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Abstract

:

The aim of this paper is to give some fixed point results in generalized metric spaces in Perov’s sense. The generalized metric considered here is the w-distance with a symmetry condition. The operators satisfy a contractive weakly condition of Hardy–Rogers type. The second part of the paper is devoted to the study of the data dependence, the well-posedness, and the Ulam–Hyers stability of the fixed point problem. An example is also given to sustain the presented results.
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1. Introduction and Preliminaries


The well-known Banach contraction principle was extended by Perov in 1964 to the case of spaces endowed with vector-valued metrics. In [1], Perov introduced the concept of vector-valued metric as follows.



Let X be a nonempty set. A mapping    d ˜  : X × X →  R m    where    d ˜  =       d 1   ( x , y )       ⋯       d m   ( x , y )         for every   m ∈ N   is called vector-valued metric on X if the following properties are satisfied.



	(1)

	
   d ˜   ( x , y )  ≥ 0   for all   x , y ∈ X  , and    d ˜   ( x , y )  = 0   implies   x = y  ;




	(2)

	
   d ˜   ( x , y )  =  d ˜   ( y , x )   ;




	(3)

	
   d ˜   ( x , y )  ≤  d ˜   ( x , z )  +  d ˜   ( z , y )    for all   x , y , z ∈ X  .







In this case, the pair   ( X ,  d ˜  )   is called a generalized metric space in Perov’s sense. Some examples of fixed points on the sense of vector-valued metric are given in [2,3,4,5,6]. Throughout this paper    M  m , m    (  R +  )    will denote the set of all   m × m   matrices with positive elements. We also denote by Θ the zero   m × m   matrix and    0  1 × m   =     0     ⋯     0      , by I the identity   m × m   matrix and    I  1 × m   =     1     ⋯     0       and by U the unity   m × m   matrix and    U  1 × m   =     1     ⋯     1      . If   A ∈  M  m , m    (  R +  )   , then the symbol   A τ   stands for the transpose matrix of A.



Recall that a matrix A is said to be convergent to zero if and only if    A n  → Θ   as   n → ∞  .



Let us recall the following theorem, which is useful for the proof of the main result, see [7].



Theorem 1.

Let   A ∈  M  m , m    (  R +  )   . The following assertions are equivalent.




	(i) 

	
A is a matrix convergent to zero;




	(ii) 

	
   A n  → Θ   as   n → ∞  ;




	(iii) 

	
The eigenvalues of A are in the open unit disc, i.e.,   | λ | < 1  , for each   λ ∈ C   with   d e t ( A − λ I ) = 0  ;




	(iv) 

	
The matrix   I − A   is non-singular and


     ( I − A )   − 1   = I + A + … +  A n  + … ;   












	(v) 

	
The matrix   I − A   is non-singular and the matrix    ( I − A )   − 1    has nonnenegative elements.











In [8], one can find that the notion of K-metric, which is an extension of the Perov’s metric. Huang and Zhang reconsidered in [9] the notion of K-metric under the name cone metric.



Hardy and Rogers [10] proved in 1973 a generalization of Reich fixed point theorem. Having this as a starting point, many authors obtained fixed point results for Hardy–Rogers type operators.



Let   ( X , d )   be a metric space. Throughout this paper we use the following notations.



  P ( X )  : the set of all nonempty subsets of X;



   P  c l    ( X )   : the set of all nonempty closed subsets of X;



   P  c p    ( X )   : the set of all nonempty compact subsets of X;



  F i x ( F ) : = { x ∈ X ∣ x ∈ F ( x ) }  : the set of the fixed points of F;



  S F i x ( F ) : = { x ∈ X ∣ { x } = F ( x ) }  : the set of the strict fixed points of F.



We denote by  N  the set of all natural numbers. We also denote by    N *  : = N −  { 0 }    the set of all natural numbers without 0.



Let   ( X ,  d ˜  )   be a generalized metric space in the sense of Perov. Here, if   v , r ∈  R m    have the form   v : = (  v 1  ,  v 2  , ⋯ ,  v m  )   and   r : = (  r 1  ,  r 2  , ⋯ ,  r m  )  , then by the inequality   v ≤ r   we mean    v i  ≤  r i   , for each   i ∈ { 1 , 2 , ⋯ , m }  , whereas by the inequality   v < r  , we mean    v i  <  r i   , for each   i ∈ { 1 , 2 , ⋯ , m }  . Moreover,   | v | : = ( |  v 1  | , |  v 2  | , ⋯ , |  v m  | )   and, if   c ∈ R   then   v ≤ c   means    v i  ≤ c  , for each   i ∈ { 1 , 2 , ⋯ , m }  .



We can notice that, in a generalized metric space, some concepts are similar to those given for metric space. Some of these concepts are Cauchy sequence, convergent sequence, completeness, and open and closed subsets.



In [11], Kada et al. introduced the concept of w-distance and improved several results replacing the involved metric by a generalized distance. On the other hand, the notions of single-valued and multivalued weakly contractive maps with respect to w-distance was introduced by Suzuki and Takahashi in [12]. Some recent fixed point results involving the w-distance can be found in [12,13,14,15,16,17,18,19].



Definition 1.

A mapping   w : X × X → [ 0 , ∞ )   is a w-distance on X if it satisfies the following conditions for any   x , y , z ∈ X  .




	(1) 

	
   w ( x , z ) ≤ w ( x , y ) + w ( y , z ) ;   




	(2) 

	
the function   w ( x , . ) : X → [ 0 , ∞ )   is lower semicontinuous;




	(3) 

	
for any   ε > 0 ,   there exists   δ > 0   such that   w ( z , x ) ≤ δ   and   w ( z , y ) ≤ δ   imply   d ( x , y ) ≤ ε .  











In [20], we find the definition of   w 0  -distance as follows.



Definition 2.

Let   ( X , d )   be a metric space. A mapping   w : X × X → [ 0 , ∞ )   is called   w 0  -distance if it is w-distance on X with   w ( x , x ) = 0   for every   x ∈ R  .





Remark 1.

Each metric is a    w 0  ˜  -distance, but the reverse is not true.





For the following notations see I.A. Rus [21,22], I.A. Rus, A. Petruşel, A. Sîntămărian [23], and A. Petruşel [24].



Definition 3.

Let (X,d) be a metric space and   f : X → X   be a single-valued operator. f is a weakly Picard operator (briefly WPO) if the sequence of successive approximations for f starting from   x ∈ X  ,    (  f n   ( x )  )   n ∈ N   , converges, for all   x ∈ X   and its limit is a fixed point for f.





If f is a WPO, then we consider the operator


    f ∞  : X → X  defined by   f ∞   ( x )  : =  lim  n → ∞    f n   ( x )  .   











Notice that    f ∞   ( X )  = F i x  ( f )   .



Definition 4.

Let (X,d) be a metric space,   f : X → X   be a WPO and   c > 0   be a real number. By definition, the single-valued operator f is c-weakly Picard operator (briefly c-WPO) if and only if the following inequality holds,


   d  ( x ,  f ∞   ( x )  )  ≤ c d  ( x , f  ( x )  )  ,  f o r   a l l    x ∈ X .   













For the theory of weakly Picard operators, for single-valued operators, see [21].



I.A. Rus gave in [22] the definition of Ulam–Hyers stability as follows.



Definition 5.

Let (X,d) be a metric space and   f : X → X   be a single-valued operator. By definition, the fixed point equation


   x = f ( x )   



(1)




is Ulam–Hyers stable if there exists a real number    c f  > 0   such that for each   ε > 0   and each solution   y *   of the inequation


   d ( y , f ( y ) ) ≤ ε   



(2)




there exists a solution   x *   of Equation (1) such that


   d  (  y *  ,  x *  )  ≤  c f  ε .   













Remark 2.

If f is a c-weakly Picard operator, then the fixed point Equation (1) is Ulam–Hyers stable.





The Ulam stability of different functional type equations have been investigated by many authors (see [25,26,27,28,29,30,31,32,33,34,35]).



We present in the first part of this paper some fixed point results in generalized metric spaces in Perov’s sense. The operator satisfies a contractive condition of Hardy–Rogers type. In the second part of the paper, we study the data dependence of the fixed point set. The well-posedness of the fixed point problem and the Ulam–Hyers stability are also studied.




2. Fixed Point Results


First, let us we recall the notion of generalized w-distance defined in [36] by L. Guran.



Definition 6.

Let   ( X ,  d ˜  )   be a generalized metric space. The mapping    w ˜  : X × X →  R + m    is called generalized w-distance on X if it satisfies the following conditions.




	(1) 

	
   w ˜   ( x , y )  ≤  w ˜   ( x , z )  +  w ˜   ( z , y )   , for every   x , y , z ∈ X  ;




	(2) 

	
  w ˜   is lower semicontinuous with respect to the second variable.;




	(3) 

	
For any   ε : =      ε 1      ⋯      ε m      > 0  , there exists   δ : =      δ 1      ⋯      δ m      > 0  , such that    w ˜   ( z , x )  ≤ δ   and    w ˜   ( z , y )  ≤ δ   implies    d ˜   ( x , y )  ≤ ε  .











Examples of generalized w-distance and some of its useful properties are also given in [36] and [37]. In the same framework, let us give the definition of generalized   w 0  -distance.



Definition 7.

Let   ( X ,  d ˜  )   be a generalized metric space. A mapping    w ˜  : X × X →  [ 0 , ∞ )    is called generalized    w 0  ˜  -distance if it is generalized w-distance on X with    w ˜   ( x , x )  =  0  1 × m     for every   x ∈ R  .





Let us recall the following useful result.



Lemma 1.

Let   ( X ,  d ˜  )   be a generalized metric space, and let    w ˜  : X × X →  R + m    be a generalized w-distance on X. Let   (  x n  )   and   (  y n  )   be two sequences in X, let    α n  : =        α n   1      ⋯        α n   m      ∈  R + m    and    β n  =        β n   1      ⋯        β n   m      ∈  R + m    be two sequences such that     α n    ( i )    and     β n    ( i )    converge to zero for each   i ∈ { 1 , 2 , ⋯ , m }  . Let   x , y , z ∈ X .   Then, the following assertions hold, for every   x , y , z ∈ X  .




	(1) 

	
If    w ˜   (  x n  , y )  ≤  α n    and    w ˜   (  x n  , z )  ≤  β n    for any   n ∈ N ,   then   y = z .  




	(2) 

	
If    w ˜   (  x n  ,  y n  )  ≤  α n    and    w ˜   (  x n  , z )  ≤  β n    for any   n ∈ N ,   then   (  y n  )   converges to z.




	(3) 

	
If    w ˜   (  x n  ,  x m  )  ≤  α n    for any   n , m ∈ N   with   m > n ,   then   (  x n  )   is a Cauchy sequence.




	(4) 

	
If    w ˜   ( y ,  x n  )  ≤  α n    for any   n ∈ N ,   then   (  x n  )   is a Cauchy sequence.











Next, let us give the definition of single-valued weakly Hardy–Rogers type operator on generalized metric space in Perov’s sense.



Definition 8.

Let   ( X ,  d ˜  )   be a generalized metric space in Perov’s sense,    w ˜  : X × X →  R + m    be a generalized w-distance, and   f : X → X   be a single-valued operator. We say that f is a weakly Hardy–Rogers type operator if the following inequality is satisfied,


    w ˜   ( f  ( x )  , f  ( y )  )  ≤ A  w ˜   ( x , y )  + B  [  w ˜   ( x , f  ( x )  )  +  w ˜   ( y , f  ( y )  )  ]  + C  [  w ˜   ( x , f  ( y )  )  +  w ˜   ( y , f  ( x )  )  ]  ,   








for all   x , y ∈ R   and   A , B , C ∈  M  m , m    (  R +  )   .





The first fixed point result of this paper is the following.



Theorem 2.

Let   ( X ,  d ˜  )   be a complete generalized metric space in Perov’s sense,    w ˜  : X × X →  R + m    be a generalized   w 0  -distance. Let   f : X → X   be a single-valued weakly Hardy–Rogers type operator such that




	(a) 

	
f is continuous;




	(b) 

	
there exist matrices   A , B , C ∈  M  m , m    (  R +  )    such that




	(i) 

	
  M =   ( I −  ( B + C )  )   − 1    ( A + B + C )    converges to Θ;




	(ii) 

	
  I − ( B + C )   is nonsingular and     ( I −  ( B + C )  )   − 1   ∈  M  m , m    (  R +  )   ;




	(iii) 

	
  I − ( A + 2 B + 2 C )   is nonsingular and     [ I −  ( A + 2 B + 2 C )  ]   − 1   ∈  M  m , m    (  R +  )   .















Then,   F i x ( f ) ≠ ∅  . Moreover, if    x *  = f  (  x *  )   , then   w (  x *  ,  x *  ) = 0  .





Proof. 

Fix    x 0  ∈ X  . Let    x 1  = f  (  x 0  )    and    x 2  = f  (  x 1  )   . Then, we have


    w ˜   (  x 1  ,  x 2  )  =  w ˜   ( f  (  x 0  )  , f  (  x 1  )  )  A  w ˜   (  x 0  ,  x 1  )  + B  [  w ˜   (  x 0  , f  (  x 0  )  )  +  w ˜   (  x 1  , f  (  x 1  )  )  ]   + C [   w ˜   (  x 0  , f  (  x 1  )  )     +  w ˜   (  x 1  , f  (  x 0  )  )   ] = A   w ˜   (  x 0  ,  x 1  )  + B  [  w ˜   (  x 0  ,  x 1  )  +  w ˜   (  x 1  ,  x 2  )  ]  + C  [  w ˜   (  x 0  ,  x 2  )  +  w ˜   (  x 1  ,  x 1  )  ]     =  ( A + B )   w ˜   (  x 0  ,  x 1  )  + B  (  w ˜   (  x 1  ,  x 2  )  )  + C  [  w ˜   (  x 0  ,  x 1  )  +  w ˜   (  x 1  ,  x 2  )  ]     =  ( A + B + C )   w ˜   (  x 0  ,  x 1  )  +  ( B + C )   w ˜   (  x 1  ,  x 2  )  .   











Then, we have    [ I −  ( B + C )  ]   w ˜   (  x 1  ,  x 2  )  ≤  ( A + B + C )   w ˜   (  x 0  ,  x 1  )   .



We get the inequality


   w ˜   (  x 1  ,  x 2  )  ≤   [ I −  ( B + C )  ]   − 1    ( A + B + C )   w ˜   (  x 0  ,  x 1  )  = M  w ˜   (  x 0  ,  x 1  )  .  



(3)







For the next step, we have


    w ˜   (  x 2  ,  x 3  )  =  w ˜   ( f  (  x 1  )  , f  (  x 2  )  )  A  w ˜   (  x 1  ,  x 2  )  + B  [  w ˜   (  x 1  , f  (  x 1  )  )  +  w ˜   (  x 2  , f  (  x 2  )  )  ]   + C [   w ˜   (  x 1  , f  (  x 2  )  )     +  w ˜   (  x 2  , f  (  x 1  )  )   ] = A   w ˜   (  x 1  ,  x 2  )  + B  [  w ˜   (  x 1  ,  x 2  )  +  w ˜   (  x 2  ,  x 3  )  ]  + C  [  w ˜   (  x 1  ,  x 3  )  +  w ˜   (  x 2  ,  x 2  )  ]     =  ( A + B )   w ˜   (  x 1  ,  x 2  )  + B  (  w ˜   (  x 2  ,  x 3  )  )  + C  [  w ˜   (  x 1  ,  x 2  )  +  w ˜   (  x 2  ,  x 3  )  ]     =  ( A + B + C )   w ˜   (  x 1  ,  x 2  )  +  ( B + C )   w ˜   (  x 2  ,  x 3  )  .   











Then, we have    [ I −  ( B + C )  ]   w ˜   (  x 2  ,  x 3  )  ≤  ( A + B + C )   w ˜   (  x 1  ,  x 2  )   .



Using (3) we obtain the inequality


   w ˜   (  x 2  ,  x 3  )  ≤   [ I −  ( B + C )  ]   − 1    ( A + B + C )   w ˜   (  x 1  ,  x 2  )  = M  w ˜   (  x 1  ,  x 2  )  ≤  M 2   w ˜   (  x 0  ,  x 1  )  .  



(4)







By induction we obtain a sequence     ( x )   n ∈ N   ∈ X  , with    x n  = f  (  x  n − 1   )    such that


   w ˜   (  x n  ,  x  n + 1   )  ≤  M n   w ˜   (  x 0  ,  x 1  )  ,  



(5)




with   M ∈  M  m , m    (  R +  )    and   n ∈ N  .



We will prove next that    (  x n  )   n ∈ N    is a Cauchy sequence, by estimating    w ˜   (  x n  ,  x m  )   , for every   m , n ∈ N   with   m > n  .


    w ˜   (  x n  ,  x m  )  ≤  w ˜   (  x n  ,  x  n + 1   )  +  w ˜   (  x  n + 1   ,  x  n + 2   )  + … +  w ˜   (  x  m − 1   ,  x m  )     ≤  M n   (  w ˜   (  x 0  ,  x 1  )  )  +  M  n + 1    (  w ˜   (  x 0  ,  x 1  )  )  + … +  M  m − 1    (  w ˜   (  x 0  ,  x 1  )  )     ≤  M n   ( I + M +  M 2  + … +  M  m − n − 1   )   (  w ˜   (  x 0  ,  x 1  )  )  ≤  M n    ( I − M )   − 1    w ˜   (  x 0  ,  x 1  )   ) .    











Note that   ( I − M )   is nonsingular since M is convergent to zero. This implies


    lim  n → ∞   w  (  x n  ,  x m  )  ≤  lim  n → ∞    M n    ( I − M )   − 1    w ˜   (  x 0  ,  x 1  )   )   → d   0  1 × m   .   











By Lemma 1 (3) the sequence    (  x n  )   n ∈ N    is a Cauchy sequence.



By   ( a )   we have    w ˜   ( f  (  x  n − 1   )  , f  (  x *  )  )   → d   0  1 × m    , as   n → ∞  . As   ( X , d )   is complete, there exists    x *  ∈ X   such that     lim  n → ∞    x n   → d   x *     as   n → ∞  . From the continuity of f, it follows that    x  n + 1   = f  (  x n  )   → d  f  (  x *  )    as   n → ∞  . By the uniqueness of the limit, we get    x *  = f  (  x *  )   , that is,   x *   is a fixed point of f. Then   F i x ( f ) ≠ ∅  .



Let    x *  ∈ X   such that    x *  = f  (  x *  )   . Then, we have


    w ˜   (  x *  ,  x *  )  =  w ˜   ( f  (  x *  )  , f  (  x *  )  )  ≤ A  w ˜   (  x *  ,  x *  )     + B  [  w ˜   (  x *  , f  (  x *  )  )  +  w ˜   (  x *  , f  (  x *  )  )  ]  + C  [  d ˜   (  x *  , f  (  x *  )  )  +  d ˜   (  x *  , f  (  x *  )  )  ]     = A  w ˜   (  x *  ,  x *  )  + 2 B  w ˜   (  x *  ,  x *  )  + 2 C  w ˜   (  x *  ,  x *  )  .   



(6)




This implies    [ I −  ( A + 2 B + 2 C )  ]   w ˜   (  x *  ,  x *  )  ≤  0  1 × m    . By hypothesis   ( i i i )   we get    w ˜   (  x *  ,  x *  )  =  0  1 × m    . □





We can replace the continuity condition on the operator f and we obtain the following fixed point theorem.



Theorem 3.

Let   ( X ,  d ˜  )   be a complete generalized metric space in Perov’s sense and    w ˜  : X × X →  R + m    be a generalized   w 0  -distance. Let   f : X → X   be a single-valued weakly Hardy–Rogers type operator such that the following conditions are satisfied,




	(a) 

	
  i n f {  w ˜   ( x , y )  +  w ˜   ( x , f  ( x )  )  : x ∈ X } > 0  ;




	(b) 

	
there exist matrices   A , B , C ∈  M  m , m    (  R +  )    such that:




	(i) 

	
  M =   ( I −  ( B + C )  )   − 1    ( A + B + C )    converges to Θ;




	(ii) 

	
  I − ( B + C )   is nonsingular and     ( I −  ( B + C )  )   − 1   ∈  M  m , m    (  R +  )   ;




	(iii) 

	
  I − ( A + 2 B + 2 C )   is nonsingular and     [ I −  ( A + 2 B + 2 C )  ]   − 1   ∈  M  m , m    (  R +  )   .















Then   F i x ( f ) ≠ ∅  . Moreover, if    x *  = f  (  x *  )   , then   w (  x *  ,  x *  ) = 0  .





Proof. 

Following the same steps as in the previous theorem, Theorem 2, we have the estimation


   w ˜   (  x n  ,  x m  )  ≤  M n    ( I − M )   − 1    w ˜   (  x 0  ,  x 1  )   



(7)




with   M ∈  M  m , m    (  R +  )    and   n ∈ N  .



By Lemma 1 (3), the sequence    (  x n  )   n ∈ N    is a Cauchy sequence. As   ( X ,  d ˜  )   is complete, there exists    x *  ∈ X   such that    x n   → d   x *   . Let   n ∈ N   be fixed. Then, as     (  x m  )   m ∈ N    → d   x *    and    w ˜   (  x n  , · )    is lower semicontinuous, we have


    w ˜   (  x n  ,  x *  )  ≤  lim inf  m → ∞    w ˜   (  x n  ,  x m  )  ≤  M n    ( I − M )   − 1    w ˜   (  x 0  ,  x 1  )  .   



(8)







Assume that    x *  ≠ f  (  x *  )   . Then, for every   x ∈ X  , by hypothesis   ( a )   we have


   0 < inf  {  w ˜   ( x ,  x *  )  +  w ˜   ( x , f  ( x )  )  : x ∈ X }  ≤ inf  {  w ˜   (  x n  ,  x *  )  +  w ˜   (  x n  ,  x  n + 1   )  : n ∈ N }     ≤ inf {  M n    ( I − M )   − 1    w ˜   (  x 0  ,  x 1  )  +  M n   w ˜   (  x 0  ,  x 1  )  } = 0 .   











This is a contradiction. Therefore    x *  = f  (  x *  )   , so   F i x ( f ) ≠ ∅  . For the proof of the last part of this theorem we use the same steps as is the previous theorem, Theorem 2. □





Further we give a more general fixed point result concerning this new type of operators.



Theorem 4.

Let   ( X ,  d ˜  )   be a complete generalized metric space in Perov’s sense,    w ˜  : X × X →  R + m    be a generalized   w 0  -distance, and   f : X → X   be a single-valued weakly Hardy–Rogers type operator. There exist matrices   A , B , C ∈  M  m , m    (  R +  )    such that




	(i) 

	
  M =   ( I −  ( B + C )  )   − 1    ( A + B + C )    converges to Θ;




	(ii) 

	
  I − ( B + C )   is nonsingular and     ( I −  ( B + C )  )   − 1   ∈  M  m , m    (  R +  )   ;




	(iii) 

	
  I − ( A + 2 B + 2 C )   is nonsingular and     [ I −  ( A + 2 B + 2 C )  ]   − 1   ∈  M  m , m    (  R +  )   .









Then   F i x ( f ) ≠ ∅  . Moreover, if    x *  = f  (  x *  )   , then   w (  x *  ,  x *  ) = 0  .





Proof. 

Following the same steps as in Theorem 2, we get the estimation


   w ˜   (  x n  ,  x m  )  ≤  M n    ( I − M )   − 1    w ˜   (  x 0  ,  x 1  )   



(9)




with   M ∈  M  m , m    (  R +  )    and   n ∈ N  .



By Lemma 1 (3) the sequence    (  x n  )   n ∈ N    is a Cauchy sequence; since   ( X ,  d ˜  )   is complete there exists    x *  ∈ X   such that    x n   → d   x *   .



Let   n ∈ N   be fixed. Then, as     (  x m  )   m ∈ N    → d   x *   ,    w ˜   (  x n  , · )    is lower semicontinuous and letting   n → ∞   we have


    w ˜   (  x n  ,  x *  )  ≤  lim inf  m → ∞    w ˜   (  x n  ,  x m  )  ≤  M n    ( I − M )   − 1    w ˜   (  x 0  ,  x 1  )   → d   0  1 × m   .   



(10)







Let   f (  x *  ) ∈ X  . By triangle inequality and using (6) we obtain


    w ˜   (  x n  , f  (  x *  )  )  =  w ˜   (  x n  ,  x *  )  +  w ˜   (  x *  , f  (  x *  )  )  ≤  w ˜   (  x n  ,  x *  )  +  w ˜   ( f  (  x *  )  , f  (  x *  )  )     ≤  M n    ( I − M )   − 1    w ˜   (  x 0  ,  x 1  )  +  [ I −  ( A + 2 B + 2 C )  ]   w ˜   (  x *  ,  x *  )   → d   0  1 × m   .   



(11)







Using Lemma 1(1), by Equations (10) and (11), we get    x *  = f  (  x *  )   . Then,   F i x ( f ) ≠ ∅  .



For the last part of the proof we use the same steps as in Theorem 2. □





Another fixed point result concerning the single-valued weakly Hardy–Rogers operators in generalized metric space is the following.



Theorem 5.

Let   ( X ,  d ˜  )   be a complete generalized metric space in Perov’ sense,    w ˜  : X × X →  R + m    be a generalized   w 0  -distance and   f : X → X   be a single-valued Hardy–Rogers type operator. Suppose that all the hypothesis of Theorem 2 hold. Then, we have




	(1) 

	
  F i x ( f ) ≠ ∅  .




	(2) 

	
There exists a sequence     (  x n  )   n ∈ N   ∈ X   such that    x  n + 1   = f  (  x n  )   , for all   n ∈ N   and converge to a fixed point of f.




	(3) 

	
   d ˜   (  x n  ,  x *  )  ≤  M n   d ˜   (  x 0  ,  x 1  )   , where    x *  ∈ F i x  ( f )  .  











Example 1.

Let   X =  R 2    be a normed linear space endowed with the generalized norm   d ˜   defined by    d ˜    ( x , y )  ( =        | |   x 1  −  y 1   | |         | |   x 2  −  y 2   | |         and   w ˜   a generalized   w 0  -distance defined by    w ˜    ( x , y )  ( =        | |   y 1   | |         | |   y 2   | |        , for each   x =  (  x 1  ,  x 2  )  , y =  (  y 1  ,  y 2  )  ∈  R 2   . Let   f :  R 2  →  R 2    be an operator given by


   f  ( x , y )  =        4 x  5  +   6 y  5  − 1 ,   6 y  5  − 1 ,      f o r   ( x , y )  ∈  R 2  ,  w i t h    x ≤ 5 ;        x 5  +  y 3  − 1 ,  y 5  ,      f o r   ( x , y )  ∈  R 2  ,  w i t h    x > 5 .        











We take   f  ( x , y )  = (  f 1   ( x , y )  ,  f 2   ( x , y )  )   where    f 1   ( x , y )  =        4 x  5  +   6 y  5  − 1 ,      f o r   ( x , y )  ∈  R 2  ,  w i t h    x ≤ 5 ;        x 5  +  y 3  − 1 ,      f o r   ( x , y )  ∈  R 2  ,  w i t h    x > 5 .        and    f 2   ( x , y )  =        6 y  5  − 1 ,      f o r   ( x , y )  ∈  R 2  ,  w i t h    x ≤ 5 ;        y 5  ,      f o r   ( x , y )  ∈  R 2  ,  w i t h    x > 5 .       



Next, we show that weakly Hardy–Rogers type condition takes place.



Let   A =      4 5     6 5      0    6 5       .



Case 1. If   1 ≤  x 1  ,  x 2  ,  y 1  ,  y 2  ≤ 5   we have


     w ˜   ( f  ( x )  , f  ( y )  )  =       | |   f 1   (  y 1  ,  y 2  )   | |         | |   f 2   (  y 1  ,  y 2  )   | |       =       | |   4 5   y 1  +  6 5   y 2  − 1  | |         | | 0  ·  y 1  +  6 5   y 2  − 1  | |       ≤       4 5   | |   y 1   | |  +  6 5   | |   y 2   | |  − 1       0 ·  | |   y 1   | |  +  6 5   | |   y 2   | |  − 1         ≤      4 5     6 5      0    6 5            | |   y 1   | |         | |   y 2   | |       = A  w ˜   ( x , y )  .    











Case 2. If    x 1  ,  x 2  ,  y 1  ,  y 2  > 5   we have


     w ˜   ( f  ( x )  , f  ( y )  )  =       | |   f 1   (  y 1  ,  y 2  )   | |         | |   f 2   (  y 1  ,  y 2  )   | |       =       | |   1 5   y 1  +  1 3   y 2  − 1  | |         | | 0  ·  y 1  +  1 5   y 2   | |       ≤       1 5   | |   y 1   | |  +  1 3   | |   y 2   | |  − 1       0 ·  | |   y 1   | |  +  1 5   | |   y 2   | |          ≤      1 5     1 3      0    1 5            | |   y 1   | |         | |   y 2   | |       <      4 5     6 5      0    6 5            | |   y 1   | |         | |   y 2   | |       = A  w ˜   ( x , y )  .    











Case 3. For other choices of    x 1  ,  x 2  ,  y 1  ,  y 2    we have



    w ˜   ( f  ( x )  , f  ( y )  )  =     0     0     ≤      4 5     6 5      0    6 5            | |   y 1   | |         | |   y 2   | |       = A  w ˜   ( x , y )  .   



Thus, the weakly Hardy–Rogers type condition is satisfied for   A =      4 5     6 5      0    6 5        and   B = C = Θ   or   B + C = Θ  .



As all the hypothesis of Theorem 3 hold, f has a fixed point and it is easy to check that   x =  f  ( x )  =  (  f 1   ( x )  ,  f 2   ( x )  )  , where   x = ( 1 , 1 )  .





Next, let us give some common fixed point results.



Theorem 6.

Let   ( X ,  d ˜  )   be a complete generalized metric space in Perov’s sense,    w ˜  : X × X →  R + m    be a generalized w-distance, and   f , g : X → X   be two continuous single-valued weakly Hardy–Rogers type operators. There exist matrices   A , B , C ∈  M  m , m    (  R +  )    such that




	(i) 

	
  I − ( B + C )   is nonsingular and     ( I −  ( B + C )  )   − 1   ∈  M  m , m    (  R +  )   ;




	(ii) 

	
  M =   ( I −  ( B + C )  )   − 1    ( A + B + C )    converges to Θ.









Then, f and g have a common fixed point    x *  ∈ X  .





Proof. 

(1) Let    x 0  ∈ X  . We consider    (  x n  )   n ∈ N    the sequence of successive approximations for f and g, defined by


   x  2 n + 1   = f  (  x  2 n   )  , n = 0 , 1 , …  










   x  2 n + 2   = g  (  x  2 n + 1   )  , n = 0 , 1 , …  











Then, we have


    w ˜   (  x  2 n   ,  x  2 n + 1   )  =  w ˜   ( g  (  x  2 n − 1   )  , f  (  x  2 n   )  )  ≤ A  w ˜   (   x  2 n − 1   , f  (  x  2 n   )     + B  [  w ˜   (  x  2 n   , f  (  x  2 n   )  )  +  w ˜   (  x  2 n − 1   , g  (  x  2 n − 1   )  )  ]  + C  [  w ˜   (  x  2 n   , g  (  x  2 n − 1   )  )  +  w ˜   (  x  2 n − 1   , f  (  x  2 n   )  )  ]     = A  w ˜   (  x  2 n − 1   ,  x  2 n   )  + B  [  w ˜   (  x  2 n   ,  x  2 n + 1   )  +  w ˜   (  x  2 n − 1   ,  x  2 n   )  ]  + C  w ˜   (  x  2 n − 1   ,  x  2 n + 1   )     ≤ A  w ˜   (  x  2 n − 1   ,  x  2 n   )  + B  [  w ˜   (  x  2 n   ,  x  2 n + 1   )  +  w ˜   (  x  2 n − 1   ,  x  2 n   )  ]  + C  [  w ˜   (  x  2 n − 1   ,  x  2 n   )  +  w ˜   (  x  2 n   ,  x  2 n + 1   )  ]  .   











Then, we have    w ˜   (  x  2 n   ,  x  2 n + 1   )  ≤   ( I −  ( B + C )  )   − 1    ( A + B + C )   w ˜   (  x  2 n − 1   ,  x  2 n   )  = M  w ˜   (  x  2 n − 1   ,  x  2 n   )  .  



By the same argument as above, we get


    w ˜   (  x  2 n + 1   ,  x  2 n + 2   )  =  w ˜   ( f  (  x  2 n   )  , g  (  x  2 n + 1   )  )  ≤ A  d ˜   (   x  2 n   , f  (  x  2 n + 1   )     + B  [  w ˜   (  x  2 n   , f  (  x  2 n   )  )  +  w ˜   (  x  2 n + 1   , g  (  x  2 n + 1   )  )  ]  + C  [  w ˜   (  x  2 n   , g  (  x  2 n + 1   )  )  +  w ˜   (  x  2 n + 1   , f  (  x  2 n   )  )  ]     = A  w ˜   (  x  2 n   ,  x  2 n + 1   )  + B  [  w ˜   (  x  2 n   ,  x  2 n + 1   )  +  w ˜   (  x  2 n + 1   ,  x  2 n + 2   )  ]  + C  w ˜   (  x  2 n   ,  x  2 n + 2   )     ≤ A  w ˜   (  x  2 n   ,  x  2 n + 1   )  + B  [  w ˜   (  x  2 n   ,  x  2 n + 1   )  +  w ˜   (  x  2 n + 1   ,  x  2 n + 2   )  ]  + C  [  w ˜   (  x  2 n   ,  x  2 n + 1   )  +  w ˜   (  x  2 n + 1   ,  x  2 n + 2   )  ]  .   











Then, we have    w ˜   (  x  2 n + 1   ,  x  2 n + 2   )  ≤   ( I −  ( B + C )  )   − 1    ( A + B + C )   w ˜   (  x  2 n   ,  x  2 n + 1   )  = M  w ˜   (  x  2 n   ,  x  2 n + 1   )  .  



Further, we obtain    w ˜   (  x n  ,  x  n + 1   )  ≤  M n   w ˜   (  x 0  ,  x 1  )    for each   n ∈ N  .



Following the same steps as in the proof of Theorem 2 we estimate    w ˜   (  x n  ,  x m  )   , for every   m , n ∈ N   with m > n.


    w ˜   (  x n  ,  x m  )  ≤  w ˜   (  x n  ,  x  n + 1   )  +  w ˜   (  x  n + 1   ,  x  n + 2   )  + … +  w ˜   (  x  m − 1   ,  x m  )     ≤  M n   (  w ˜   (  x 0  ,  x 1  )  )  +  M  n + 1    (  w ˜   (  x 0  ,  x 1  )  )  + … +  M  m − 1    (  w ˜   (  x 0  ,  x 1  )  )     ≤  M n   ( I + M +  M 2  + … +  M  m − n − 1   )   (  w ˜   (  x 0  ,  x 1  )  )  ≤  M n    ( I − M )   − 1    w ˜   (  x 0  ,  x 1  )   ) .    











Note that   ( I − M )   is nonsingular since M is convergent to Θ. Using Lemma 1 (3) the sequence    (  x n  )   n ∈ N    is a Cauchy sequence.



Using the lower semicontinuity of the generalized w-distance, by relation (8) we have    w ˜   (  x n  ,  x *  )   → d   0  1 × m     as   n → ∞  . Then, we have    w ˜   (  x  2 n   ,  x *  )   → d   0  1 × m     as   n → ∞  . By the continuity of f it follows    x  2 n + 1   = f  (  x  2 n   )   → d  f  (  x *  )    as   n → ∞  . By the uniqueness of the limit we get    x *  = f  (  x *  )   .



By    w ˜   (  x n  ,  x *  )   → d   0  1 × m     as   n → ∞   we have that    w ˜   (  x  2 n + 1   ,  x *  )   → d   0  1 × m     as   n → ∞  . By the continuity of g it follows    x  2 n + 2   = g  (  x  2 n + 1   )   → d  g  (  x *  )    as   n → ∞  . By the uniqueness of the limit we get    x *  = g  (  x *  )   .



Then,   x *   is a common fixed point for f and g. □





By replacing the continuity condition for the mappings f and g, we can state the following result.



Theorem 7.

Let   ( X ,  d ˜  )   be a complete generalized metric space in Perov’s sense,    w ˜  : X × X →  R + m    be a generalized w-distance, and   f , g : X → X   be two single-valued Hardy–Rogers type operators. There exist matrices   A , B , C ∈  M  m , m    (  R +  )    such that




	(i) 

	
  I − ( B + C )   is nonsingular and     ( I −  ( B + C )  )   − 1   ∈  M  m , m    (  R +  )   ;




	(ii) 

	
  I − ( A + 2 B + 2 C )   is nonsingular and     [ I −  ( A + 2 B + 2 C )  ]   − 1   ∈  M  m , m    (  R +  )   ;




	(iii) 

	
  M =   ( I −  ( B + C )  )   − 1    ( A + B + C )    converges to Θ.









Then f and g have a common fixed point    x *  ∈ X  .





Proof. 

(1) As in the proof of the previous theorem, Theorem 6, for    x 0  ∈ X   we consider    (  x n  )   n ∈ N    the sequence of successive approximations for f and g, defined by


   x  2 n + 1   = f  (  x  2 n   )  , n = 0 , 1 , …  










   x  2 n + 2   = g  (  x  2 n + 1   )  , n = 0 , 1 , …  











We define the sequence     (  x n  )   n N   ∈ X   such that


   w ˜   (  x  2 n + 1   ,  x  2 n + 2   )  ≤   ( I −  ( B + C )  )   − 1    ( A + B + C )   w ˜   (  x  2 n   ,  x  2 n + 1   )  = M  w ˜   (  x  2 n   ,  x  2 n + 1   )  .  











Further, we obtain    w ˜   (  x n  ,  x  n + 1   )  ≤  M n   d ˜   (  x 0  ,  x 1  )    for each   n ∈ N  .



Following the same steps as in the proof of Theorem 6 we estimate    w ˜   (  x n  ,  x m  )   , for every   m , n ∈ N   with   m > n   and we get    w ˜   (  x n  ,  x m  )  ≤  M n    ( I − M )   − 1    w ˜   (  x 0  ,  x 1  )   ) .   



Note that   ( I − M )   is nonsingular since M is convergent to Θ. By Lemma 1 (3), the sequence    (  x n  )   n ∈ N    is a Cauchy sequence. Using the lower semicontinuity of the generalized w-distance, by relation (8), we have    w ˜   (  x n  ,  x *  )   → d   0  1 × m   ,   as   n → ∞  . By (11) we have    w ˜   (  x n  , f  (  x *  )  )   → d   0  1 × m   ,   as   n → ∞  . Then, using Lemma 1 (2), we get    x *  = f  (  x *  )   .



Let us show that   g  (  x *  )  =  x *   . Then, by the definition of Hardy–Rogers type operators we have


    w ˜   (  x *  , g  (  x *  )  )  =  d ˜   ( f  (  x *  )  , g  (  x *  )  )     ≤ A  w ˜   (  x *  ,  x *  )   + B [   w ˜   (  x *  , f  (  x *  )  )  +  w ˜   (  x *  , g  (  x *  )  ]  + C  [  w ˜   (  x *  , g  (  x *  )  )  +  w ˜   (  x *  , f  (  x *  )  )  ]  .   











Then, we get


   w ˜   (  x *  , g  (  x *  )  )  ≤   ( I −  ( B + C )  )   − 1    ( A + B + C )   w ˜   (  x *  ,  x *  )  .  



(12)







By (6) we get    w ˜   (  x *  , g  (  x *  )  )  =  0  1 × m   .  



Let   g (  x *  ) ∈ X  . By triangle inequality and using (12) we obtain


   w ˜   (  x n  , g  (  x *  )  )  =  w ˜   (  x n  ,  x *  )  +  w ˜   (  x *  , g  (  x *  )  )  ≤  M n    ( I − M )   − 1    w ˜   (  x 0  ,  x 1  )  +  0  1 × m    → d   0  1 × m   .  



(13)







Using (8) and (13), by Lemma 1 (2), we obtain    x *  = g  (  x *  )   . Then   x *   is a common fixed point for f and g. □





Remark 3.

In the case of common fixed points, the generalized   w ˜  -distance must not necessarily be a generalized    w 0  ˜  -distance.






3. Ulam–Hyers Stability, Well-Posedness, and Data Dependence of Fixed Point Problem


We begin this section with the extension of Ulam–Hyers stability for fixed point equation for the case of single-valued operators on generalized metric space in Perov’s sense. Then, let us recall the definition of weakly Ulam–Hyers stability.



Definition 9.

Let   ( X ,  d ˜  )   be a metric space,    w ˜  : X × X →  R + m    be a generalized w-distance, and   f : X → X   be an operator. By definition, the fixed point equation


   x = f ( x )   



(14)




is weakly Ulam–Hyers stable if there exists a real positive matrix   N ∈  M  m , m    ( R + )    such that, for each   ε > 0   and each solution   y *   of the inequation


    w ˜   ( y , f  ( y )  )  ≤ ε  I  1 × m     



(15)




there exists a solution   x *   of the Equation (14) such that


    d ˜   (  y *  ,  x *  )  ≤ N ε  I  1 × m   .   













Theorem 8.

Let   ( X ,  d ˜  )   be a generalized metric space in Perov’s sense,    w ˜  : X × X →  R + m    be a generalized   w 0  -distance and   f : X → X   be a single-valued Hardy–Rogers type operator defined in (8). There exist matrices   A , B , C ∈  M  m , m    (  R +  )    such that




	(i) 

	
  N =  M n    ( I − M )   − 1     is nonsingular and   N =  M n    ( I − M )   − 1   ∈  M  m , m    (  R +  )   , where   M =   ( I  ( B + C )  )   − 1    ( A + B + C )    converges to Θ;




	(ii) 

	
  I − ( A + 2 B + 2 C )   is nonsingular and     [ I −  ( A + 2 B + 2 C )  ]   − 1   ∈  M  m , m    (  R +  )   ;




	(iii) 

	
  I −  P 2    is nonsingular and   I −  P 2  ∈  M  m , m    (  R +  )    where   P =   [ I −  ( A + C )  ]   − 1   C ∈  M  m , m    (  R +  )   .









Then, the fixed point Equation (14) is weakly Ulam–Hyers stable.





Proof. 

Let   δ  I  1 × m   >  0  1 × m     such that    w ˜   (  x 0  ,  x 1  )  ≤ δ  I  1 × m    , for every    x 0  ,  x 1  ∈ X   with    x 1  = f  (  x 0  )   . Let   F i x  ( f )  =  {  x *  }    and    u *  ∈ X   be a solution of Equation (14). Then,    w ˜   (  u *  , f  (  u *  )  )  ≤ ε  I  1 × m    . By the definition of the weakly Hardy–Rogers type operator we obtain


    w ˜   (  x *  ,  u *  )  ≤  w ˜   ( f  (  x *  )  , f  (  u *  )  )  ≤ A  w ˜   (  x *  ,  u *  )  + B  [  w ˜   (  x *  , f  (  x *  )  )  +  w ˜   (  u *  , f  (  u *  )  )  ]  + C  [  w ˜  (   x *  , f  (  u *  )     +  w ˜   (  u *  , f  (  x *  )  )   ] = A   w ˜   (  x *  ,  u *  )  + B  [  w ˜   (  x *  ,  x *  )  +  w ˜   (  u *  ,  u *  )  ]  + C  [  w ˜   (  x *  ,  u *  )  +  w ˜   (  u *  ,  x *  )  ]     =  ( A + C )   w ˜   (  x *  ,  u *  )  + B  [  w ˜   (  x *  ,  x *  )  +  w ˜   (  u *  ,  u *  )  ]  + C  w ˜   (  u *  ,  x *  )  .   



(16)







By (6) we get


   w ˜   (  x *  ,  x *  )  =  w ˜   ( f  (  x *  )  , f  (  x *  )  )  ≤  ( A + 2 B + 2 C )   w ˜   (  x *  ,  x *  )   and   



(17)






   w ˜   (  u *  ,  u *  )  =  w ˜   ( f  (  u *  )  , f  (  u *  )  )  ≤  ( A + 2 B + 2 C )   w ˜   (  u *  ,  u *  )  .  











Using hypothesis   ( i i )   we get    w ˜   (  x *  ,  x *  )  =  w ˜   (  u *  ,  u *  )  =  0  1 × m    .



By (16) we obtain


   w ˜   (  x *  ,  u *  )  ≤   [ I −  ( A + C )  ]   − 1   C  w ˜   (  u *  ,  x *  )  .  



(18)







By the definition of the weakly Hardy–Rogers type operator we get


   w ˜   (  u *  ,  x *  )  ≤   [ I −  ( A + C )  ]   − 1   C  w ˜   (  x *  ,  u *  )   








and using (18) we obtain


   w ˜   (  x *  ,  u *  )  ≤   (   [ I −  ( A + C )  ]   − 1   C )  2   w ˜   (  x *  ,  u *  )  =  P 2   w ˜   (  x *  ,  u *  )  .  



(19)







Then,    ( I −  P 2  )   w ˜   (  x *  ,  u *  )  ≤  0  1 × m    . By hypothesis   ( i i i )   we get    w ˜   (  x *  ,  u *  )  =  0  1 × m    .



Let    x n  ∈ X   such that, by Equations (8) and (19) we have


   w ˜   (  x n  ,  x *  )  ≤  M n    ( I − M )   − 1    w ˜   (  x 0  ,  x 1  )  ≤ N δ  I  1 × m    and   



(20)






   w ˜   (  x n  ,  u *  )  ≤  w ˜   (  x n  ,  x *  )  +  w ˜   (  x *  ,  u *  )  ≤  M n    ( I − M )   − 1    w ˜   (  x 0  ,  x 1  )  +  0  1 × m   ≤ N δ  I  1 × m   .  











Then, using the definition of generalized w-distance, there exists   ε  I  1 × m   >  0  1 × m     such that


   d ˜   (  x *  ,  u *  )  ≤ ε  I  1 × m   ≤ N ε  I  1 × m   .  











Then, the fixed point Equation (14) is weakly Ulam–Hyers stable. □





The following result assures the well-posedness of the fixed point problem with respect to the generalized   w 0  -distance   w ˜  .



Theorem 9.

Let   ( X ,  d ˜  )   be a generalized metric space in Perov’s sense,    w ˜  : X × X →  R + m    be a generalized   w 0  -distance, and   f : X → X   be a single-valued Hardy–Rogers type operator defined in Equation (8). If all the hypothesis of Theorem 2 (respectively, 3 and 4) are satisfied, the fixed point Equation (14) is well-posed with respect to the generalized   w 0  -distance   w ˜  , i.e., if   F i x  ( f )  =  {  x *  }    and    x n  ∈ N  , with   n ∈ N  , such that    w ˜   (  x n  , f  (  x n  )  )  →  0  1 × m     as   n → ∞  , then    x n  →  x *    as   n → ∞  .





Proof. 

Let    x *  ∈ F i x  ( f )    and let     ( x )   n ∈ N   ∈ X   such that    w ˜   (  x n  , f  (  x n  )  )   → d   0  1 × m     as   n → ∞  . That means    w ˜   (  x  n − 1   ,  x n  )   → d   0  1 × m     as   n → ∞  .



By the lower semicontinuity of the generalized w-distance, using (8) we have


    w ˜   (  x  n − 1   ,  x *  )  ≤  lim inf  m → ∞    w ˜   (  x n  ,  x m  )  ≤  M n    ( I − M )   − 1    w ˜   (  x 0  ,  x 1  )   → d   0  1 × m   .   











Then, using Lemma 1 (3) we get    x n   → d   x *    as   n → ∞  . □





The next theorem presents a data dependence result.



Theorem 10.

Let   ( X ,  d ˜  )   be a generalized metric space in Perov’s sense,    w ˜  : X × X →  R + m    be a generalized   w 0  -distance, and    f 1  ,  f 2  : X → X   be single-valued operators, which satisfy the following conditions,




	(i) 

	
for   A , B , C , M ∈  M  m , m    (  R +  )    with   M =   [ I −  ( B + C )  ]   − 1    ( A + B + C )    a matrix convergent to Θ such that, for every   x , y ∈ X   and   i ∈ { 1 , 2 }  , we have:    w ˜   (  f i   ( x )  ,  f i   ( y )  )  ≤ A  w ˜   ( x , y )  + B  [  w ˜   ( x ,  f i   ( x )  )  +  w ˜   ( y ,  f i   ( y )  )  ]  + C  [  w ˜   ( x ,  f i   ( y )  )  +  w ˜   ( y ,  f i   ( x )  )  ]  ;   




	(ii) 

	
there exists   η > 0   such that    w ˜   (  f 1   ( x )  ,  f 2   ( x )  )  ≤ η I  , for all   x ∈ X  .









Then, for    x  1  *  =  f 1   (  x  1  *  )    there exists    x  2  *  =  f 2   (  x  2  *  )    such that    d ˜   (  x  1  *  ,  x  2  *  )  ≤   ( I − M )   − 1   η  I  1 × m    ; (respectively, for    x  2  *  =  f 2   (  x  2  *  )    there exists    x  1  *  =  f 1   (  x  1  *  )    such that    w ˜   (  x  2  *  ,  x  1  *  )  ≤   ( I − M )   − 1   η  I  1 × m    ).





Proof. 

As in the proof of Theorem 2 (respectively, Theorem 3) we construct the sequence of successive approximations     (  x n  )   n ∈ N   ∈ X   of   f 2   with    x 0  : =  x  1  *    and    x 1  =  f 2   (  x  1  *  )    having the property    w ˜   (  x n  ,  x  n + 1   )  ≤  M n   w ˜   (  x 0  ,  x 1  )   , where   M =   [ I −  ( B + C )  ]   − 1    ( A + B + C )   .



If we consider the sequence     (  x n  )   n ∈ N   ∈ X   converges to   x  2  *  , we have    x  2  *  = f  (  x  2  *  )   . Moreover, for each   n , p ∈ N   we have    w ˜   (  x n  ,  x  n + p   )  ≤  M n    ( I − M )   − 1    w ˜   (  x 0  ,  x 1  )   .



Letting   p → 0   we get    w ˜   (  x n  ,  x  2  *  )  ≤ I   ( I − M )   − 1    w ˜   (  x 0  ,  x 1  )   .



Choosing   n = 0   we get    w ˜   (  x 0  ,  x  2  *  )  ≤ I   ( I − M )   − 1    w ˜   (  x 0  ,  x 1  )    and using above the notations we get our conclusion    w ˜   (  x  1  *  ,  x  2  *  )  ≤   ( I − M )   − 1   η  I  1 × m    . □






4. Conclusions


The purpose of this paper is to establish some fixed point results in generalized metric spaces in Perov’s sense. The generalized metric considered here is the w-distance, for which the symmetry condition is not satisfied. The operators satisfy a contractive weakly condition of Hardy–Rogers type. The second part of the paper is devoted to the study of the data dependence, as well as the well-posedness and the Ulam–Hyers stability of the fixed point problem. In order to prove our main results we had to impose a symmetry condition for the w-distance. The results presented in this paper generalize some recent ones.
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