e>|Ae>g< I, |yA<e>|A9>-

2
If we choose I such that

I

xA(H)’AG:/Fﬁ’xA(G)‘AH: %/f

28(0) ] AB. (35)
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Then, by substituting from (35) in (34), we can get
/f LF(x0)Dg (ly(@) D1y (0)] + g(ly(O)]) £ (x(6)]) x> ()] A0

<2f< R0 |A9> ( [ |Ae>

This gives our claim. [

Corollary 15. Let f(t) = F5 0> 0, ¢(t) = 1and x(t) = y(t) in (29), to obtain

f(m—1 a+p "
Aﬁw|x(9)|f|xA(9)|mAe < (B9 . )K/"‘ i IxA(9)I’”A9>

m
(36)

n (/'; |xA(9)|mA9> ' ]

By using the inequality (9) in inequality (36), we get

/|x |2 (6) [0 < +m(ﬁ;“)+

_oom
T l4m

2
(37)

From Lemma 1 with indices £ () " gnd £ +m on (37), we have

m B—aNt [P
/|x )[E|xA ¢ |mA9_€+ 2 )L|xA(e)|€+mA9. (38)

Remark 12. Taking T = R, then (38) gives Yang inequality [59]

[ o @rmar < (B2 [P )

Theorem 7. Under the hypotheses of Theorem 5. Assuming that s > 0, r > 0 and sA>0r2>0te [a, T
and r(a) = 0,s(a) = 0and x > 0and 7t > 0 are convex and increasing functions on (0, co)g. Then, we get

A X
£ om0 o590 52

2(0)] ¢ [x(6)] y(6)]
+r@)x( ’:A(G) )f (r(@)x( ’:(6> ))g(s(@)rf( g(e) ))]Ae (39)
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Proof. Fort € [a, |1, we define ¢ () := [!|x2(8)|A0 and p(t) := [|y2(6)|A8s0 that ¢ (£) = [x2 (1))

and 92(t) = [y*(1)].
Thus
(0] = | [ 2 @20] <[22 @)}s0 = o
wol = | [ o] < [lr@lao =y

i (0) 9 (0)A0
x(®)] rA(6)
r® = [frae)ae

[is2(0)y(0)0
y| o 56

s = " Tsr(e)ne

Then, we obtain

Thus, from Lemma 2, we get

1t Alg
(58 < Lo (55 )

y2(0) (x(0)] )/ y(6)]
o 50 ) ron(5 ) ) (on (45
ECGIRW [x(0)] y(6)]
R R R ) M
< [ ron(S ([ rossone (] (253 )




13 0f 18

Symmetry 2020, 12, 842

Then by substituting in (40), we get

(41)

From Lemma 3 for ¢ € [t,0(t)], we get

(42)

(43)

| |
|l =
<
w:AS w:A_S
N—— —
= =
—~ —~
-~ -~
~— ~—
< <
%) 1521
| Al
/N
/
)
<
[
S
<
=%
N———
R
=)
~
<
19}
s
N———
<
e%¢)

Then, by substituting from (42) and (42) in (41), we get

/N .
nAU_ VR
>
/ <
sz — >
g ~ —~|
w,A_S Muv\w
(ﬂ\ WAS
—~ SN—
N S
=
t/u <,
N————— -
s%¢) /
o —
nA_U 60
VRS
/ So)
<l <
e —
<1 |« oy
S
— 4|9
= 1
>
R = ~—
—= 3
~~— ~
“— — <
—

This gives our claim. [
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Remark 13. Taking T = R, then, by the relation (6), inequality (39) gives Pachpatte inequality in [55]
W y'(0)] EACIRRW y(6)|
|s <9>n( 0, )f(rw)x( o ))g (s(f))n(s(@)))
/ [x(6) y(0)]
+Ox (S 5(0) ))]de
< f(/p;r Y (0)x < |’:,/<(g))| ) d9>g(/; s’(e)n<|§:((3))|>de>.
Corollary 16. If we take T = hZ in Theorem 7, then, by the relation (6), inequality (39) becomes
|Ay(nh)| [x(m) ./ ly(nh)]
As(nh)rc( As(nl) >f<r(nh)x< () ))g <s(nh)7t< S(nh) ))
artmn (G0 (omn (S ) Jo (o M5 )

i1 x(n i "
_ <h 5 Af<nh>?<<|ir<<n:§|>> g<hn% Aswh)n(ii};((ngl) .

—
=y

N
™
N
=
—
>
N—
=
—
Y
—~| =
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Remark 14. In Corollary 16, if we take h = 1, then inequality (39) becomes
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Corollary 17. If we take T = g7 in Theorem 7, then, by the relation (7), inequality (39) becontes
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Remark 15. Fors(t) = r(t), x(t) = nt(t), y(t) = x(t) and g(t) = f(t), the inequality (39) becomes
A
[ () (ron(500) ) (om0 ) o
o 7 e (@1 0\
s o))

Corollary 18. With the assumptions of Theorem 7. Suppose w > 0, t € [a, ']y and flxrw(G)AG =1
Assuming ¥ > 0 is increasing and convex on [0, 00)g. Then, we get

(44)

A6 (45)

and

and

and hence

and

) A9> (46)
S () (112(0)
/;S”””('figg?) <yl (Arw(e)T<W>Ae> 47)

Using (46) and (47) in (39), we get (45). This completes the proof. [

3. Conclusions

In this paper, with the help of the dynamic Jensen inequality, dynamic Holder inequality and
a simple consequence of Keller’s chain rule on time scales, we generalized a number of Opial-type
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inequalities to a general time scale. Besides that, in order to illustrate the theorems for each type of
inequality applied to various time scales such as R, hZ, g% and Z as a sub case of hZ. For future studies,
researchers may obtain some different generalizations for dynamic Opial inequality and its companion
inequalities by using the results presented in this paper.
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